Модуль разницы чисел. Модуль числа (абсолютная величина числа), определения, примеры, свойства

Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 5 является 5, модулем числа –5 тоже является 5.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |5|, |х |, |а | и т.д.

Правило :

Пояснение :

|5| = 5
Читается так: модулем числа 5 является 5.

|–5| = –(–5) = 5
Читается так: модулем числа –5 является 5.

|0| = 0
Читается так: модулем нуля является ноль.

Свойства модуля:

1) Модуль числа есть неотрицательное число:

|а | ≥ 0

2) Модули противоположных чисел равны:

|а | = |–а |

3) Квадрат модуля числа равен квадрату этого числа:

|а | 2 = a 2

4) Модуль произведения чисел равен произведению модулей этих чисел:

|а · b | = |а | · |b |

6) Модуль частного чисел равен отношению модулей этих чисел:

|а : b | = |а | : |b |

7) Модуль суммы чисел меньше или равен сумме их модулей:

|а + b | ≤ |а | + |b |

8) Модуль разности чисел меньше или равен сумме их модулей:

|а b | ≤ |а | + |b |

9) Модуль суммы/разности чисел больше или равен модулю разности их модулей:

|а ± b | ≥ ||а | – |b ||

10) Постоянный положительный множитель можно вынести за знак модуля:

|m · a | = m · |а |, m >0

11) Степень числа можно вынести за знак модуля:

|а k | = |а | k , если а k существует

12) Если |а | = |b |, то a = ± b

Геометрический смысл модуля.

Модуль числа – это величина расстояния от нуля до этого числа.

Для примера возьмем снова число 5. Расстояние от 0 до 5 такое же, что и от 0 до –5 (рис.1). И когда нам важно знать только длину отрезка, то знак не имеет не только значения, но и смысла. Впрочем, не совсем верно: расстояние мы измеряем только положительными числами – или неотрицательными числами. Пусть цена деления нашей шкалы составляет 1 см. Тогда длина отрезка от нуля до 5 равна 5 см, от нуля до –5 тоже 5 см.

На практике часто расстояние отмеряется не только от нуля – точкой отсчета может быть любое число (рис.2). Но суть от этого не меняется. Запись вида |a – b| выражает расстояние между точками а и b на числовой прямой.

Пример 1 . Решить уравнение |х – 1| = 3.

Решение .

Смысл уравнения в том, что расстояние между точками х и 1 равно 3 (рис.2). Поэтому от точки 1 отсчитываем три деления влево и три деления вправо – и наглядно видим оба значения х :
х 1 = –2, х 2 = 4.

Можем и вычислить.

х – 1 = 3
х – 1 = –3

х = 3 + 1
х = –3 + 1

х = 4
х = –2.

Ответ : х 1 = –2; х 2 = 4.

Пример 2 . Найти модуль выражения:

Решение .

Сначала выясним, является ли выражение положительным или отрицательным. Для этого преобразуем выражение так, чтобы оно состояло из однородных чисел. Не будем искать корень из 5 – это довольно сложно. Поступим проще: возведем в корень 3 и 10. Затем сравним величину чисел, составляющих разность:

3 = √9. Следовательно, 3√5 = √9 · √5 = √45

10 = √100.

Мы видим, что первое число меньше второго. Значит, выражение отрицательное, то есть его ответ меньше нуля:

3√5 – 10 < 0.

Но согласно правилу, модулем отрицательного числа является это же число с противоположным знаком. У нас отрицательное выражение. Следовательно, надо поменять его знак на противоположный. Выражением, противоположным 3√5 – 10, является –(3√5 – 10). Раскроем в нем скобки – и получим ответ:

–(3√5 – 10) = –3√5 + 10 = 10 – 3√5.

Ответ .

Уравнения с модулями, методы решений. Часть 1.

Прежде чем приступать к непосредственному изучению техник решения таких уравнений, важно понять суть модуля, его геометрическое значение. Именно в понимании определения модуля и его геометрическом смысле, заложены основные методы решения таких уравнений. Так называемый, метод интервалов при раскрытии модульных скобок, настолько эффективен, что используя его возможно решить абсолютно любое уравнение или неравенство с модулями. В этой части мы подробно изучим два стандартных метода: метод интервалов и метод замены уравнения совокупностью.

Однако, как мы убедимся, эти методы, всегда эффективные, но не всегда удобные и могут приводить к долгим и даже не очень удобным вычислениям, которые естественно потребуют большего времени на их решение. Поэтому важно знать и те методы, которые решение определенных структур уравнений значительно упрощают. Возведение обеих частей уравнения в квадрат, метод введения новой переменной, графический метод, решение уравнений, содержащих модуль под знаком модуля. Эти методы мы рассмотрим в следующей части.

Определение модуля числа. Геометрический смысл модуля.

Первым делом познакомимся с геометрическим смыслом модуля:

Модулем числа а (|а|) называют расстояние на числовой прямой от начала координат (точки 0) до точки А(а) .

Исходя из этого определения рассмотрим некоторые примеры:

|7| - это расстояние от 0 до точки 7, конечно оно равно 7. → | 7 |=7

|-5|- это расстояние от 0 до точки -5 и оно равно: 5. → |-5| = 5

Все мы понимаем расстояние не может быть отрицательным! Поэтому |х| ≥ 0 всегда!

Решим уравнение: |х |=4

Это уравнение можно прочитать так: расстояние от точки 0 до точки x равно 4. Ага, получается, от 0 мы можем двигаться как влево так и вправо, значит двигаясь влево на расстояние равное 4 мы окажемся в точке: -4, а двигаясь вправо окажемся в точке: 4. Действительно, |-4 |=4 и |4 |=4.

Отсюда ответ х=±4.

При внимательном изучении предыдущего уравнения можно заметить, что: расстояние вправо по числовой прямой от 0 до точки равно самой точке, а расстояние влево от 0 до числа равно противоположному числу! Понимая, что вправо от 0 положительные числа, а влево от 0 отрицательные, сформулируем определения модуля числа: модулем (абсолютной величиной) числа х (|х|) называется само число х , если х ≥0, и число –х , если х <0.

Здесь нам надо найти множество точек на числовой прямой расстояние от 0 до которых будет меньше 3, давайте представим числовую прямую, на ней точка 0, идем влево и считаем один (-1), два (-2) и три (-3), стоп. Дальше пойдут точки, которые лежат дальше 3 или расстояние до которых от 0 больше чем 3, теперь идем вправо: один, два, три, опять стоп. Теперь выделяем все наши точки и получаем промежуток х:(-3;3).

Важно, чтобы вы это четко видели, если пока не получается, нарисуйте на бумаге и посмотрите, чтобы эта иллюстрация была вам полностью понятна, не поленитесь и попробуйте в уме увидеть решения следующих заданий:

|х |=11, х=? |х|=-5, х=?

|х | <8, х-? |х| <-6, х-?

|x |>2, х-? |x|> -3, х-?

|π-3|=? |-х²-10|=?

|√5-2|=? |2х-х²-3|=?

|х²+2|=? |х²+4|=0

|х²+3х+4|=? |-х²+9| ≤0

Обратили внимание на странные задания во втором столбце? Действительно, расстояние не может быть отрицательным поэтому: |х|=-5- не имеет решений, конечно же оно не может быть и меньше 0, поэтому: |х| <-6 тоже не имеет решений, ну и естественно, что любое расстояние будет больше отрицательного числа, значит решением |x|> -3 являются все числа.

После того как вы научитесь быстро видеть рисунки с решениями читайте дальше.

Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля - символ, которым это понятие обозначается при написании.

Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль - это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.

Графически абсолютное значение а обозначается как |a| .

Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.

Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

Графически это можно выразить следующим образом: |a| = OA.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

Особенности решения уравнений с модулем

Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.

К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5 , если, А больше или равняется нулю.

5-А , если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

Определение модуля может быть дано следующим образом: Абсолютной величиной числа a (модулем) называется расстояние от точки, изображающей данное число a на координатной прямой, до начала координат. Из определения следует, что:

Таким образом, для того чтобы раскрыть модуль необходимо определить знак подмодульного выражения. Если оно положительно, то можно просто убирать знак модуля. Если же подмодульное выражение отрицательно, то его нужно умножить на "минус", и знак модуля, опять-таки, больше не писать.

Основные свойства модуля:

Некоторые методы решения уравнений с модулями

Существует несколько типов уравнений с модулем, для которых имеется предпочтительный способ решения. При этом данный способ не является единственным. Например, для уравнения вида:

Предпочтительным способом решения будет переход к совокупности:

А для уравнений вида:

Также можно переходить к почти аналогичной совокупности, но так как модуль принимает только положительные значения, то и правая часть уравнения должна быть положительной. Это условие нужно дописать в качестве общего ограничения для всего примера. Тогда получим систему:

Оба этих типа уравнений можно решать и другим способом: раскрывая соответствующим образом модуль на промежутках где подмодульное выражение имеет определённый знак. В этом случае будем получать совокупность двух систем. Приведем общий вид решений получающихся для обоих типов уравнений приведённых выше:

Для решения уравнений в которых содержится более чем один модуль применяется метод интервалов , который состоит в следующем:

  • Сначала находим точки на числовой оси, в которых обращается в ноль каждое из выражений, стоящих под модулем.
  • Далее делим всю числовую ось на интервалы между полученными точками и исследуем знак каждого из подмодульных выражений на каждом интервале. Заметьте, что для определения знака выражения надо подставить в него любое значение x из интервала, кроме граничных точек. Выбирайте те значения x , которые легко подставлять.
  • Далее на каждом полученном интервале раскрываем все модули в исходном уравнении в соответствии с их знаками на данном интервале и решаем полученное обычное уравнение. В итоговый ответ выписываем только те корни этого уравнения, которые попадают в исследуемый промежуток. Еще раз: такую процедуру проводим для каждого из полученных интервалов.
  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = - х, х

z1 + z2 = (x1 + x2) + i(y1 + y2);
z1 - z2 = (x1 - x2) + i(y1 - y2);

Легко заметить, что сложение и вычитание комплексных чисел подчиняется тому же правилу, что сложение и .

Произведение двух комплексных чисел равно:

z1*z2 = (x1 + iy1)*(x2 + iy2) = x1*x2 + i*y1*x2 + i*x1*y2 + (i^2)*y1*y2.

Поскольку i^2 = -1, то конечный результат равен:

(x1*x2 - y1*y2) + i(x1*y2 + x2*y1).

Операции возведения в степень и извлечения корня для комплексных чисел определяются так же, как и для действительных. Однако в комплексной области для любого числа существует ровно n таких чисел b, что b^n = a, то есть n корней n-ой степени.

В частности, это значит, что любое алгебраическое уравнение n-ой степени с одной переменной имеет ровно n комплексных корней, некоторые из которых могут быть и .

Видео по теме

Источники:

  • Лекция "Комплексные числа" в 2019

Корнем называют значок, обозначающий математическую операцию нахождения такого числа, возведение которого в указанную перед знаком корня степень должно дать число, указанное под этим самым знаком. Часто для решения задач, в которых присутствуют корни, недостаточно только рассчитать значение. Приходится осуществлять и дополнительные операции, одной из которых является внесение числа, переменной или выражения под знак корня.

Инструкция

Определите показатель степени корня. Показателем называют целое число, указывающее степень, в которую надо возвести результат вычисления корня, чтобы получить подкоренное выражение (то число, из которого извлекается этот корень). Показатель степени корня в виде верхнего индекса перед значком корня. Если этот не указан, это квадратный корень, степень которого равна двойке. Например, показатель корня √3 двум, показатель ³√3 равен трем, показатель корня ⁴√3 равен четырем и т.д.

Возведите число, которое требуется внести под знак корня, в степень, равную показателю этого корня, определенную вами на предыдущем шаге. Например, если нужно внести число 5 под знак корня ⁴√3, то показателем степени корня является четверка и вам надо результат возведения 5 в четвертую степень 5⁴=625. Сделать это можно любым удобным вам способом - в уме, с помощью калькулятора или соответствующих -сервисов, размещенных .

Внесите полученное на предыдущем шаге значение под знак корня в качестве множителя подкоренного выражения. Для использованного в предыдущем шаге примера с внесением под корень ⁴√3 5 (5*⁴√3), это действие можно так: 5*⁴√3=⁴√(625*3).

Упростите полученное подкоренное выражение, если это возможно. Для примера из предыдущих шагов это , что нужно просто перемножить числа, стоящие под знаком корня: 5*⁴√3=⁴√(625*3)=⁴√1875. На этом операция внесения числа под корень будет завершена.

Если в задаче присутствуют неизвестные переменные, то описанные выше шаги можно проделать в общем виде. Например, если требуется внести под корень четвертой степени неизвестную переменную x, а подкоренное выражение равно 5/x³, то вся последовательность действий может быть записана так: x*⁴√(5/x³)=⁴√(x⁴*5/x³)=⁴√(x*5).

Источники:

  • как называется знак корня

Действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел - это x^2+1=0. При его решении получается, что x=±sqrt(-1), а согласно законам элементарной алгебры, извлечь корень четной степени из отрицательного числа нельзя.