Мат ожидание случайной величины примеры. Математическое ожидание – это распределение вероятностей случайной величины

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь

Задача 1. Вероятность всхожести семян пшеницы равна 0,9. Какова вероятность того, что из четырех посеянных семян взойдут не менее трех?

Решение. Пусть событие А – из 4 семян взойдут не менее 3 семян; событие В – из 4 семян взойдут 3 семени; событие С – из 4 семян взойдут 4 семени. По теореме сложения вероятностей

Вероятности
и
определим по формуле Бернулли, применяемой в следующем случае. Пусть проводится серия п независимых испытаний, при каждом из которых вероятность наступления события постоянна и равна р , а вероятность ненаступления этого события равна
. Тогда вероятность того, что событие А в п испытаниях появится ровно раз, вычисляется по формуле Бернулли

,

где
– число сочетаний из п элементов по . Тогда

Искомая вероятность

Задача 2. Вероятность всхожести семян пшеницы равна 0,9. Найти вероятность того, что из 400 посеянных семян взойдут 350 семян.

Решение. Вычислить искомую вероятность
по формуле Бернулли затруднительно из-за громоздкости вычислений. Поэтому применим приближенную формулу, выражающую локальную теорему Лапласа:

,

где
и
.

Из условия задачи . Тогда

.

Из таблицы 1 приложений находим . Искомая вероятность равна

Задача 3. Среди семян пшеницы 0,02% сорняков. Какова вероятность того, что при случайном отборе 10000 семян будет обнаружено 6 семян сорняков?

Решение. Применение локальной теоремы Лапласа из-за малой вероятности
приводит к значительному отклонению вероятности от точного значения
. Поэтому при малых значениях р для вычисления
применяют асимптотическую формулу Пуассона

, где .

Эта формула используется при
, причем чем меньше р и больше п , тем результат точнее.

По условию задачи
;
. Тогда

Задача 4. Процент всхожести семян пшеницы равен 90%. Найти вероятность того, что из 500 посеянных семян взойдут от 400 до 440 семян.

Решение. Если вероятность наступления события А в каждом из п испытаний постоянна и равна р , то вероятность
того, что событие А в таких испытаниях наступит не менее раз и не более раз определяется по интегральной теореме Лапласа следующей формулой:

, где

,
.

Функция
называется функцией Лапласа. В приложениях (табл. 2) даны значения этой функции для
. При
функция
. При отрицательных значениях х в силу нечетности функции Лапласа
. Используя функцию Лапласа, имеем:

По условию задачи . По приведенным выше формулам находим
и :

Задача 5. Задан закон распределения дискретной случайной величины Х :

    1. Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение.

Решение. 1) Если закон распределения дискретной случайной величины задан таблицей

    1. Где в первой строке даны значения случайной величины х, а во второй – вероятности этих значений, то математическое ожидание вычисляется по формуле

2) Дисперсия
дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, т.е.

Эта величина характеризует среднее ожидаемое значение квадрата отклонения Х от
. Из последней формулы имеем

Дисперсию
можно найти другим способом, исходя из следующего ее свойства: дисперсия
равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания
, то есть

Для вычисления
составим следующий закон распределения величины
:

3) Для характеристики рассеяния возможных значений случайной величины вокруг ее среднего значения вводится среднее квадратическое отклонение
случайной величины Х , равное квадратному корню из дисперсии
, то есть

.

Из этой формулы имеем:

Задача 6. Непрерывная случайная величина Х задана интегральной функцией распределения

Найти: 1) дифференциальную функцию распределения
; 2) математическое ожидание
; 3) дисперсию
.

Решение. 1) Дифференциальной функцией распределения
непрерывной случайной величины Х называется производная от интегральной функции распределения
, то есть

.

Искомая дифференциальная функция имеет следующий вид:

2) Если непрерывная случайная величина Х задана функцией
, то ее математическое ожидание определяется формулой

Так как функция
при
и при
равна нулю, то из последней формулы имеем

.

3) Дисперсию
определим по формуле

Задача 7. Длина детали представляет собой нормально распределенную случайную величину с математическим ожиданием 40 мм и средним квадратическим отклонением 3 мм. Найти: 1) вероятность того, что длина произвольно взятой детали будет больше 34 мм и меньше 43 мм; 2) вероятность того, что длина детали отклонится от ее математического ожидания не более чем на 1,5 мм.

Решение. 1) Пусть Х – длина детали. Если случайная величина Х задана дифференциальной функцией
, то вероятность того, что Х примет значения, принадлежащие отрезку
, определяется по формуле

.

Вероятность выполнения строгих неравенств
определяется той же формулой. Если случайная величина Х распределена по нормальному закону, то

, (1)

где
– функция Лапласа,
.

В задаче . Тогда

2) По условию задачи , где
. Подставив в (1) , имеем

. (2)

Из формулы (2) имеем.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М (Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х п
р 0,5 (0,5) 2 (0,5) п

+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной:

М (С ) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С ) = С ?1 = С .

2) Постоянный множитель можно выносит за знак математического ожидания:

М (СХ ) = С М (Х ). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения


Тогда М (СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ (Х ).

Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M (XY ) = M (X )M (Y ). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

Следовательно, M (XY ) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X )?M (Y ).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:

M (X + Y ) = M (X ) + M (Y ). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М (Х +Y ) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,

M (X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X ) + M (Y ).

Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М (Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М (Х )=

Дисперсия .

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Найдем М (Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М (Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М (Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М (Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:

D (X ) = M (X - M (X ))². (7.6)

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема 7.1. D (X ) = M (X ²) - M ²(X ). (7.7)

Доказательство.

Используя то, что М (Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D (X ) = M (X - M (X ))² = M (X ² - 2X?M (X ) + M ²(X )) = M (X ²) - 2M (X )?M (X ) + M ²(X ) =

= M (X ²) - 2M ²(X ) + M ²(X ) = M (X ²) - M ²(X ), что и требовалось доказать.

Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М (Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М (Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю:

D (C ) = 0. (7.8)

Доказательство. D (C ) = M ((C - M (C ))²) = M ((C - C )²) = M (0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D (CX ) = C ²D (X ). (7.9)

Доказательство. D (CX ) = M ((CX - M (CX ))²) = M ((CX - CM (X ))²) = M (C ²(X - M (X ))²) =

= C ²D (X ).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D (X + Y ) = D (X ) + D (Y ). (7.10)

Доказательство. D (X + Y ) = M (X ² + 2XY + Y ²) - (M (X ) + M (Y ))² = M (X ²) + 2M (X )M (Y ) +

+ M (Y ²) - M ²(X ) - 2M (X )M (Y ) - M ²(Y ) = (M (X ²) - M ²(X )) + (M (Y ²) - M ²(Y )) = D (X ) + D (Y ).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D (X - Y ) = D (X ) + D (Y ). (7.11)

Доказательство. D (X - Y ) = D (X ) + D (-Y ) = D (X ) + (-1)²D (Y ) = D (X ) + D (X ).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно

В предыдущем мы привели ряд формул, позволяющих находить числовые характеристики функций, когда известны законы распределения аргументов. Однако во многих случаях для нахождения числовых характеристик функций не требуется знать даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики; при этом мы вообще обходимся без каких бы то ни было законов распределения. Определение числовых характеристик функций по заданным числовым характеристикам аргументов широко применяется в теории вероятностей и позволяет значительно упрощать решение ряда задач. По преимуществу такие упрощенные методы относятся к линейным функциям; однако некоторые элементарные нелинейные функции также допускают подобный подход.

В настоящем мы изложим ряд теорем о числовых характеристиках функций, представляющих в своей совокупности весьма простой аппарат вычисления этих характеристик, применимый в широком круге условий.

1. Математическое ожидание неслучайной величины

Сформулированное свойство является достаточно очевидным; доказать его можно, рассматривая неслучайную величину как частный вид случайной, при одном возможном значении с вероятностью единица; тогда по общей формуле для математического ожидания:

.

2. Дисперсия неслучайной величины

Если - неслучайная величина, то

3. Вынесение неслучайной величины за знак математического ожидания

, (10.2.1)

т. е. неслучайную величину можно выносить за знак математического ожидания.

Доказательство.

а) Для прерывных величин

б) Для непрерывных величин

.

4. Вынесение неслучайной величины за знак дисперсии и среднего квадратического отклонения

Если - неслучайная величина, а - случайная, то

, (10.2.2)

т. е. неслучайную величину можно выносить за знак дисперсии, возводя ее в квадрат.

Доказательство. По определению дисперсии

Следствие

,

т. е. неслучайную величину можно выносить за знак среднего квадратического отклонения ее абсолютным значением. Доказательство получим, извлекая корень квадратный из формулы (10.2.2) и учитывая, что с.к.о. - существенно положительная величина.

5. Математическое ожидание суммы случайных величин

Докажем, что для любых двух случайных величин и

т. е. математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Это свойство известно под названием теоремы сложения математических ожиданий.

Доказательство.

а) Пусть - система прерывных случайных величин. Применим к сумме случайных величин общую формулу (10.1.6) для математического ожидания функции двух аргументов:

.

Ho представляет собой не что иное, как полную вероятность того, что величина примет значение :

;

следовательно,

.

Аналогично докажем, что

,

и теорема доказана.

б) Пусть - система непрерывных случайных величин. По формуле (10.1.7)

. (10.2.4)

Преобразуем первый из интегралов (10.2.4):

;

аналогично

,

и теорема доказана.

Следует специально отметить, что теорема сложения математических ожиданий справедлива для любых случайных величин - как зависимых, так и независимых.

Теорема сложения математических ожиданий обобщается на произвольное число слагаемых:

, (10.2.5)

т. е. математическое ожидание суммы нескольких случайных величин равно сумме их математических ожиданий.

Для доказательства достаточно применить метод полной индукции.

6. Математическое ожидание линейной функции

Рассмотрим линейную функцию нескольких случайных аргументов :

где - неслучайные коэффициенты. Докажем, что

, (10.2.6)

т. е. математическое ожидание линейной функции равно той же линейной функции от математических ожиданий аргументов.

Доказательство. Пользуясь теоремой сложения м. о. и правилом вынесения неслучайной величины за знак м. о., получим:

.

7. Дисп ep сия суммы случайных величин

Дисперсия суммы двух случайных величин равна сумме их дисперсий плюс удвоенный корреляционный момент:

Доказательство. Обозначим

По теореме сложения математических ожиданий

Перейдем от случайных величин к соответствующим центрированным величинам . Вычитая почленно из равенства (10.2.8) равенство (10.2.9), имеем:

По определению дисперсии

что и требовалось доказать.

Формула (10.2.7) для дисперсии суммы может быть обобщена на любое число слагаемых:

, (10.2.10)

где - корреляционный момент величин , знак под суммой обозначает, что суммирование распространяется на все возможные попарные сочетания случайных величин .

Доказательство аналогично предыдущему и вытекает из формулы для квадрата многочлена.

Формула (10.2.10) может быть записана еще в другом виде:

, (10.2.11)

где двойная сумма распространяется на все элементы корреляционной матрицы системы величин , содержащей как корреляционные моменты, так и дисперсии.

Если все случайные величины , входящие в систему, некоррелированы (т. е. при ), формула (10.2.10) принимает вид:

, (10.2.12)

т. е. дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых.

Это положение известно под названием теоремы сложения дисперсий.

8. Дисперсия линейной функции

Рассмотрим линейную функцию нескольких случайных величин.

где - неслучайные величины.

Докажем, что дисперсия этой линейной функции выражается формулой

, (10.2.13)

где - корреляционный момент величин , .

Доказательство. Введем обозначение:

. (10.2.14)

Применяя к правой части выражения (10.2.14) формулу (10.2.10) для дисперсии суммы и учитывая, что , получим:

где - корреляционный момент величин :

.

Вычислим этот момент. Имеем:

;

аналогично

Подставляя это выражение в (10.2.15), приходим к формуле (10.2.13).

В частном случае, когда все величины некоррелированны, формула (10.2.13) принимает вид:

, (10.2.16)

т. е. дисперсия линейной функции некоррелированных случайных величин равна сумме произведений квадратов коэффициентов на дисперсии соответствующих аргументов.

9. Математическое ожидание произведения случайных величин

Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

Доказательство. Будем исходить из определения корреляционного момента:

Преобразуем это выражение, пользуясь свойствами математического ожидания:

что, очевидно, равносильно формуле (10.2.17).

Если случайные величины некоррелированны , то формула (10.2.17) принимает вид:

т. е. математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Это положение известно под названием теоремы умножения математических ожиданий.

Формула (10.2.17) представляет собой не что иное, как выражение второго смешанного центрального момента системы через второй смешанный начальный момент и математические ожидания:

. (10.2.19)

Это выражение часто применяется на практике при вычислении корреляционного момента аналогично тому, как для одной случайной величины дисперсия часто вычисляется через второй начальный момент и математическое ожидание.

Теорема умножения математических ожиданий обобщается и на произвольное число сомножителей, только в этом случае для ее применения недостаточно того, чтобы величины были некоррелированны, а требуется, чтобы обращались в нуль и некоторые высшие смешанные моменты, число которых зависит от числа членов в произведении. Эти условия заведомо выполнены при независимости случайных величин, входящих в произведение. В этом случае

, (10.2.20)

т. е. математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Это положение легко доказывается методом полной индукции.

10. Дисперсия произведения независимых случайных величин

Докажем, что для независимых величин

Доказательство. Обозначим . По определению дисперсии

Так как величины независимы, и

При независимых величины тоже независимы; следовательно,

,

Но есть не что иное, как второй начальный момент величины , и, следовательно, выражается через дисперсию:

;

аналогично

.

Подставляя эти выражения в формулу (10.2.22) и приводя подобные члены, приходим к формуле (10.2.21).

В случае, когда перемножаются центрированные случайные величины (величины с математическими ожиданиями, равными нулю), формула (10.2.21) принимает вид:

, (10.2.23)

т. е. дисперсия произведения независимых центрированных случайных величин равна произведению их дисперсий.

11. Высшие моменты суммы случайных величин

В некоторых случаях приходится вычислять высшие моменты суммы независимых случайных величин. Докажем некоторые относящиеся сюда соотношения.

1) Если величины независимы, то

Доказательство.

откуда по теореме умножения математических ожиданий

Но первый центральный момент для любой величины равен нулю; два средних члена обращаются в нуль, и формула (10.2.24) доказана.

Соотношение (10.2.24) методом индукции легко обобщается на произвольное число независимых слагаемых:

. (10.2.25)

2) Четвертый центральный момент суммы двух независимых случайных величин выражается формулой

где - дисперсии величин и .

Доказательство совершенно аналогично предыдущему.

Методом полной индукции легко доказать обобщение формулы (10.2.26) на произвольное число независимых слагаемых.