Касательная к окружности. Теорема о произведении отрезков хорд

Взаимное расположение прямой и окружности Выясним, сколько общих точек могут иметь прямая и окружность в зависимости от их взаимного расположения. Ясно, что если прямая проходит через центр окружности, то она пересекает окружность в двух концах диаметра, лежащего на. этой примой.

Пусть прямая р не проходит через центр О окружности радиуса r. Проведем перпендикуляр ОН к прямой р и обозначим буквой d длину этого перпендикуляра, т. е, расстояние от центра данной окружности до прямой (рис. 1). Исследуем взаимное расположение прямой и окружности в зависимости от соотношения между d и r. Возможны три случая.

1) dр от точки Н отложим два отрезка НА и НВ, длины, которых равны (рис. 1)По теореме Пифагора ОА=,

0 B= Следовательно, точки А и В лежат на окружности и, значит, являются общими точками прямой р и данной окружности.

Докажем, что прямая р и данная окружность не имеют других общих точек. Предположим, что они имеют еще одну общую точку С. Тогда медиана-OD равнобедренного треугольника ОАС . проведенная к основанию АС, является высотой этого треугольника, поэтому О D p . Отрезки OD и ОН не совпадают

так как середина D отрезка АС не впадает с точкой Н - серединой отрезка, AB. Мы получили, что из точки О проведены два перпендикуляра: ОН и OD - к прямой р, что невозможно. Итак если расстояние от центра окружности до прямой меньше радиуса окружности(d < р), то прямая и окружность име ют две общие точки. В этом случае прямая называется секущей по отношению к окружности.

2) d= r. В этом случае ОН= r, т. е. точка Н лежит на окружности и, значит, является обшей точкой прямой и окружности (рис. 1, б). Прямая р и окружность не имеют других общих точек, так как для любой точки М прямой р. Отличной от точки Н, ОМ>ОН= r (наклонная ОМ больше перпендикуляра ОН), и, следовательно , точка М не лежит на окружности. Итак, если рас стояние от центра окружности до прямой равно радиусу то прямая и окружность имеют только одну общую точку.

3) d> r В этом случае -ОН> r поэтому . для любой точки М прямой р 0МОН.> r(рис. 1,а) Следовательно точка М не лежит на окружности. Итак, .если расстояние от центра окруж ности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.

Мы доказали, что прямая и окружность могут иметь одну или две общие точки и могут не иметь ни одной общей точки. Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. На рисунке 2 прямая р - касательная к окружности с центром О, А - точка касания.

Докажем теорему о свойстве касательной.

Теорема. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство. Пусть р - касательная к окружности с центром О. А - точка касания (см. рис. 2). Докажем. что касательная р перпендикулярна к радиусу ОА.

Предположим, что это не так. Тогда радиус: ОА является наклонной к прямой р. Так как перпендикуляр, проведенный из точки О к прямой р, меньше наклонной ОА , то расстояния от центра О окружности до прямой р меньше радиуса. Следовательно, прямая р и окружность имеют две общие точки. Но это противоречит условию; прямая р - касательная. Таким образом, прямая р перпендикулярна к радиусу ОА. Теорема доказала.

Рассмотрим две касательные к окружности с центром О , проходящие через точку А и касающиеся окружности в точках В и С (рис. 3). Отрезки АВ и АС назовем отрезками касатель ных, проведенными из точки А. Они обладают следующим свойством, вытекающим из доказанной теоремы:

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Для доказательства этого утверждения обратимся к рисунку 3. По теореме о свойство касательной углы 1 и 2 прямые, поэтому треугольники АВО и АСО прямоугольные. Они равны, так как имеют общую гипотенузу ОА и равные катеты ОВ и ОС. Следовательно, АВ=АС и 3=https://pandia.ru/text/78/143/images/image007_40.jpg" width="432 height=163" height="163">

Рис. 2 Рис. 3

https://pandia.ru/text/78/143/images/image010_57.gif" width="101" height="19 src=">.

Проведя через точку касания диаметр МЕ , будем иметь: ; поэтому

Рис. 1 Рис. 2

https://pandia.ru/text/78/143/images/image014_12.jpg" width="191 height=177" height="177">.jpg" width="227 height=197" height="197">

Зависимость между дугами, хордами и расстояниями хорд от центра.

Теоремы. В одном круге или в равных кругах :

1) если дуги, равны, то стягивающие их хорды равны и одинаково удалены от центра;

2) если две дуги, меньшие полуокружности, не равны, то большая из них стягивается большей хордой и из обеих хорд большая расположена ближе к центру .

1) Пусть дуга АВ равна дуге CD (рис. 1), требуется доказать, что хорды АВ и CD равны, а также равны и перпендикуляры ОЕ и OF, опущенные из центра на хорды.

Повернем сектор OAJB вокруг центра О в направлении, указанном стрелкой на столько, чтобы радиус ОБ совпал с ОС. Тогда дуга ВА. пойдет по дуге CD и вследствие их равенства эти дуги совместятся. Значит, хорда AS совместится с хордой CD и перпендикуляр ОЕ совпадет с OF (из одной точки можно опустить на прямую только один перпендикуляр), т. е. AB= CD и OE= OF.

2) Пусть дуга АВ (рис. 2) меньше дуги CD, и притом обе дуги меньше полуокружности; требуется доказать, что хорда АВ меньше хорды CD, а перпендикуляр ОЕ больше перпендикуляра OF . Отложим на дуге CD дугу СК, равную АВ, и проведем вспомогательную хорду СК , которая, по доказанному, равна хорде АВ и одинаково с ней удалена от центра. У треугольников COD и СОК две стороны одного равны двум сторонам другого (как радиусы), а углы, заключенные между этими сторонами, не равны; в этом случае, как мы знаем, против большего из углов, т. е. lCOD, должна лежать большая сторона, значит, CD> CK, и потому CD> AB.

Для доказательства того, что OE> OF, проведем OLXCK и примем во внимание, что, по доказанному, OE= OL; следовательно, нам достаточно сравнить OF с OL. В прямоугольном треугольнике 0 FM (покрытом на рисунке штрихами) гипотенуза ОМ больше катета OF; но OL> OM; значит, и подавно OL> OF. и потому OE> OF.

Теорема, доказанная нами для одного круга, остается верной и для равных кругов, потому что такие круги один от другого отличаются только положением.

Обратные теоремы. Так как в предыдущем параграфе рассмотрены всевозможные взаимно исключающие случаи относительно сравнительной величины двух дуг одного радиуса, причем получились взаимно исключающие выводы относительно сравнительной величины хорд и расстояний их от центра, то обратные предложения должны быть верны, в. именно:

В одном круге или е равных кругах:

1) равные хорды одинакова удалены от центра и стягивают равные дуги;

2) хорды, одинаково удаленные от центра, равны и стягивают равные дуги;

3) из двух неравных хорд большая ближе к центру и стягивает большую дугу;

4) из двух хорд, неодинаково удаленных от центра, которая ближе к центру, больше и стягивает большую дугу.

Эти предложения легко доказываются от противного. Например, для доказательства первого из них рассуждаем так: если бы данные хорды стягивали неравные дуги, то, согласно прямой теореме, они были бы не равны, что противоречит условию; значит, равные хорды должны стягивать равные дуги; а если дуги равны, то, согласно прямой теореме, стягивающие их хорды одинаково удалены от центра.

Теорема. Диаметр есть наибольшая из хорд .

Если соединим с центром О концы какой-нибудь хорды, не проходящей через центр, например хорды АВ (рис. 3) то получим треугольник АОВ, в котором одна сторона есть эта хорда, а две другие - радиусы, Но в треугольнике каждая сторона менее суммы двух других сторон; следовательно, хорда АВ менее суммы двух радиусов; тогда как всякий диаметр CD равен сумме двух радиусов. Значит, диаметр больше всякой хорды, не проходящей через центр. Но так как диаметр есть тоже хорда, то можно сказать, что диаметр есть наибольшая из хорд.

Рис. 1 Рис. 2

Теорема касательных.

Как уже было сказано, отрезки касательных, проведенных к окружности из одной точки, имеют одинаковую длину. Эту длину называют касательным расстоянием от точки до окружности.

Без теоремы о касательных не обходиться решение не одной задачи о вписанных окружностях, иными словами, об окружностях, касающихся сторон многоугольника.

Касательные расстояния в треугольнике.

Найдем длины отрезков, на которые стороны треугольника АВС разбиваются точками касания с вписанной в него окружностью (рис. 1,а), например касательное расстояние от точки А до окружности. Сложим стороны b и c , а затем из суммы вычтем сторону а . Учитывая равенство касательных, проведенных из одной вершины, получим 2. Итак,

ta=(b+ c- a)/ 2=p- a ,

где p=(a+ b+ c)/ 2 – полупериметр данного треугольника. Длина отрезков сторон, прилегающим к вершинам В и С , равны соответственно p- b и p- c.

Аналогично, для вневписанной окружности треугольника, касающейся (снаружи) стороны а (рис. 1,б), касательные расстояния от В и С равны соответственно p- c и p- b , а от вершины А - просто p .

Заметим, что эти формулы можно использовать и «в обратную сторону».

Пусть в угол ВАС вписана окружность, причем касательное расстояние от вершины угла до окружности равно p или p- a , где p – полупериметр треугольника АВС , а а=ВС . Тогда окружность касается прямой ВС (соответственно снаружи или внутри треугольника).

В самом деле, пусть, например, касательное расстояние равно p- a . Тогда наши окружности касаются сторон угла в тех же самых точках, что и вписанная окружность треугольника АВС , а значит, совпадает с ней. Следовательно, она касается прямой ВС .

Описанный четырехугольник. Из теоремы о равенстве касательных сразу получается (рис. 2,а), что

если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:

AD+ BC= AB+ CD

Отметим, что описанный четырехугольник обязательно выпуклый. Верно и обратное:

Если четырехугольник выпуклый и суммы его противоположных сторон равны, то в него можно вписать окружность.

Докажем это для четырехугольника, отличного от параллелограмма. Пусть какие-то две противоположные стороны четырехугольника, например AB и DC, при продолжении пересекутся в точке Е (рис. 2,б). Впишем окружность в треугольник ADE . Ее касательное расстояние te до точки E выражается формулой

te= ½ (AE+ ED- AD).

Но по условию суммы противоположных сторон четырехугольника равны, а значит, AD+ BC= AB+ CD , или AD= AB+ CD- BC . Подставив это значение в выражение для te , получим

te ((AE- AB)+(ED- CD)+ BC)= ½ (BE+ EC+ BC),

а это – полупериметр треугольника BCE . Из доказанного выше условия касания следует, что наша окружность касается BC .

https://pandia.ru/text/78/143/images/image020_13.jpg" width="336" height="198 src=">

Две касательные, проведённые к окружности из точки вне её, равны и образуют равные углы с прямой, соединяющей эту точку с центром, что следует из равенства прямоугольных треугольников АОВ и АОВ1

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

Вспомним случаи взаимного расположения прямой и окружности.

Задана окружность с центром О и радиусом r. Прямая Р, расстояние от центра до прямой, то есть перпендикуляр ОМ, равна d.

Случай 1 - расстояние от центра окружности до прямой меньше радиуса окружности:

Мы доказали, что в случае, когда расстояние d меньше радиуса окружности r, прямая и окружность имеют только две общие точки (рис. 1).

Рис. 1. Иллюстрация к случаю 1

Случай второй - расстояние от центра окружности до прямой равно радиусу окружности:

Мы доказали, что в данном случае общая точка единственная (рис. 2).

Рис. 2. Иллюстрация к случаю 2

Случай 3 - расстояние от центра окружности до прямой больше радиуса окружности:

Мы доказали, что в данном случае окружность и прямая не имеют общих точек (рис. 3).

Рис. 3. Иллюстрация к случаю 3

На данном уроке нас интересует второй случай, когда прямая и окружность имеют единственную общую точку.

Определение:

Прямая, имеющая с окружностью единственную общую точку, называется касательной к окружности, общая точка называется точкой касания прямой и окружности.

Прямая р - касательная, точка А - точка касания (рис. 4).

Рис. 4. Касательная

Теорема:

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания (рис. 5).

Рис. 5. Иллюстрация к теореме

Доказательство:

От противного - пусть ОА не перпендикулярно прямой р. В таком случае, опустим из точки О перпендикуляр на прямую р, который будет расстоянием от центра окружности до прямой:

Из прямоугольного треугольника можем сказать, что гипотенуза ОН меньше катета ОА, то есть , прямая и окружность имеют две общие точки, прямая р является секущей. Таким образом, мы получили противоречие, а, значит, теорема доказана.

Рис. 6. Иллюстрация к теореме

Справедлива и обратная теорема.

Теорема:

Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна этому радиусу, то она является касательной.

Доказательство:

Поскольку прямая перпендикулярна радиусу, то расстояние ОА - это расстояние от прямой до центра окружности и оно равно радиусу: . То есть , а в этом случае, как мы ранее доказывали, у прямой и окружности единственная общая точка - это точка А, таким образом, прямая р является касательной к окружности по определению (рис. 7).

Рис. 7. Иллюстрация к теореме

Прямую и обратную теоремы можно объединить следующим образом (рис. 8):

Задана окружность с центром О, прямая р, радиус ОА

Рис. 8. Иллюстрация к теореме

Теорема:

Прямая является касательной к окружности тогда и только тогда, когда радиус, проведенный в точку касания, перпендикулярен ей.

Данная теорема означает, что если прямая является касательной, то радиус, проведенный в точку касания, перпендикулярен ей, и наоборот, из перпендикулярности ОА и р следует, что р - касательная, то есть, прямая и окружность имеют единственную общую точку.

Рассмотрим две касательные, проведенные из одной точки к окружности.

Теорема:

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проведенной через эту точку и центр окружности.

Задана окружность, центр О, точка А вне окружности. Из точки А проведены две касательные, точки В и С - точки касания. Требуется доказать, что и что равны углы 3 и 4.

Рис. 9. Иллюстрация к теореме

Доказательство:

Доказательство основано на равенстве треугольников . Объясним равенство треугольников. Они являются прямоугольными, так как радиус, проведенный в точку касания, перпендикулярен касательной. Значит, углы и прямые и равны по . Катеты ОВ и ОС равны, так как являются радиусом окружности. Гипотенуза АО - общая.

Таким образом, треугольники равны по равенству катета и гипотенузы. Отсюда очевидно, что катеты АВ и АС также равны. Также углы, лежащие напротив равных сторон, равны, значит, равны углы и , .

Теорема доказана.

Итак, мы познакомились с понятием касательной к окружности, на следующем уроке мы рассмотрим градусную меру дуги окружности.

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Univer.omsk.su ().
  2. Oldskola1.narod.ru ().
  3. School6.aviel.ru ().

Домашнее задание

  1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др., Геометрия 7-9, № 634-637, с. 168.
1.Докажите,что касательная к окружности перпендикулярна к радиусу этой окружности,проведенному в точку касания. 2.Докажите,что если

прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

1. Какое утверждение называется следствием? Докажи­те, что прямая, пересекающая одну из двух парал­лельных прямых, пересекает и другую.2.Докажите, что ес

ли две прямые параллельны третьей прямой, то они параллельны.3. Какая теорема называется обратной данной теореме?Приведите примеры теорем, обратных данным.4.Докажите, что при пересечении двух параллельных прямых секущей накрест лежащие углы равны.5.Докажите, что если прямая перпендикулярна к од­ной из двух параллельных прямых, то она перпенди­кулярна и к другой.6.Докажите, что при пересечении двух параллельных прямых секущей: а) соответственные углы равны; б) сумма односторонних углов равна 180°.

Вариант 1. 1) Через сторону AC треугольника ABC проведена плоскость альфа, B не принадлежит плоскости альфа. Докажите, что прямая, проходящая через

середины сторон AB и BC, параллельна плоскости альфа. 2) Дан треугольник MKP. Плоскость, параллельная прямой MK, пересекает MP в точке M1, PK-в точке K1. Найдите M1K1, если MP:M1P=12:5, MK=18 см. 3) Точка P не лежит в плоскости трапеции ABCD (AD параллельна BC). Докажите, что прямая, проходящая через середины PB и PC, параллельна средней линии трапеции. Помогите, пожалуйста! Рисунки к задачам очень нужны!

1)Дайте определение параллельных прямых.Какие два отрезка называются параллельными?

2)Что такое секущая? Назовите пары углов,которые образуются при пересечении двух прямых секущей.
3)Докажите,что если при пересечении двух прямых секущей накрест лежащие углы равны,то прямые параллельны.
4)Докажите, что если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
5)Докажите, что если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусам, то прямые параллельны.
6)Расскажите о практических способах проведения параллельных прямых.
7)Объясните, какие утверждения называются аксиомами.Приведите примеры аксиом.
8)Докажите, что через данную точку, не лежащую на данной прямой, проходит прямая, параллельная данной.
9)Сформулируйте аксиому параллельных прямых.
11)Докажите, что если две прямые параллельны третьей прямой,то они параллельны.
13)Докажите,что при пересечении двух параллельных прямых секущей накрест лежащие углы равны.
14)Докажите, что если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.
15)Докажите,что при пересечении двух прямых параллельных прямых секущей: а) соответственно углы равны; б)сумма односторонних углов равна 180 градусам.