Как вывести корень из дроби. Извлечение квадратного корня из многозначного числа

Как извлечь корень из числа. В этой статье мы будем учиться извлекать квадратный корень из четырехзначных и пятизначных чисел.

Давайте, для примера, извлечем квадратный корень из числа 1936.

Следовательно, .

Последняя цифра в числе 1936 - цифра 6. На 6 заканчивается квадрат числа 4 и числа 6. Следовательно, 1936 может быть квадратом числа 44 или числа 46. Осталось проверить с помощью умножения.

Значит,

Извлечем квадратный корень из числа 15129.

Следовательно, .

Последняя цифра в числе 15129 - цифра 9. На 9 заканчивается квадрат числа 3 и числа 7. Следовательно, 15129 может быть квадратом числа 123 или числа 127. Проверим с помощью умножения.

Значит,

Как извлечь корень - видео

А теперь предлагаю вам посмотреть видео Анны Денисовой - "Как извлечь корень ", автора сайта " Простая физика ", в котором она рассказывает, как извлекать квадратные и кубические корни без калькулятора.

В видео рассматривается несколько способов извлечения корней:

1. Самый простой способ извлечения квадратного корня.

2. Подбором, используя квадрат суммы.

3. Вавилонский способ.

4. Способ извлечения квадратного корня в столбик.

5. Быстрый способ извлечения кубического корня.

6. Способ извлечения кубического корня в столбик.

Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R 2 a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z 2 =y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z 2 =y и (-z) 2 =y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y 1/2 . Такой вариант удобен, например, в возведении функции в степень: (√y) 4 =(y 1/2) 4 =y 2 . Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.

Как же извлечь корень квадратный из числа без помощи калькулятора?

Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81

Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.

Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20 < √676 < 900.

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √676 = 26 .

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 < √6889 < 90.
Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Еще пример: √20736 . Разложим число 20736 на множители:

Получаем √20736 = √2 8 ∙3 4 = 2 4 ∙3 2 = 144.

Конечно, разложение на множители требует знания признаков делимости и навыков разложения на множители.

И, наконец, есть же правило извлечение корней квадратных . Давайте познакомимся с этим правилом на примерах.

Вычислите √279841 .

Чтобы извлечь корень из многоцифрового целого числа, разбиваем его справа налево на грани, содержащие по 2 цифры (в левой крайней грани может оказаться и одна цифра). Записываем так 27’98’41

Чтобы получить первую цифру корня (5), извлекаем квадратный корень из наибольшего точного квадрата, содержащегося в первой слева грани (27).
Потом вычитают из первой грани квадрат первой цифры корня (25) и к разности приписывают (сносят) следующую грань (98).
Слева от полученного числа 298 пишут удвоенную цифру корня (10), делят на нее число всех десятков раннее полученного числа (29/2 ≈ 2), испытывают частное (102 ∙2 = 204 должно быть не больше 298) и записывают (2) после первой цифры корня.
Потом вычитают от 298 полученное частное 204 и к разности (94) приписывают (сносят) следующую грань (41).
Слева от полученного числа 9441 пишут удвоенное произведение цифр корня (52 ∙2 = 104), делят на это произведение число всех десятков числа 9441 (944/104 ≈ 9), испытывают частное (1049 ∙9 = 9441) должно быть 9441 и записывают его (9) после второй цифры корня.

Получили ответ √279841 = 529.

Аналогично извлекают корни из десятичных дробей . Только подкоренное число надо разбивать на грани так, чтобы запятая была между гранями.

Пример . Найдите значение √0,00956484.

Только надо помнить, что если десятичная дробь имеет нечетное число десятичных знаков, из нее точно квадратный корень не извлекается .

Итак, теперь вы познакомились с тремя способами извлечения корня. Выбирайте тот, который вам больше подходит и практикуйтесь. Чтобы научиться решать задачи, их надо решать. А если у Вас возникнут вопросы, записывайтесь на мои уроки .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При решении различных задач из курса математики и физики ученики и студенты часто сталкиваются с необходимостью извлечения корней второй, третьей или n-ой степени. Конечно, в век информационных технологий не составит труда решить такую задачу при помощи калькулятора. Однако возникают ситуации, когда воспользоваться электронным помощником невозможно.

К примеру, на многие экзамены запрещено приносить электронику. Кроме того, калькулятора может не оказаться под рукой. В таких случаях полезно знать хотя бы некоторые методы вычисления радикалов вручную.

Один из простейших способов вычисления корней заключается в использовании специальной таблицы . Что же она собой представляет и как ей правильно воспользоваться?

При помощи таблицы можно найти квадрат любого числа от 10 до 99. При этом в строках таблицы находятся значения десятков, в столбах - значения единиц. Ячейка на пересечении строки и столбца содержит в себе квадрат двузначного числа. Для того чтобы вычислить квадрат 63, нужно найти строку со значением 6 и столбец со значением 3. На пересечении обнаружим ячейку с числом 3969.

Поскольку извлечение корня - это операция, обратная возведению в квадрат, для выполнения этого действия необходимо поступить наоборот: вначале найти ячейку с числом, радикал которого нужно посчитать, затем по значениям столбика и строки определить ответ. В качестве примера рассмотрим вычисление квадратного корня 169.

Находим ячейку с этим числом в таблице, по горизонтали определяем десятки - 1, по вертикали находим единицы - 3. Ответ: √169 = 13.

Аналогично можно вычислять корни кубической и n-ой степени, используя соответствующие таблицы.

Преимуществом способа является его простота и отсутствие дополнительных вычислений. Недостатки же очевидны: метод можно использовать только для ограниченного диапазона чисел (число, для которого находится корень, должно быть в промежутке от 100 до 9801). Кроме того, он не подойдёт, если заданного числа нет в таблице.

Разложение на простые множители

Если таблица квадратов отсутствует под рукой или с её помощью оказалось невозможно найти корень, можно попробовать разложить число, находящееся под корнем, на простые множители . Простые множители - это такие, которые могут нацело (без остатка) делиться только на себя или на единицу. Примерами могут быть 2, 3, 5, 7, 11, 13 и т. д.

Рассмотрим вычисление корня на примере √576. Разложим его на простые множители. Получим следующий результат: √576 = √(2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3) = √(2 ∙ 2 ∙ 2)² ∙ √3². При помощи основного свойства корней √a² = a избавимся от корней и квадратов, после чего подсчитаем ответ: 2 ∙ 2 ∙ 2 ∙ 3 = 24.

Что же делать, если у какого-либо из множителей нет своей пары? Для примера рассмотрим вычисление √54. После разложения на множители получаем результат в следующем виде: √54 = √(2 ∙ 3 ∙ 3 ∙ 3) = √3² ∙ √(2 ∙ 3) = 3√6. Неизвлекаемую часть можно оставить под корнем. Для большинства задач по геометрии и алгебре такой ответ будет засчитан в качестве окончательного. Но если есть необходимость вычислить приближённые значения, можно использовать методы, которые будут рассмотрены далее.

Метод Герона

Как поступить, когда необходимо хотя бы приблизительно знать, чему равен извлечённый корень (если невозможно получить целое значение)? Быстрый и довольно точный результат даёт применение метода Герона . Его суть заключается в использовании приближённой формулы:

√R = √a + (R - a) / 2√a,

где R - число, корень которого нужно вычислить, a - ближайшее число, значение корня которого известно.

Рассмотрим, как работает метод на практике, и оценим, насколько он точен. Рассчитаем, чему равен √111. Ближайшее к 111 число, корень которого известен - 121. Таким образом, R = 111, a = 121. Подставим значения в формулу:

√111 = √121 + (111 - 121) / 2 ∙ √121 = 11 - 10 / 22 ≈ 10,55.

Теперь проверим точность метода :

10,55² = 111,3025.

Погрешность метода составила приблизительно 0,3. Если точность метода нужно повысить, можно повторить описанные ранее действия:

√111 = √111,3025 + (111 - 111,3025) / 2 ∙ √111,3025 = 10,55 - 0,3025 / 21,1 ≈ 10,536.

Проверим точность расчёта:

10,536² = 111,0073.

После повторного применения формулы погрешность стала совсем незначительной.

Вычисление корня делением в столбик

Этот способ нахождения значения квадратного корня является чуть более сложным, чем предыдущие. Однако он является наиболее точным среди остальных методов вычисления без калькулятора .

Допустим, что необходимо найти квадратный корень с точностью до 4 знаков после запятой. Разберём алгоритм вычислений на примере произвольного числа 1308,1912.

  1. Разделим лист бумаги на 2 части вертикальной чертой, а затем проведём от неё ещё одну черту справа, немного ниже верхнего края. Запишем число в левой части, разделив его на группы по 2 цифры, двигаясь в правую и левую сторону от запятой. Самая первая цифра слева может быть без пары. Если же знака не хватает в правой части числа, то следует дописать 0. В нашем случае получится 13 08,19 12.
  2. Подберём самое большое число, квадрат которого будет меньше или равен первой группе цифр. В нашем случае это 3. Запишем его справа сверху; 3 - первая цифра результата. Справа снизу укажем 3×3 = 9; это понадобится для последующих расчётов. Из 13 в столбик вычтем 9, получим остаток 4.
  3. Припишем следующую пару чисел к остатку 4; получим 408.
  4. Число, находящееся сверху справа, умножим на 2 и запишем справа снизу, добавив к нему _ x _ =. Получим 6_ x _ =.
  5. Вместо прочерков нужно подставить одно и то же число, меньшее или равное 408. Получим 66×6 = 396. Напишем 6 справа сверху, т. к. это вторая цифра результата. Отнимем 396 от 408, получим 12.
  6. Повторим шаги 3-6. Поскольку снесённые вниз цифры находятся в дробной части числа, необходимо поставить десятичную запятую справа сверху после 6. Запишем удвоенный результат с прочерками: 72_ x _ =. Подходящей цифрой будет 1: 721×1 = 721. Запишем её в ответ. Выполним вычитание 1219 - 721 = 498.
  7. Выполним приведённую в предыдущем пункте последовательность действий ещё три раза, чтобы получить необходимое количество знаков после запятой. Если не хватает знаков для дальнейших вычислений, у текущего слева числа нужно дописать два нуля.

В результате мы получим ответ: √1308,1912 ≈ 36,1689. Если проверить действие при помощи калькулятора, можно убедиться, что все знаки были определены верно.

Поразрядное вычисление значения квадратного корня

Метод обладает высокой точностью . Кроме того, он достаточно понятен и для него не требуется запоминать формулы или сложный алгоритм действий, поскольку суть способа заключается в подборе верного результата.

Извлечём корень из числа 781. Рассмотрим подробно последовательность действий.

  1. Выясним, какой разряд значения квадратного корня будет являться старшим. Для этого возведём в квадрат 0, 10, 100, 1000 и т. д. и выясним, между какими из них находится подкоренное число. Мы получим, что 10² < 781 < 100², т. е. старшим разрядом будут десятки.
  2. Подберём значение десятков. Для этого будем по очереди возводить в степень 10, 20, …, 90, пока не получим число, превышающее 781. Для нашего случая получим 10² = 100, 20² = 400, 30² = 900. Значение результата n будет находиться в пределах 20 < n <30.
  3. Аналогично предыдущему шагу подбирается значение разряда единиц. Поочерёдно возведём в квадрат 21,22, …, 29: 21² = 441, 22² = 484, 23² = 529, 24² = 576, 25² = 625, 26² = 676, 27² = 729, 28² = 784. Получаем, что 27 < n < 28.
  4. Каждый последующий разряд (десятые, сотые и т. д.) вычисляется так же, как было показано выше. Расчёты проводятся до тех пор, пока не будет достигнута необходимая точность.

В предисловии к своему первому изданию “В царстве смекалки” (1908 год) Е. И. Игнатьев пишет: “... умственную самодеятельность, сообразительность и “смекалку” нельзя ни “вдолбить”, ни “вложить” ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний совершается в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью”.

В предисловии к изданию 1911 г “Роль памяти в математике” Е.И. Игнатьев пишет “… в математике следует помнить не формулы, а процесс мышления”.

Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, можно разложить число на простые множители и извлечь квадратный корень из произведения. Таблицы квадратов бывает недостаточно, извлечение корня разложением на множители - трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2*2*52441. Методом проб и ошибок, подбором – это, конечно, можно сделать, если быть уверенным в том, что это целое число. Способ, который я хочу предложить, позволяет извлечь квадратный корень в любом случае.

Когда-то в институте (Пермский государственный педагогический институт) нас познакомили с этим способом, о котором сейчас хочу рассказать. Никогда не задумывалась, есть ли у этого способа доказательство, поэтому сейчас пришлось некоторые доказательства выводить самой.

Основой этого способа, является состав числа =.

=&, т.е. & 2 =596334.

1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)

2. Извлекаем квадратный корень из первой слева группы ( - число 2). Так мы получаем первую цифру числа &.

3. Находим квадрат первой цифры (2 2 =4).

4. Находим разность первой группы и квадрата первой цифры (5-4=1).

5.Сносим следующие две цифры (получили число 196).

6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).

7.Теперь необходимо найти вторую цифру числа &: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &.

8. Находим разность (196-176=20).

9. Сносим следующую группу (получаем число 2033).

10. Удваиваем число 24, получаем 48.

11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа &.

Доказательство приведено мной для случаев:

1. Извлечение квадратного корня из трехзначного числа;

2. Извлечение квадратного корня из четырехзначного числа.

Приближенные методы извлечения квадратного корня (без использования калькулятора) .

1.Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 ?х), и пользовались формулой . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью МК 5,2915026.

Как видим способ вавилонян дает хорошее приближение к точному значению корня.

2. Исаак Ньютон разработал метод извлечения квадратного корня, который восходил еще к Герону Александрийскому (около 100 г. н.э.). Метод этот (известный как метод Ньютона) заключается в следующем.

Пусть а 1 - первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа - точного квадрата, не превосходящего х) .

Следующее, более точное приближение а 2 числа найдется по формуле .