Ик система с инфракрасным излучением. Инфракрасный диапазон. Об инфракрасном излучении

В 1800 году ученый Уильям Гершель объявил на заседании Лондонского Королевского общества о своем открытии. Он измерил температуру за пределами спектра и обнаружил невидимые лучи с большой нагревательной силой. Опыт проводился им с помощью светофильтров телескопа. Он заметил, что они в разной мере поглощают свет и тепло солнечных лучей.

Через 30 лет факт существования невидимых лучей, расположенных за красной частью видимого солнечного спектра, был неоспоримо доказан. Французский Беккерель назвал это излучение инфракрасным.

Свойства ИК-излучения

Спектр инфракрасного излучения состоит из отдельных линий и полос. Но он может быть так же непрерывным. Все зависит от источника ИК лучей. Иначе говоря, имеет значение кинетическая энергия или температура атома или молекулы. Любой элемент таблицы Менделеева в условиях разных температур имеет различные характеристики.

Например, инфракрасные спектры возбужденных атомов из-за относительного состояния покоя связки ядро - будут иметь строго линейчатые ИК-спектры. А возбужденные молекулы - полосатые, хаотично расположенные. Все зависит не только от механизма наложения собственных линейных спектров каждого атома. Но так же от взаимодействия этих атомов между собой.

При повышении температуры изменяется спектральная характеристика тела. Так, нагретые твердые и жидкие тела выделяют непрерывный инфракрасный спектр. При температурах ниже 300°С излучение нагретого твердого тела целиком расположено в инфракрасной области. От диапазона температур зависит как изучение ИК-волн, так применения их важнейших свойств.

Главные свойства ИК-лучей это поглощение и дальнейший нагрев тел. Принцип передачи тепла инфракрасными обогревателями отличается от принципов конвекции или теплопроводности. Находясь в потоке горячих газов, предмет теряет какое-то количество тепла, пока его температура ниже температуры нагретого газа.

И наоборот: если инфракрасные излучатели облучают предмет, еще не значит, что его поверхность данное излучение поглощает. Он может так же отражать, поглощать или пропускать лучи без потерь. Практически всегда облучаемый предмет поглощает часть этого облучения, часть отражает и часть пропускает.

Далеко не все светящиеся объекты или нагретые тела излучают ИК-волны. Например, люминесцентные лампы или пламя газовой плиты такого излучения не имеют. Принцип работы люминесцентных лам основан на свечении (фотолюминесценции). Ее спектр ближе всего к спектру дневного, белого света. Поэтому ИК-излучения в нём почти нет. А наибольшая интенсивность излучения пламени газовой плиты приходится на длину волны голубого цвета. У перечисленных нагретых тел ИК-излучение очень слабое.

Существуют так же вещества, которые прозрачны для видимого света, но не способны пропускать ИК-лучи. Например, слой воды толщиной несколько сантиметров не пропустит инфракрасное излучение с длиной волны больше 1 мкм. При этом человек может различить находящиеся на дне предметы невооруженным глазом.

Уильям Гершель впервые заметил, что за красным краем полученного с помощью призмы спектра Солнца есть невидимое излучение, вызывающее нагрев термометра. Это излучение стали позднее называть тепловым или инфракрасным.

Ближнее ИК-излучение очень похоже на видимый свет и регистрируется такими же инструментами. В среднем и дальнем ИК используются болометры, отмечающие изменения.

В среднем ИК-диапазоне светит вся планета Земля и все предметы на ней, даже лед. За счет этого Земля не перегревается солнечным теплом. Но не всё ИК-излучение проходит через атмосферу. Есть лишь несколько окон прозрачности, остальное излучение поглощается углекислым газом, водяным паром, метаном, озоном и другими парниковыми газами, которые препятствуют быстрому остыванию Земли.

Из-за поглощения в атмосфере и теплового излучения предметов телескопы для среднего и дальнего ИК выносят в космос и охлаждают до температуры жидкого азота или даже гелия.

ИК-диапазон - один из самых интересных для астрономов. В нем светит космическая пыль, важная для образования звезд и эволюции галактик. ИК-излучение лучше видимого проходит через облака космической пыли и позволяет видеть объекты, недоступные наблюдению в других участках спектра.

Источники

Фрагмент одного из так называемых Глубоких полей «Хаббла» . В 1995 году космический телескоп в течение 10 суток накапливал свет, приходящий с одного участка неба. Это позволило увидеть чрезвычайно слабые галактики, расстояние до которых составляет до 13 млрд световых лет (менее одного миллиарда лет от Большого взрыва). Видимый свет от таких далеких объектов испытывает значительное красное смещение и становится инфракрасным.

Наблюдения велись в области, далекой от плоскости галактики, где видно относительно мало звезд. Поэтому большая часть зарегистрированных объектов - это галактики на разных стадиях эволюции.

Гигантская спиральная галактика, обозначаемая также как M104, расположена в скоплении галактик в созвездии Девы и видна нам почти с ребра. Она обладает огромным центральным балджем (шарообразное утолщение в центре галактики) и содержит около 800 млрд звезд - в 2-3 раза больше, чем Млечный Путь.

В центре галактики находится сверхмассивная черная дыра с массой около миллиарда масс Солнца. Это определено по скоростям движения звезд вблизи центра галактики. В инфракрасном диапазоне в галактике отчетливо просматривается кольцо газа и пыли, в котором активно рождаются звезды.

Приемники

Главное зеркало диаметром 85 см изготовлено из бериллия и охлаждается до температуры 5,5 К для снижения собственного инфракрасного излучения зеркала.

Телескоп был запущен в августе 2003 года по программе четырех великих обсерваторий NASA , включающей:

  • гамма-обсерваторию «Комптон» (1991–2000, 20 кэВ -30 ГэВ ), см. Небо в гамма-лучах с энергией 100 МэВ ,
  • рентгеновскую обсерваторию «Чандра» (1999, 100 эВ -10 кэВ ),
  • космический телескоп «Хаббл» (1990, 100–2100 нм ),
  • инфракрасный телескоп «Спитцер» (2003, 3–180 мкм ).

Ожидается, что срок службы телескопа «Спитцер» составит около 5 лет. Свое название телескоп получил в честь астрофизика Лаймана Спитцера (1914–97), который в 1946 году, задолго до запуска первого спутника, опубликовал статью «Преимущества для астрономии внеземной обсерватории», а спустя 30 лет убедил NASA и американский Конгресс начать разработку космического телескопа «Хаббл».

Обзоры неба

Небо в ближнем инфракрасном диапазоне 1–4 мкм и в среднем инфракрасном диапазоне 25 мкм (COBE/DIRBE)

В ближнем инфракрасном диапазоне Галактика просматривается еще более отчетливо, чем в видимом.

А вот в среднем ИК-диапазоне Галактика едва видна. Наблюдениям сильно мешает пыль, находящаяся в Солнечной системе. Она расположена вдоль плоскости эклиптики, которая наклонена к плоскости Галактики под углом около 50 градусов.

Оба обзора получены инструментом DIRBE (Diffuse Infrared Background Experiment) на борту спутника COBE (Cosmic Background Explorer). В ходе этого эксперимента, начатого в 1989 году, были получены полные карты инфракрасной яркости неба в диапазоне от 1,25 до 240 мкм .

Земное применение

В основе прибора лежит электронно-оптический преобразователь (ЭОП), позволяющий значительно (от 100 до 50 тысяч раз) усиливать слабый видимый или инфракрасный свет.

Объектив создает изображение на фотокатоде, из которого, как и в случае ФЭУ , выбиваются электроны. Далее они разгоняются высоким напряжением (10–20 кВ ), фокусируются электронной оптикой (электромагнитным полем специально подобранной конфигурации) и падают на флуоресцентный экран, подобный телевизионному. На нем изображение рассматривают в окуляры.

Разгон фотоэлектронов дает возможность в условиях низкой освещенности использовать для получения изображения буквально каждый квант света, однако в полной темноте требуется подсветка. Чтобы не выдать присутствие наблюдателя, для этого пользуются прожектором ближнего ИК-диапазона (760–3000 нм ).

Существуют также приборы, которые улавливают собственное тепловое излучение предметов в среднем ИК-диапазоне (8–14 мкм ). Такие приборы называются тепловизорами, они позволяют заметить человека, животное или нагретый двигатель за счет их теплового контраста с окружающим фоном.

Вся энергия, потребляемая электрическим обогревателем, в конечном счете, переходит в тепло. Значительная часть тепла уносится воздухом, который соприкасается с горячей поверхностью, расширяется и поднимается вверх, так что обогревается в основном потолок.

Во избежание этого обогреватели снабжают вентиляторами, которые направляют теплый воздух, например, на ноги человека и способствуют перемешиванию воздуха в помещении. Но есть и другой способ передачи тепла окружающим предметам: инфракрасное излучение обогревателя. Оно тем сильнее, чем горячее поверхность и больше ее площадь.

Для увеличения площади радиаторы делают плоскими. Однако при этом температура поверхности не может быть высокой. В других моделях обогревателей используется спираль, разогреваемая до нескольких сотен градусов (красное каление), и вогнутый металлический рефлектор, который создает направленный поток инфракрасного излучения.

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.

Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.

ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.

Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.

Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.

Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Инфракрасное излучение является естественным природным видом излучения. Каждый человек ежедневно подвергается его действию. Огромная часть энергии Солнца поступает на нашу планету именно в виде ИК-лучей. Однако в современном мире существует множество приборов, в которых задействовано инфракрасное излучение. На организм человека оно может воздействовать различным образом. Во многом это зависит от типа и целей использования этих самых приборов.

Что это такое

Инфракрасное излучение, или ИК-лучи, - это вид электромагнитного излучения, занимающий спектральную область от красного видимого света (для которого характерна длина волны 0,74 мкм) до коротковолнового радиоизлучения (с длиной волны 1-2 мм). Это довольно обширная область спектра, поэтому ее дополнительно подразделяют на три области:

  • ближний (0,74 - 2,5 мкм);
  • средний (2,5 - 50 мкм);
  • дальний (50-2000 мкм).

История открытия

В 1800 году ученый из Англии В. Гершель сделал наблюдение, что в невидимой части солнечного спектра (за пределами красного света) повышается температура термометра. Впоследствии была доказана подчиненность инфракрасного излучения законам оптики и сделан вывод о его родстве с видимым светом.

Благодаря трудам советского физика А. А. Глаголевой-Аркадьевой, в 1923 году получившей радиоволны с λ=80 мкм (ИК-диапазон), было экспериментально доказано существование непрерывного перехода от видимого излучения к ИК-излучению и радиоволновому. Таким образом, был сделан вывод об их общей электромагнитной природе.

Практически все в природе способно испускать длины волн, соответствующих инфракрасному спектру, а значит, является Тело человека не является исключением. Все мы знаем, что все вокруг состоит из атомов и ионов, даже человек. А эти возбужденные частицы способны испускать Переходить в возбужденное состояние они могут под действием различных факторов, например электрических разрядов или при нагревании. Так, в спектре излучения пламени газовой плиты имеется полоса с λ=2,7 мкм от молекул воды и с λ=4,2 мкм от углекислого газа.

ИК-волны в быту, науке и промышленности

Используя дома и на работе те или иные приборы, мы редко задаемся вопросом о влиянии инфракрасного излучения на организм человека. Между тем довольно популярными сегодня являются ИК-обогреватели. Принципиальным их отличаем от масляных радиаторов и конвекторов является способность нагревать не сам воздух непосредственно, а все объекты, находящиеся в помещении. То есть сначала нагреваются мебель, полы и стены, а затем они отдают свое тепло в атмосферу. При этом оказывает действие инфракрасное излучение и на организмы - человека и его питомцев.

Также широко применяются ИК-лучи при передаче данных и дистанционном управлении. Во многих мобильных телефонах имеются ИК-порты, предназначенные для обмена файлами между ними. А все пульты от кондиционеров, музыкальных центров, телевизоров, некоторых управляемых детских игрушек также используют электромагнитные лучи в инфракрасном диапазоне.

Использование ИК-лучей в армии и космонавтике

Наиболее важное значение инфракрасные лучи имеют для авиакосмической и военной отраслей. На базе фотокатодов, имеющих чувствительность к ИК-излучению (до 1,3 мкм), создаются (различные бинокли, прицелы и т. д.). Они позволяют при одновременном облучении объектов инфракрасным излучением произвести прицеливание или осуществлять наблюдение в абсолютной темноте.

Благодаря созданным высокочувствительным приемникам инфракрасных лучей стало возможным производство самонаводящихся ракет. Датчики в их головной части реагируют на ИК-излучение цели, температура которой, как правило, выше окружающей среды, и направляют ракету в цель. На том же принципе основано обнаружение с помощью теплопеленгаторов нагретых частей кораблей, самолетов, танков.

ИК-локаторы и дальномеры могут обнаруживать в полной темноте различные объекты и соизмерять расстояние до них. Особые приборы - которые излучают в инфракрасной области, применяются для космической и дальней наземной связи.

Инфракрасное излучение в научной деятельности

Одним из самых распространенных является изучение спектров испускания и поглощения в ИК-области. Применяется оно при изучении особенностей электронных оболочек атомов, для определения структур всевозможных молекул, а кроме того, и в качественном и количественном анализе смесей различных веществ.

Из-за различий коэффициентов рассеяния, пропускания и отражения тел в видимых и ИК-лучах фотографии, сделанные в различных условиях, несколько отличаются. На снимках, выполненных в инфракрасном диапазоне, зачастую видно больше деталей. Такие снимки широко распространены в астрономии.

Изучение влияния ИК-лучей на организм

Первые научные данные о влиянии инфракрасного излучения на организм человека датированы 1960 годами. Автором исследований является японский врач Тадаши Ишикава. В ходе своих экспериментов ему удалось установить, что ИК-лучи имеют свойство проникать глубоко внутрь тела человека. При этом происходят процессы терморегуляции, сходные с реакцией на нахождение в сауне. Однако потоотделение начинается при более низкой температуре окружающего воздуха (она составляет порядка 50 °С), а прогревание внутренних органов происходит гораздо глубже.

В ходе такого прогревания происходит усиление кровообращения, расширяются сосуды органов дыхания, подкожной клетчатки и кожи. Вместе с тем длительное воздействие инфракрасного излучения на человека способно вызвать тепловой удар, а сильное ИК-излучение приводит к появлению ожогов различной степени.

Защита от ИК-излучения

Существует небольшой перечень мероприятий, направленных на уменьшение опасности воздействия инфракрасного излучения на организм человека:

  1. Понижение интенсивности излучения. Достигается оно посредством выбора соответствующего технологического обо-ру-до-ва-ния, своевременной заменой устаревшего, а также его рациональной компоновкой.
  2. Удаление рабочих от источника излучения. Если позволяет технологическая линия, следует предпочесть дистанционное управление ею.
  3. Установка защитных экранов на источник или рабочее место. Такие ограждения могут быть устроены двумя способами, позволяющими снизить влияние инфракрасного излучения на организм человека. В первом случае они должны отражать электромагнитные волны, а во втором - задерживать их и преобразовывать энергию излучения в тепловую с последующим ее отведением. В связи с тем, что защитные экраны не должны лишать специалистов возможности вести мониторинг происходящих на производстве процессов, они могут изготавливаться прозрачными или полупрозрачными. Для этого в качестве материалов выбирают силикатные или кварцевые стекла, а также металлические сетки и цепи.
  4. Теплоизоляция или охлаждение горячих поверхностей. Главной целью тепловой изоляции является снижение риска получения рабочими различных ожогов.
  5. Средства индивидуальной защиты (разнообразная спецодежда, очки со встроенными светофильтрами, щит-ки).
  6. Профилактические мероприятия. Если в ходе вышеперечисленных действий уровень воздействия ИК-излучения на организм остается достаточно высоким, то следует подобрать соответствующий режим труда и отдыха.

Польза для организма человека

Инфракрасное излучение, воздействующее на тело человека, приводит к улучшению циркуляции крови вследствие расширения сосудов, лучшему насыщению органов и тканей кислородом. Кроме того, повышение температуры тела оказывает болеутоляющий эффект за счет воздействия лучей на нервные окончания в кожных покровах.

Было подмечено, что хирургические операции, проведенные под действием ИК-излучения, имеют ряд преимуществ:

  • несколько легче переносятся боли после операций;
  • быстрее идет регенерация клеток;
  • влияние инфракрасного излучения на человека позволяет избежать охлаждения внутренних органов в случае выполнения операции на открытых полостях, что понижает риск развития шока.

У больных с ожогами инфракрасное излучение создает возможность удаления некрозов, а также выполнения аутопластики на более раннем этапе. Кроме того, снижается срок лихорадки, в меньшей степени выражены анемия и гипопротеинемия, снижается частота осложнений.

Доказано, что ИК-излучение способно ослабить действие некоторых ядохимикатов, путем повышения неспецифического иммунитета. Многие из нас знают о лечении ринита и некоторых других проявления простуды синими ИК-лампами.

Вред для человека

Стоит отметить, что вред от инфракрасного излучения для организма человека тоже может быть весьма существенным. Наиболее очевидные и распространенные случаи - ожоги кожи и дерматиты. Происходить они могут либо при слишком длительном воздействии слабых волн инфракрасного спектра, либо в ходе интенсивного облучения. Если говорить о медицинских процедурах, то редко, но все же случаются тепловые удары, астении и обострения болей при неправильном лечении.

Одной из современных проблем являются ожоги глаз. Наиболее опасны для них ИК-лучи с длинами волн в пределах 0,76-1,5 мкм. Под их влиянием происходит нагревание хрусталика и водянистой влаги, что может приводить к различным нарушениям. Одним из самых распространенных последствий является светобоязнь. Об этом стоит помнить детям, играющим с лазерными указками, и сварщикам, пренебрегающим средствами индивидуальной защиты.

ИК-лучи в медицине

Лечение с помощью инфракрасного излучения бывает местным и общим. В первом случае осуществляется локальное действие на определенный участок тела, а во втором действию лучей подвергается весь организм. Курс лечения зависит от заболевания и может составлять от 5 до 20 сеансов по 15-30 минут. При проведении процедур обязательным условием является использование защитных средств. Для сохранения здоровья глаз используются особые картонные накладки или очки.

После первой же процедуры на поверхности кожи появляются покраснения с нечеткими границами, проходящие примерно через час.

Действие ИК-излучателей

В условиях доступности многих медицинских приборов люди приобретают их для индивидуального пользования. Однако необходимо помнить, что такие устройства должны соответствовать особым требованиям и использоваться с соблюдением правил безопасности. Но главное - важно понимать, что, как и любой медицинский прибор, излучатели инфракрасных волн нельзя использовать при ряде заболеваний.

Влияние инфракрасного излучения на организм человека
Длина волны, мкм Полезное действие
9,5 мкм Иммунокоррегирующее действие при иммунодефицитных состояниях, вызванных голоданием, отравлением четыреххлористым углеродом, применением иммунодепрессантов. Приводит к восстановлению нормальных показателей клеточного звена иммунитета.
16.25 мкм Антиоксидантное действие. Осуществляется за счет образования свободных радикалов из супероксидов и гидроперекисей, и их рекомбинации.
8,2 и 6,4 мкм Антибактериальное действие и нормализация микрофлоры кишечника за счет влияния на процесс синтеза гормонов простагландинов, приводящая к иммуномоделирующему эффекту.
22,5 мкм Приводит к переводу многих нерастворимых соединений, таких как тромбы и атеросклеротические бляшки, в растворимое состояние, позволяющее выводить их из организма.

Поэтому подбирать курс терапии должен квалифицированный специалист, опытный врач. В зависимости от длины испускаемых инфракрасных волн, приборы могут быть использованы для разных целей.

Инфракрасное излучение – один из типов электромагнитного излучения, что граничит с красной частью спектра видимого света с одной стороны и микроволнами – с другой. Длина волны – от 0.74 до 1000-2000 микрометров. Инфракрасные волны называют еще «тепловыми». Исходя из длины волны, их классифицируют на три группы:

коротковолновые (0.74-2.5 микрометров);

средневолновые (длиннее 2.5, короче 50 микрометров);

длинноволновые (больше 50 микрометров).

Источники инфракрасного излучения

На нашей планете инфракрасное излучение отнюдь не редкость. Практически любое тепло – эффект воздействия инфракрасных лучей. Неважно что это: солнечный свет, тепло наших тел или нагрев, исходящий от отопительных приборов.

Инфракрасная часть электромагнитного излучения греет не пространство, а непосредственно сам объект. Именно на этом принципе построена работа инфракрасных ламп. Да и Солнце обогревает Землю аналогичным образом.

Влияние на живые организмы

На данный момент, науке неизвестны подтвержденные факты негативного влияния инфракрасных лучей на организм человека. Разве что из-за чересчур интенсивного излучения может повредиться слизистая оболочка глаз.

А вот о пользе можно говорить очень долго. Еще в 1996 году, ученые из США, Японии и Голландии подтвердили ряд позитивных медицинских фактов. Тепловое излучение:

уничтожает некоторые из видов вируса гепатита;

подавляет и замедляет рост раковых клеток;

обладает способностью нейтрализации вредных электромагнитных полей и излучения. В том числе и радиоактивного;

помогает вырабатывать инсулин диабетиками;

может помочь при дистрофии;

улучшение состояния организма при псориазе.

Под улучшается самочувствие, внутренние органы начинают работать эффективнее. Увеличивается питание мускулов, изрядно повышается сила иммунной системы. Известный факт, что при отсутствии инфракрасного излучения, организм ощутимо быстрее стареет.

Инфракрасные лучи еще называют «лучами жизни». Именно под их воздействием зародилась жизнь.

Использование инфракрасных лучей в быту человека

Инфракрасный свет используют не менее широко, чем он распространен. Пожалуй, будет очень сложно найти хоть одну область народного хозяйства, где не нашла себе применения инфракрасная часть электромагнитных волн. Перечислим самые известные сферы применения:

военное дело. Самонаведение боеголовок ракет или приборы ночного видения – это все результат использования инфракрасного излучения;

термография широко используется в науке для определения перегретых или переохлажденных частей исследуемого объекта. Инфракрасные снимки также широко используются в астрономии, наряду с другими типами электромагнитных волн;

бытовые обогреватели. В отличие от конвекторов, такие устройства с помощью лучистой энергии нагревают все объекты помещения. А уже дальше, предметы интерьера отдают тепло окружающему воздуху;

передача данных и дистанционное управление. Да, все пульты от телевизоров, магнитофонов и кондиционеров используют инфракрасные лучи;

дезинфекция в пищевой промышленности

медицина. Лечение и профилактика многих разнотипных заболеваний.

Инфракрасные лучи – относительно небольшая часть электромагнитного излучения. Являясь естественным способом передачи тепла, без него не обходится ни один жизненный процесс на нашей планете.