Графики с модулями примеры. Преобразования графиков с модулем. Уравнения с двумя модулями

Знак модуля, пожалуй, одно из самых интересных явлений в математике. В связи с этим у многих школьников возникает вопрос, как строить графики функций, содержащих модуль. Давайте подробно разберем этот вопрос.

1. Построение графиков функций, содержащих модуль

Пример 1.

Построить график функции y = x 2 – 8|x| + 12.

Решение.

Определим четность функции. Значение для y(-x) совпадает со значением для y(x), поэтому данная функция четная. Тогда ее график симметричен относительно оси Oy. Строим график функции y = x 2 – 8x + 12 для x ≥ 0 и симметрично отображаем график относительно Oy для отрицательных x (рис. 1).

Пример 2.

Следующий график вида y = |x 2 – 8x + 12|.

– Какова область значений предложенной функции? (y ≥ 0).

– Как расположен график? (Над осью абсцисс или касаясь ее).

Это значит, что график функции получают следующим образом: строят график функции y = x 2 – 8x + 12, оставляют часть графика, которая лежит над осью Ox, без изменений, а часть графика, которая лежит под осью абсцисс, симметрично отображают относительно оси Ox (рис. 2).

Пример 3.

Для построения графика функции y = |x 2 – 8|x| + 12| проводят комбинацию преобразований:

y = x 2 – 8x + 12 → y = x 2 – 8|x| + 12 → y = |x 2 – 8|x| + 12|.

Ответ: рисунок 3.

Рассмотренные преобразования справедливы для всех видов функций. Составим таблицу:

2. Построение графиков функций, содержащих в формуле «вложенные модули»

Мы уже познакомились с примерами квадратичной функции, содержащей модуль, а так же с общими правилами построения графиков функций вида y = f(|x|), y = |f(x)| и y = |f(|x|)|. Эти преобразования помогут нам при рассмотрении следующего примера.

Пример 4.

Рассмотрим функцию вида y = |2 – |1 – |x|||. Выражение, задающее функцию, содержит «вложенные модули».

Решение.

Воспользуемся методом геометрических преобразований.

Запишем цепочку последовательных преобразований и сделаем соответствующий чертеж (рис. 4):

y = x → y = |x| → y = -|x| → y = -|x| + 1 → y = |-|x| + 1|→ y = -|-|x| + 1|→ y = -|-|x| + 1| + 2 → y = |2 –|1 – |x|||.

Рассмотрим случаи, когда преобразования симметрии и параллельного переноса не являются основным приемом при построении графиков.

Пример 5.

Построить график функции вида y = (x 2 – 4)/√(x + 2) 2 .

Решение.

Прежде чем строить график, преобразуем формулу, которой задана функция, и получим другое аналитическое задание функции (рис. 5).

y = (x 2 – 4)/√(x + 2) 2 = (x– 2)(x + 2)/|x + 2|.

Раскроем в знаменателе модуль:

При x > -2, y = x – 2, а при x < -2, y = -(x – 2).

Область определения D(y) = (-∞; -2)ᴗ(-2; +∞).

Область значений E(y) = (-4; +∞).

Точки, в которых график пересекает с оси координат: (0; -2) и (2; 0).

Функция убывает при всех x из интервала (-∞; -2), возрастает при x от -2 до +∞.

Здесь нам пришлось раскрывать знак модуля и строить график функции для каждого случая.

Пример 6.

Рассмотрим функцию y = |x + 1| – |x – 2|.

Решение.

Раскрывая знак модуля, необходимо рассмотреть всевозможную комбинацию знаков подмодульных выражений.

Возможны четыре случая:

{x + 1 – x + 2 = 3, при x ≥ -1 и x ≥ 2;

{-x – 1 + x – 2 = -3, при x < -1 и x < 2;

{x + 1 + x – 2 = 2x - 1, при x ≥ -1 и x < 2;

{-x – 1 – x + 2 = -2x + 1, при x < -1 и x ≥ 2 – пустое множество.

Тогда исходная функция будет иметь вид:

{3, при x ≥ 2;

y = {-3, при x < -1;

{2x – 1, при -1 ≤ x < 2.

Получили кусочно-заданную функцию, график которой изображен на рисунке 6.

3. Алгоритм построения графиков функций вида

y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b.

В предыдущем примере было достаточно легко раскрыть знаки модуля. Если же сумм модулей больше, то рассмотреть всевозможные комбинации знаков подмодульных выражений проблематично. Как же в этом случае построить график функции?

Заметим, что графиком является ломаная, с вершинами в точках, имеющих абсциссы -1 и 2. При x = -1 и x = 2 подмодульные выражения равны нулю. Практическим путем мы приблизились к правилу построения таких графиков:

Графиком функции вида y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b является ломаная с бесконечными крайними звеньями. Чтобы построить такую ломаную, достаточно знать все ее вершины (абсциссы вершин есть нули подмодульных выражений) и по одной контрольной точке на левом и правом бесконечных звеньях.

Задача.

Построить график функции y = |x| + |x – 1| + |x + 1| и найти ее наименьшее значение.

Решение:

Нули подмодульных выражений: 0; -1; 1. Вершины ломаной (0; 2); (-1; 3); (1; 3). Контрольная точка справа (2; 6), слева (-2; 6). Строим график (рис. 7). min f(x) = 2.

Остались вопросы? Не знаете, как построить график функции с модулем?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Графики прямой, параболы, гиперболы, с модулем

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики - самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую.

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

А если теперь добавить модуль y = |2x − 1|.

Модуль - это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Получается такая зеленая "галочка".

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Здесь отражаем относительно оси «y» . Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть.

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны!


А после этого отражаем относительно оси «y» то, что мы получили справа налево:


Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет "шире", расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x - простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе « −1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| - отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно-заданных графика:


C двумя модулями кусочно-заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль - это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

Эрднигоряева Марина

Данная работа является результатом изучения темы на факультативе в 8 классе. Здесь показываются геометрические преобразования графиков и их применение к построению графиков с модулями. Вводится понятие модуля и его свойства. Показано как строить графики с модулями различными способами: с помощью преобразований и на основе понятия модуля.Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах,изучается в классах с улгубленным изучением математики. Тем не меннн такие задания даются во второй части ГИА, в ЕГЭ. Данная работа поможет понять как строить графики с модулями не только линейных, но и других функций(квадратичных, обратно- пропорциональных и др.) Работа поможет при подготовке к ГИА и ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графики линейной функции с модулями Работа Эрднигоряевой Марины, ученицы 8 класса МКОУ «Камышовская ООШ» Руководитель Горяева Зоя Эрднигоряевна, учитель математики МКОУ « Камышовская ООШ» с. Камышово, 2013г.

Цель проекта: Ответить на вопрос как строить графики линейных функций с модулями. Задачи проекта: Изучить литературу по данному вопросу. Изучить геометрические преобразования графиков и их применение к построению графиков с модулями. Изучить понятие модуля и его свойства. Научиться строить графики с модулями различными способами.

Прямая пропорциональность Прямой пропорциональностью называется функция, которую можно задать формулой вида y=kx , где x –независимая переменная, k -не равное нулю число.

Построим график функции y = x x 0 2 y 0 2

Геометрическое преобразование графиков Правило №1 График функции y = f (x)+ k – линейная функция - получается параллельным переносом графика функции y = f (x) на + k единиц вверх по оси О y при k> 0 или на |- k| единиц вниз по оси О y при k

Построим графики y=x+3 y=x-2

Правило № 2 График функции y=kf(x) получается растягиванием графика функции y = f (x) вдоль оси О y в a раз при a>1 и сжатием вдоль оси О y в a раз при 0Слайд 9

Построим график y=x y= 2 x

Правило № 3 График функции y =- f (x) получается симметричным отображением графика y = f (x) относительно оси О x

Правило № 4 График функции y=f(- x) получается симметричным отображением графика функции y = f (x) относительно оси О y

Правило № 5 График функции y=f(x+c) получается параллельным переносом графика функции y=f(x) вдоль оси О x вправо, если c 0 .

Построим графики y=f(x) y=f(x+2)

Определение модуля Модуль неотрицательного числа а равен самому числу а; модуль отрицательного числа а равен противоположному ему положительному числу -а. Или, |а|=а, если а ≥0 |а|=-а, если а

Графики линейных функций с модулями строятся: с использованием геометрических преобразований с помощью раскрытия определения модуля.

Правило № 6 График функции y=|f(x)| получается следующим образом: часть графика y=f(x) , лежащая над осью О x , сохраняется; часть, лежащая под осью О x , отображается симметрично, относительно оси О x .

Построить график функции y=-2| x-3|+4 Строим y ₁=| x | Строим y₂= |x - 3 | → параллельный перенос на +3 единицы вдоль оси Ох (сдвиг вправо) Строим y ₃ =+2|x-3| → растягиваем вдоль оси О y в 2 раза = 2 y₂ Строим у ₄ =-2|x-3| → симметрия относительно оси абсцисс = - y₃ Строим y₅ =-2|x-3|+4 → параллельный перенос на +4 единицы вдоль оси О y (сдвиг вверх) = y ₄ +4

График функции y =-2|x-3|+4

График функции у= 3|х|+2 y₁=|x| y₂=3|x|= 3 y₁ → растяжение в 3 раза y₃=3|x| +2= y₄+2 → сдвиг вверх на 2 единицы

Правило № 7 График функции y=f(| x |) получается из графика функции y=f(x) следующим образом: При x > 0 график функции сохраняется, и эта же часть графика симметрично отображается относительно оси О y

Построить график функции y = || x-1 | -2 |

У₁= |х| у₂=|х-1| у₃= у₂-2 у₄= |у₃| У=||х-1|-2|

Алгоритм построения графика функции y=│f(│x│)│ построить график функции y=f(│x│) . далее оставить без изменений все части построенного графика, которые лежат выше оси x . части, расположенные ниже оси x , отобразить симметрично относительно этой оси.

У=|2|х|-3| Построение: а) у= 2х-3 для х >0, б) у=-2х-3 для х Слайд 26

Правило № 8 График зависимости | y|=f(x) получается из графика функции y=f(x) если все точки, для которых f(x) > 0 сохраняются и они же симметрично переносятся относительно оси абсцисс.

Построить множество точек на плоскости, декартовы координаты которых х и у удовлетворяют уравнению |у|=||х-1|-1|.

| y|=||x-1| -1| строим два графика 1) у=||х-1|-1| и 2) у =-|| х-1|-1| y₁=|x| y₂=| x-1 | → сдвиг по оси Ох вправо на 1 единицу y₃ = | x -1 |- 1= → сдвиг на 1 единицу вниз y ₄ = || x-1|- 1| → симметрия точек графика для которых y₃ 0 относительно О x

График уравнения |y|=||x-1|-1| получаем следующим образом: 1)строим график функции y=f(x) и о с тавляем без изменений ту его часть, где y≥0 2) с помощью симметрии относительно оси Оx построим другую часть графика, соответствующую y

Построить график функции y =|x | − | 2 − x | . Решение. Здесь знак модуля входит в два различных слагаемых и его нужно снимать. 1) Найдём корни подмодульных выражений: х=0, 2-х=0, х=2 2) Установим знаки на интервалах:

График функции

Вывод Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах, изучается в классах по углубленному изучению курса математики. Тем не менее такие задания даются во второй части ГИА. Данная работа поможет понять как строить графики с модулями не только линейных функций, но и других функций(квадратичных, обратно пропорциональных и др.). Работа поможет при подготовке к ГИА и ЕГЭ и позволит получить высокие баллы по математике.

Литература Виленкин Н.Я. , Жохов В.И.. Математика”. Учебник 6 класс Москва. Издательство “ Мнемозина”, 2010г Виленкин Н.Я., Виленкин Л.Н., Сурвилло Г.С. и др. Алгебра. 8 класс: учебн. Пособие для учащихся и классов с углубленным изучением математики. – Москва. Просвещение, 2009 г Гайдуков И.И. “Абсолютная величина”. Москва. Просвещение, 1968. Гурский И.П. “Функции и построение графиков”. Москва. Просвещение, 1968. Ящина Н.В. Приёмы построения графиков, содержащих модули. Ж/л «Математика в школе»,№3,1994г Детская энциклопедия. Москва. «Педагогика», 1990. Дынкин Е.Б., Молчанова С.А. Математические задачи. М., «Наука», 1993. Петраков И.С. Математические кружки в 8-10 классах. М., «Просвещение», 1987 . Галицкий М.Л. и др. Сборник задач по алгебре для 8-9 классов: Учебное пособие для учащихся и классов с углубленным изучением математики. – 12-е изд. – М.: Просвещение, 2006. – 301 с. Макрычев Ю.Н., Миндюк Н.Г. Алгебра: Дополнительные главы к школьному учебнику 9 кл.: Учебное пособие для учащихся школы и классов с углубленным изучением математики / Под редакцией Г.В.Дорофеева. – М.: Просвещение, 1997. – 224 с. Садыкина Н. Построение графиков и зависимостей, содержащих знак модуля /Математика. - №33. – 2004. – с.19-21 .. Кострикина Н.П “ Задачи повышенной трудности в курсе алгебры для 7-9 классов ”... Москва.: Просвещение, 2008г.

, Конкурс «Презентация к уроку»

Презентация к уроку









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  • повторить построение графиков функций содержащих знак модуля;
  • познакомиться с новым методом построения графика линейно-кусочной функции;
  • закрепить новый метод при решении задач.

Оборудование:

  • мультимедиа проектор,
  • плакаты.

Ход урока

Актуализация знаний

На экране слайд 1 из презентации.

Что является графиком функции y=|x| ? (слайд 2).

(совокупность биссектрис 1 и 2 координатных углов)

Найдите соответствие между функциями и графиками, объясните ваш выбор (слайд 3).

Рисунок 1

Расскажите алгоритм построения графиков функций вида y=|f(x)| на примере функции y=|x 2 -2x-3| (слайд 4)

Ученик: чтобы построить график данной функции нужно

Построить параболу y=x 2 -2x-3

Рисунок 2

Рисунок 3

Расскажите алгоритм построения графиков функций вида y=f(|x|) на примере функции y=x 2 -2|x|-3 (слайд 6).

Построить параболу.

Часть графика при х 0 сохраняется и отображается симметрии относительно оси ОУ (слайд 7)

Рисунок 4

Расскажите алгоритм построения графиков функций вида y=|f(|x|)| на примере функции y=|x 2 -2|x|-3| (слайд 8).

Ученик: Чтобы построить график данной функции нужно:

Нужно построить параболу у=x 2 -2x-3

Строим у= x 2 -2|x|-3, часть графика сохраняем и симметрично отображаем относительно ОУ

Часть над ОХ сохраняем, а нижнюю часть симметрично отображаем относительно ОХ (слайд 9)

Рисунок 5

Следующее задание выполняем письменно в тетрадях.

1. Построить график линейно-кусочной функции у=|х+2|+|х-1|-|х-3|

Ученик на доске с комментарием:

Находим нули подмодульных выражений х 1 =-2, х 2 =1, х 3 =3

Разбиваем ось на промежутки

Для каждого промежутка запишем функцию

при х < -2, у=-х-4

при -2 х<1, у=х

при 1 х<3, у = 3х-2

при х 3, у = х+4

Строим график линейно-кусочной функции.

Мы с вами построили график функции используя определение модуля (слайд 10).

Рисунок 6

Предлагаю вашему вниманию “метод вершин”, который позволяет строить график линейно-кусочной функции (слайд 11). Алгоритм построения дети записывают в тетрадь.

Метод вершин

Алгоритм:

  1. Найдем нули каждого подмодульного выражения
  2. Составим таблицу, в которой кроме нулей запишем по одному значению аргумента слева и справа
  3. Нанесем точки на координатную плоскость и соединим последовательно

2. Разберем этот метод на той же функции у=|х+2|+|х-1|-|х-3|

Учитель на доске, дети в тетрадях.

Метод вершин:

Найдем нули каждого подмодульного выражения;

Составим таблицу, в которой кроме нулей запишем по одному значению аргумента слева и справа

Нанесем точки на координатную плоскость и соединим последовательно.

Графиком линейно-кусочной функции является ломанная с бесконечными крайними звеньями (слайд 12) .

Рисунок 7

Каким же методом график получается быстрее и легче?

3. Чтобы закрепить данный метод предлагаю выполнить следующее задание:

При каких значения х функция у=|х-2|-|х+1| принимает наибольшее значение.

Следуем алгоритму; ученик на доске.

у=|х-2|-|х+1|

х 1 =2, х 2 =-1

у(3)=1-4=3, соединяем последовательно точки.

4. Дополнительное задание

При каких значениях а уравнение ||4+x|-|x-2||=a имеет два корня.

5. Домашняя работа

а) При каких значениях Х функция у =|2x+3|+3|x-1|-|x+2| принимает наименьшее значение.

б) Построить график функции y=||x-1|-2|-3| .