Физические и химические свойства пыли. Основные свойства пыли и их определение.  Вредные производственные факторы - промышленная пыль

Прочитайте:
  1. А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами
  2. Абразивные материалы и инструменты для препарирования зубов. Свойства, применение.
  3. Адгезивные системы. Классификация. Состав. Свойства. Методика работы. Современные взгляды на протравливание. Световая аппаратура для полимеризации, правила работы.
  4. Аденовирусы, морфология, культуральные, биологические свойства, серологическая классификация. Механизмы патогенеза, лабораторная диагностика аденовирусных инфекций.
  5. Альгинатные оттискные массы. Состав, свойства, показания к применению.
  6. Анатомия и гистология сердца. Круги кровообращения. Физиологические свойства сердечной мышцы. Фазовый анализ одиночного цикла сердечной деятельности
  7. Антитела (иммуноглобулины): структура, свойства. Классификация антител: классы, субклассы, изотипы, аллотипы, идиотипы. Закономерности биосинтеза.
  8. Антитела (строение, свойства, функции антител, феномены взаимодействия антител и антигенов).
  9. Атмосфера земли, ее структура и свойства. Природный физический и химический состав атмосферного воздуха. Физиолого-гигиеническое значение его составных компонентов.

ü Химический состав

ü Дисперсность

ü Физико-химические свойства

ü Электрозаряженность

ü Адсорбционные свойства

ü Форма, плотность и твердость частиц

Наиболее характерными заболеваниями являются пылевые фиброзы (пневмокониозы) - профессиональные заболевания, при которых ограничивается дыхательная поверхность и у человека на­рушается функция дыхания. Возникновение заболеваний данной группы обусловлено фиброгенным действием пыли, которое состоит в том, что пыль, попадая в легкие скапливается в альвеолах, интерстициальном веществе, вызывая разрастание соединительной ткани и развитие легоч­ного фиброза. При этом в одних местах легкого наблюдается склероз, индурация, а в других компенсаторно развивается эмфизема. Кроме фиброгенного действия пыль может вызывать аллергические реакции, а также оказывать непосредственно токсическое действие (в случае вдыхания пыли, токсичной по своему химическому составу).

19. Заболевания, связанные с воздействием пыли на организм. Меры профилактики.

Характер воздействия на пыли зависит от ряда факторов: формы пылинок, ее дисперсности, химического состава. Дисперсность играет большую роль при гигиенической оценке пыли. Размер пыльных частиц существенно влияет на длительность пребывания их во взвешенном состоянии в воздухе, глубину проникновения в дыхательные пути, физико-химическую активность и другие свойства. Пыль обладает способностью удерживаться долгое время во взвешенном состоянии.

В развитии патологических изменений в организме человека большое значение имеет как химический состав пыли, так и количество, содержащееся в воздухе. При попадании пыли в легкие развивается заболевание, носящее общее название – пневмокониоз. Сущность данного заболевания заключается в развитии фиброза, то есть в замещении легочной ткани соединительной тканью. В зависимости от характера вдыхаемой пыли различают следующие виды пневмокониоза: силикоз, вызываемый воздействием пыли, содер­жащей двуокись кремния – SiO 2 ; антракоз – при вдыхании угольных пылей, асбестоз (пыль асбеста); талькоз (пыль талька) и т.п. Наиболее распространенное и тяжелое заболевание – силикоз. Проявляется он не сразу, а через 5-10, порой через 15 лет работы, связанной с вдыханием пыли кремнезема. Тяжесть заболевания еще усугубляется тем, что оно оказывает влияние на организм в целом (нарушение сердечно-сосудистой системы, центральной нервной системы и др.). При длительном вдыхании пыли может наблюдаться также поражение верхних дыхательных путей (катар, бронхит, бронхиальная астма). Пыль, оседая на коже и слизистых оболочках глаз, может вызвать их раздражение и воспалительные процессы (экземы и т.п.).

При попадании на кожу пылинки могут вызвать закупорку сальных и потовых желез, а следовательно, нарушить нормальную деятельность кожи. Твердые пылинки с острыми краями могут вызвать травмы глаз, кожи и верхних дыхательных путей. В целях предотвращения острых отравлений и профессиональных заболеваний содержание токсических веществ и пыли в воздухе рабочих помещений не должно превышать предельно допустимых концентраций (ПДК), установленных ГОСТ 12.1.005-88 ССБТ. «Общие санитарно-гигиени­ческие требования к воздуху рабочей зоны». Не исключена воз­можность возникновения язвенных дерматитов и экзем при воздействии на кожу пыли хромощелочных солей, мышьяка, меди, извести, соды и других химических веществ.

Действие пыли на глаза вызывает возникновение конъ­юнктивитов. Отмечается анестезирующее действие металли­ческой и табачной пыли на роговую оболочку глаза. Установ­лено, что профессиональная анестезия у токарей возрастает со стажем.

Понижение чувствительности роговицы обусловливает позднюю обращаемость рабочих по поводу попадания в глаз мелких осколков металла и других инородных тел. У токарей с большим стажем иногда обнаруживают множественные мел­кие помутнения роговицы из-за травматизма пылевыми час­тицами.

Методы и средства защиты от пыли:

Внедрение непрерывных технологий с закрытым цик­лом (использование закрытых конвейеров, трубопроводов, кожухов);

Автоматизация и дистанционное управление техноло­гическими процессами (особенно при погрузоразгрузочных и фасовочных операциях);

Замена порошкообразных продуктов брикетами, паста­ми, суспензиями, растворами;

Смачивание порошкообразных продуктов при транспор­тировке (душевание);

Переход с твердого топлива на газообразное или элект­роподогрев;

Применение общей и местной вытяжной вентиляции помещений и рабочих мест;

Применение индивидуальных средств защиты (очков, противогазов, респираторов, спецодежды, обуви, мазей).

20. Основные реакции организма на действие ионизирующего излучения. Нормы радиационной безопасности.

Ответные реакции организма на облучение весьма многообразны и зависят как от дозы облучения, времени действия, объема и локализации облучения, так и индивидуальной радиочувствительности организма.

С нарастанием дозы усиливается эффект, удлинение времени получения одной и той же суммарной дозы ведет к уменьшению лучевого поражения. Наиболее чувствительны к облучению дети и старики. Не менее важное значение имеет и физиологическое состояние самого организма в момент облучения. Известно, что голодание, хронические заболевания, травмы повышают чувствительность организма к радиации. При неравномерных общих облучениях отмечается снижение эффекта биологического действия радиации. Местное облучение переносится значительно легче, чем общее. Чем больше площадь облучения, тем больше и поглощенная доза радиации. Имеет значение и какая часть тела местно облучилась. Облучение только части живота, головы вызывает более выраженный биологический эффект, чем облучение в такой же дозе других участков тела. Среди тканей и клеток целостного организма наибольшей радиочувствительностью обладают лимфоциты, клетки красного костного мозга, эпителий кожи и желудочно-кишечного тракта, клетки центральной нервной системы.

Ионизирующие излучения вызывают в организме ряд функциональных и органических изменений.

В облучаемом организме наблюдается:

1. Подавление процессов роста и размножения, следовательно, процессов регенерации в поврежденных органах и тканях. Повреждающее действие на процессы регенерации заключается в том, что нарушается обычный цикл развития клеток. Репродуктивная способность органа страдает и постепенно начинает ощущаться недостаток различных видов клеток: клеток крови, мужских половых, истончаются эпителиальные покровы кожи слизистой кишечника.

2. Нарушение всех видов обмена веществ, что ведет к нарушению питания и функций всех органов и тканей и к снижению веса тела.

3. Угнетение гемопоэза, что приводит к развитию лейкопении, тромбоцитопении и анемии.

4. Подавление иммунитета, вследствие чего лучевая болезнь часто сопровождается инфекционными осложнениями.

5. Повышение проницаемости стенок кровеносных сосудов, развитие геморрагического синдрома.

6. Нарушение функций центральной нервной и периферической нервной систем и желез внутренней секреции.

Функциональное нарушение сердечно-сосудистой системы сводятся к следующему: наблюдается снижение артериального давления, замедление сердечного ритма, тонус сосудов понижается, пульс лабильный, неустойчивый, уменьшается масса циркулирующей крови.

При облучении нарушается белковый, водный и солевой обмен, что влечет за собой истощение организма. Истощение связано также с нарушением функции желудочно-кишечного тракта.

Нормы радиационной безопасности − рекомендованные пределы радиационного облучения человека, которые считаются безопасными для его здоровья. Эти нормы главным образом устанавливаются для суммарной дозы излучений от всех видов радиации, полученной человеком в течение года.
Дозы излучений выражаются в радах и греях. Они являются физическими единицами и не учитывают тот факт, что равные дозы различных типов радиации вызывают различную степень биологических повреждений. Так 1 рад дозы альфа-излучения создаёт примерно в 20 раз больше биологических повреждений, чем 1 рад бета- или гамма-излучения. Эти различия в биологическом воздействии на живой организм разных типов радиации учитываются использованием величины, называемой коэффициентом качества данного типа радиации (другое название этой величины - относительная биологическая эффективность). Эта величина определяется как доза рентгеновского или гамма-излучения в радах, которая производит такое же биологическое разрушение, как и 1 рад данной радиации. Значения коэффициента качества (КК) для некоторых типов радиации:

Доза нейтронного излучения в 1 рад производит то же биологическое воздействие, как и доза гамма-излучения в 10 рад.
Для более объективной оценки воздействия радиации на живой организм вводят понятие эквивалентной или эффективной дозы. Она определяется как произведение поглощённой дозы в радах на коэффициент качества излучения (КК), и её внесистемной единицей является биологический эквивалент рада (бэр), т.е.

эквивалентная доза (бэр) = доза (рад)·КК.

В системе СИ эквивалентная доза выражается в зивертах (Зв).

1 Зв = 1 Дж/кг 1 Гр (см статью "Доза излучения"), т.е. 1 Зв = 100 бэр.

В соответствии с нормами радиационной безопасности человек не должен получать за год дозу более 0.1 бэр (исключая естественные источники радиации). Для профессионалов, работающих с радиоактивным излучением (например, персонал атомной электростанции), доза облучения за год не должна превышать 5 бэр.

21. Особенности труда в сельском хозяйстве.

Работы, выполняемые в сельском хозяйстве, имеют свои особенности, отличающие их от работ в промышленном производстве и влияющие на сан.-гиг. условия труда. К ним относятся: сезонность основных работ в полеводстве; преимущественность работ в поле на открытом воздухе, часто при неблагоприятных метеорологич. условиях; частая смена рабочих операций, выполняемых одним и тем же лицом; отдаленность мест производства работ от места постоянного жительства людей; применение химич. веществ для защиты растений от вредителей и болезней (см. Ядохимикаты сельскохозяйственные).

Современное с.-х. производство характеризуется высокой степенью механизации. К главным группам с.-х. рабочих относятся механизаторы (трактористы, прицепщики, комбайнеры и т. д.), животноводы (доярки, скотники, телятницы, птичницы, свинарки, пастухи), рабочие ремонтных мастерских и вспомогательные рабочие. Такие виды труда, как труд пахаря, косаря, жнеца, давно потеряли свое значение.

Особое внимание уделяется гигиене труда в растениеводстве (полеводстве, садоводстве, виноградарстве и т. д.), где сосредоточена основная масса колхозников и рабочих совхозов и наибольшее количество техники. В числе неблагоприятных факторов, отрицательно влияющих на состояние здоровья,- повышенная или пониженная температура при работе на открытом воздухе и в кабинах с.-х. машин. В летнее время влияние этого фактора проявляется в виде перегревания, к-рое наступает при температуре выше 30° и особенно тяжело сказывается в сочетании с высокой влажностью и малой подвижностью воздуха. Перегревание характеризуется учащением сердцебиения, появлением головной боли, общим недомоганием, усталостью. В этих случаях необходимо выкупаться или смочить водой голову, грудь и прилечь в тени (см. Тепловой удар). Чтобы избежать перегревания, следует правильно организовать питьевой режим, носить легкую и свободную одежду, изготовленную из хлопчатобумажных или льняных тканей.

С внедрением скоростных с.-х. машин на труд механизатора большое воздействие стали оказывать факторы производственной среды, такие как микроклимат на рабочем месте, к-рый зависит от конструкции машины, состояния и оборудования кабины, атмосферных условий, загрязнение воздуха пылью и выхлопными газами, шум, вибрация, статическое напряжение отдельных групп мышц и т. д.

Труд на с.-х. работах сопровождается загрязнением воздуха пылью, состав к-рой различен. При совпадении направления движения с.-х. машины с направлением ветра механизаторы могут периодически попадать в зону значительного загрязнения воздуха пылью. Этим запыленность воздуха на с.-х. работах отличается от запыленности воздуха в помещениях промышленных предприятий, где она сохраняется примерно на одном уровне в течение всего периода работы. Мероприятия по снижению запыленности воздуха рабочих мест механизаторов включают влажную уборку кабин с.-х. машин и рабочих помещений до начала, в процессе и по окончании работы, устранение неплотностей в кабине, оборудование кабин вентиляторами с пыле-задерживающими фильтрами, а также применение защитных очков и респираторов при работе прицепщиков на боронах, катках, сеялках и других механизмах.

Уровень шума при выполнении различных с.-х. работ на тракторах и других машинах, при работе на животноводческих и птицеводческих фермах достигает значительной интенсивности. Шум, действуя длительно и постоянно, вызывает иногда головную боль, чувство разбитости, снижает работоспособность. По окончании рабочей смены у работающих наблюдается нек-рое снижение слуха, но через 40-60 мин. отдыха обычно слух полностью восстанавливается.

Оздоровление условий труда трактористов и других механизаторов осуществляется путем улучшения конструкции кабины: подвеска ее на амортизаторах, оборудование в ней отопления и вентиляции с подачей очищенного воздуха в рабочую зону водителя, установка на выхлопной трубе глушителя, звукоизоляция кабины и другие мероприятия, благодаря к-рым уровень шума и другие вредные воздействия на ряде машин значительно снижаются. Для выполнения правил личной гигиены на с.-х. машинах должны быть термосы емкостью в 6-8 л для питьевой воды, бачок с краном для умывания и мытья рук, мыло, мочалка и полотенца.

С целью обеспечения благоприятных производственных и бытовых условий создаются постоянные или временные полевые станы. Площадь земельного участка полевого стана колеблется от 0,5 до 1,25 га. Обязательным элементом благоустройства полевого стана является размещение его в зоне озеленения. Нормы водопотребления на каждого рабочего на постоянных полевых станах 30-40 л и на Еременных 10- 12 л в сутки. Тара для временного хранения и подвоза воды должна иметь краны и крышки, закрывающиеся на замки. Тару необходимо дезинфицировать через каждые 3-4 дня р-ром хлорной извести (один стакан 10% р-ра на каждые 100 л воды). Не менее чем через 2 часа воду выливают, тару прополаскивают и заполняют свежей водой.

Спальные комнаты общежития на полевом стане устраиваются на 4-6 коек из расчета 4,5 м2 на человека. При общежитии должна быть сушилка для одежды и обуви площадью 8-10 м2.

Условия труда в различных отраслях животноводства хотя и отличаются друг от друга, но имеют сходные факторы производственной среды. В связи с этим и мероприятия по улучшению условий труда будут близкими.

Труд большинства профессий в животноводстве - доярок, скотников, телятниц, свинарок, оленеводов - напряженный и не всегда достаточно механизированный. Широко применяемый на животноводческих фермах машинный способ доения значительно облегчил труд наиболее распространенной профессии - доярок и способствовал уменьшению ранее распространенных заболеваний рук. Для уменьшения болевых ощущений в пальцах рук при отдельных случаях доения коров ручным способом рекомендуется делать теплые ванночки для рук: продолговатый тазик заполняют теплой водой (£° 36-38°), чисто вымытые руки погружают согнутыми в локте. Продолжительность процедуры 10-15 мин. Полезно до начала доения сделать в течение 5-7 мин. самомассаж рук. Массируемую руку нужно положить на стол так, чтобы она лежала свободно. Поочередно пальцами и ладонью другой руки производят поглаживание и разминание пальцев и мышц предплечья массируемой руки. Движения должны быть по направлению к туловищу. Каждый прием повторяют 5-6 раз. Вначале массируют пальцы - боковые стороны, затем тыльную и ладонную поверхность. Массируемый палец надо держать разогнутым. На кисти делают круговые поглаживания. Ладонная сторона одной руки массирует тыльную сторону другой. Затем делают массаж плеча. При наличии кожных заболеваний, глубоких трещин, порезов или царапин массаж проводить нельзя и за советом нужно обратиться к участковому фельдшеру или врачу. Чтобы предупреди/ь усталость и возможные заболевания рук при доении, следует выработать такой темп сокращений и расслаблений пальцев и кисти рук, чтобы он не превышал 70-80 движений в минуту. Доение необходимо производить сидя на скамейке, подобранной по росту, сидеть надо прямо и свободно, не нагибаясь вперед. Для доярок высокого роста высота скамейки должна быть 29-30 см, среднего - 26-28 см, низкого - 23-25 см.

В помещении для содержания скота при отсутствии или неправильной эксплуатации вентиляции, неисправном состоянии канализации, скученности животных воздух может сильно загрязняться аммиаком, сероводородом, пылью, микроорганизмами. При невысоких концентрациях аммиака в воздухе у работающих отмечаются явления раздражения слизистых оболочек глаз и носоглотки. При более высоких концентрациях возможны головокружения, головная боль, тошнота. Комбинированное воздействие газообразного аммиака и сероводорода может вызвать снижение или потерю обоняния у обслуживающего персонала. Эффективным средством улучшения качества воздушной среды в помещениях ферм является организация приточно-вытяжной вентиляции.

Дата добавления: 2015-02-06 | Просмотры: 785 | Нарушение авторских прав


| | | | | | | | | | | | | | 15 |

Наиболее важные физические и химические свойства пылей обуславливаются их дисперсностью, формой частиц, способностью к растворению и химическим составом.

Для гигиенической оценки пыли наиболее важным признаком является ее дисперсность. С размерами пылевых частиц связаны длительность пребывания их во взвешенном состоянии в воздухе, глубина проникновения в дыхательные пути, физико-химическая активность и другие свойства.

Дисперсность и поведение пылевых частиц в воздухе. Пылевые частицы размером более 200 мк, подчиняясь закону тяготения, не испытывают большого сопротивления воздуха и быстро оседают с возрастающим ускорением. Пылевые частицы размером менее 200 мк до 0,1 мк, испытывая сопротивление воздуха, оседают с постоянной незначительной скоростью, измеряемой в миллиметрах или сантиметрах в час.

Частицы пыли менее 0,1 мк практически не оседают и находятся в постоянном беспорядочном движении в воздухе.

Таким образом, чем меньше размер пылевых частиц, тем дольше они задерживаются взвешенными в воздухе, следовательно, тем больше возможность попадания их в дыхательные пути.

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования. Только что образовавшиеся аэрозоли конденсации (дымы) имеют размеры меньше 1 мк. С течением времени они агрегируются и в виде хлопьев выпадают из воздуха.

Размеры аэрозолей дезинтеграции (пыли) зависят от вещества, из которого они получены, и интенсивности его размельчения. Чем тверже вещество и чем интенсивнее его размельчение, тем выше степень дисперсности пылевых частиц.

Благодаря сравнительно быстрому оседанию крупных пылевых частиц от 10 мк и более, обычно в воздухе производственных помещений преобладают пылевые частицы до 10 мк, причем 70-90% из них составляют частицы размером до 5 мк.

Химический состав пыли. От химического состава пыли зависит ее биологическая активность, в частности то или иное действие на организм человека: токсическое (отравляющее), раздражающее и др.

Химическая активность пыли увеличивается с повышением ее дисперсности, т. е. с увеличением удельной поверхности размельчаемых веществ.

Большое значение имеет растворимость пыли. Если пыль не токсична и действие ее на ткань сводится к механическому раздражению, то хорошая растворимость такой пыли в тканевых жидкостях является благоприятным фактором. В случае токсичной пыли хорошая растворимость является отрицательным фактором.

Пыль оказывает вредное действие главным образом на дыхательные пути, вызывая заболевания как их верхних отделов, так и легких, а также действует на кожу и глаза.

При вдыхании пылевых частиц размером 5 мк и более они всецело задерживаются в верхних дыхательных путях, в первую очередь в полости носа. Это вызывает травмирование и раздражение слизистой, которое при дальнейшем развитии процесса переходит в катар, вначале гипертрофический (т. е. с разрастанием ткани), а затем атрофический с заменой мерцательного эпителия плоским и гибелью железистого аппарата. Фильтрующая способность носовой полости поэтому сильно снижается, а в далеко зашедших случаях вовсе исчезает. Постепенно под влиянием длительного воздействия различных видов пылей развиваются хронические воспалительные процессы и на других участках дыхательных путей (риниты, фарингиты, трахеиты, бронхиты). Некоторые виды пыли, обладающие большой химической активностью (хром, мышьяк), могут при длительном воздействии вызвать изъязвление и прободение носовой перегородки.

Вне зависимости от физико-химических свойств все виды пылевых частиц вначале оказывают на легочную ткань механическое действие. При этом легочная ткань реагирует на них, как на инородное тело, стремясь удалить его. Защитная функция организма, способствующая очищению легких от пыли, носит название фагоцитоза и состоит в следующем.

Пыль, попавшая в легкие, поглощается так называемыми пылевыми клетками (клетками легочного эпителия), которые затем стремятся удалить пыль из легких различными путями. Один из путей - удаление пыли вместе с мокротой. Другой путь - удаление пыли по лимфатическим путям. Частицы пыли размером менее 1 мк фагоцитируются легче; более крупные пылинки, а также кварцевая пыль удаляются медленно и накапливаются в легких и в лимфатических, узлах, приводя их к поражению.

Пыль, проникшая глубоко в дыхательные пути, может привести к развитию в них специфического заболевания - пневмокониоза, сущность которого заключается в развитии фиброза, т. е. замещения легочной ткани соединительной тканью.

В зависимости от характера вдыхаемой пыли различают следующие виды пневмокониозов:

  • силикоз , вызываемый воздействием пыли, содержащей свободную кристаллическую двуокись кремния SiO 2 ;
  • силикатоз , вызываемый воздействием пыли, содержащей двуокись кремния в связанном состоянии (силикаты - пыль асбеста, талька);
  • антракоз - пневмокониоз, вызываемый воздействием угольной пыли;
  • сидероз - пневмокониоз, вызываемый, например, пылью железа.

Силикоз - наиболее тяжелый и наиболее распространенный вид пневмокониоза. Силикоз развивается обычно через 5-10 или 15 лет работы, связанной с вдыханием кварцсодержащей пыли, При очень высоком содержании свободной SiO 2 во вдыхаемой пыли заболевание может развиваться раньше.

Силикоз следует рассматривать как тяжелое заболевание организма в целом, при котором происходят значительные изменения в различных органах и системах (нервной, сердечно-сосудистой, лимфатической и др.). Нередко он осложняется туберкулезом.

Кроме пневмокониоза, вдыхание пыли может быть причиной повышенной заболеваемости воспалением легких. Особенно это относится к томасовой пыли, образующейся в сталеплавильном производстве и содержащей в своем составе фосфорные соединения.

Пыли, оказывающие раздражающее действие на кожу (пыли синтетических смол, извести, карбида кальция), могут вызвать различные воспалительные процессы вплоть до язвенных поражений (дерматиты, экземы). При большой запыленности воздуха попадающие на кожу пылевые частицы могут проникнуть в отверстия сальных и потовых желез, вызвать их закупорку, а следовательно, нарушить нормальную деятельность кожи, чем будет снижена ее сопротивляемость к проникновению микробов.

Твердые пылинки с острыми краями могут вызвать травмы глаз. Запыление глаз приводит к развитию конъюктивита и изменению роговицы.

Агрессивное воздействие пыли на организм зависит от ее концентрации, химического состава, дисперсности, физико-химических свойств.

Химический состав пыли. По составу пыль может оказать на организм фиброгенное, раздражающее, токсическое, аллергическое воздействия. Пыль некоторых веществ и материалов, таких как стекловолокно, слюда, оказывают раздражающее воздействие на верхние дыхательные пути, слизистую оболочку глаз, кожу.

Пыли токсичных веществ (свинца, хрома, бериллия и др.), попадают через легкие в организм человека и оказывают токсическое действие в зависимости от их физико-химических и химических свойств. Фиброгенное воздействие - это такое воздествие пыли, когда в легких разрастается соединительная ткань и нарушает нормальное строение и функции легких.

Очень высокую фиброгенную активность имеет диоксид кремния (кремнезем). Растворимость пыли , которая зависит от ее химического состава, имеет как положительное, так и отрицательное гигиеническое значение. Если пыль не токсична, к примеру, сахарная, то хорошая растворимость такой пыли - весьма хороший фактор, способствующий быстрому удалению ее из легких. Если пыль токсична (пыли никеля, бериллия) хорошая растворимость отрицательный фактор, так как в данном случае токсичные вещества попадают в кровь и приводят к развитию у человека явлений отравления. Нерастворимая пыль, к примеру, волокнистая пыль долго задерживается в слизистой оболочке дыхательных путей, что часто приводит к патологическому состоянию.

Дисперсность -- это степень измельчения вещества. Под дисперсным (зерновым, гранулометрическим) составом имеется в виду распределение частиц пыли по размерам. Она является показателем размерности частиц пыли, а также и массы или количества частиц соответствующего размера.

Дисперсность в наибольшем количестве случаев определяет свойства пыли. После того как производят измельчение, изменяются некоторые свойства вещества и приобретаются новые. Это вызывается тем, что при диспергировании вещества в несколько крат увеличивается суммарная поверхность вещества.

При резком увеличении суммарной поверхности вещества увеличивается поверхностная энергия, которая влечет за собой повышение физической и химической активности. Реакции окисления таких веществ протекают очень быстро и интенсивно. Например, при измельчении вещества растворяются во много раз быстрее, чем исходный материал.

Взвешенная газообразная среда имеет в составе влагу, пары кислот, щелочей и в результате их поглощения, частицы имеют свойства, отличимые от исходного материала.

Дисперсный состав характеризует пыль с различных сторон. Кроме физических и химических свойств, дисперсный состав определяет в значительной мере характер и условия распространения пыли в воздушной среде. Мелкодисперсная пыль осаждается значительно медленнее, а особо мелкодисперсная пыль практически вовсе не осаждается. Таким образом, рассеивание пылевых частиц в воздухе в значительной мере определяется дисперсным составом пыли. Важнейший вопрос пылеулавливания -- выбор пылеулавливающего оборудования -- решается главным образом на основании дисперсного состава пыли.

Частицы, составляющие аэрозоль, тем вредней, чем больше дисперсность пыли. Так как при этом увеличивается суммарная поверхность раздробленного вещества, и оно активнее вступает в химические реакции, у него становится больше объемных электрических зарядов. Наибольшей агрессивной активностью обладают частицы пыли размером 0,2 - 5 мкм. Это объясняется тем, что частицы больших размеров попадают в легкие в небольшом количестве и задерживаются в альвеолах, основное же количество частиц таких размеров задерживается слизистыми верхних дыхательных путей и выводится при чихании и кашле. Частицы же размером менее 0,2 мкм легко транспортируются из альвеол в лимфатические узлы и, не задерживаясь в них, выводятся из организма.

От дисперсности пыли зависит и оседание ее частиц. Крупные частицы оседают быстрее. На частицы размером 0,1 - 1 мкм оказывают влияние воздушные тепловые потоки и броуновское движение, и они гораздо дольше находятся во взвешенном состоянии.

При движении частиц в воздухе происходит их столкновение, при этом отдельные частицы высокодисперсной пыли соединяются (коагулируют) в более крупные частицы. Чем выше степень дисперсности аэрозоля и больше частиц в единице объема, тем быстрее идет коагуляция с последующим осаждением.

Электрозаряженность пыли - это наличие на частицах дисперсной фазы электрических зарядов, которые облегчают осаждение пыли в легких. Установлено, что больший повреждающих эффект наблюдается при вдыхании частиц с отрицательным зарядом (развитие фиброза).

Пылевые частицы получают электрический заряд как в процессе образования, так и после образования, находясь во взвешенном состоянии, в результате взрыва, диспергирования, взаимного трения, трения о воздух, а также вследствие адсорбции ионов при ионизации среды. Последний способ электризации является основным для взвешенных частиц.

Электрическое состояние аэрозольной системы не остается постоянным во времени. В результате взаимодействия друг с другом и с окружающей средой взвешенные частицы получают заряд, отдают его, нейтрализуются.

Электрические свойства пыли оказывают определенное воздействие на устойчивость аэрозоля, а также на характер воздействия пылевых частиц на живой организм. Известно также, что импульсом в процессе взрывообразования может быть заряд статического электричества. Для отведения статического электричества предусматривается заземление оборудования, трубопроводов.

По данным некоторых гигиенистов, пылевые частицы, имеющие электрический заряд, в два раза интенсивнее задерживаются в дыхательных путях, чем нейтральные.

Обычно неметаллические частицы заряжаются положительно, а металлические -- отрицательно. Соли NaCl, СаС1% заряжаются положительно, а СоСО3; AZ20.3; Fe2O3; MgCO3 -- отрицательно.

Взвешенные частицы ряда аэрозолей несут электрические заряды следующего знака:

Частицы, имеющие одноименные заряды, при взаимодействии отталкиваются, разноименные -- притягиваются.

Взаимодействие двух тел, размерами которых можно пренебречь, описывается законом Кулона (рассматривается в разд. 3). При высокой концентрации частиц во взвешивающей среде кулоновские силы способствуют процессам коагуляции.

Слипаемость - это способность частиц пыли образовывать малоподвижные конгломераты, приводящие к накоплению отложений на внутренних поверхностях газоходов, бункеров и пылеспускных каналов.Устойчивая работа пылеулавливающего оборудования во многом зависит от слипаемости пыли, так как повышенная слипаемость частиц может привести к частичному или полному забиванию аппаратов.

Установлено, что чем меньше размер частиц, тем легче они прилипают к поверхности аппарата. Пыли, у которых 60-70 % частиц имеют диаметр меньше 10 мкм, ведут себя как слипающиеся.

Слипаемость пыли в большей мере зависит от ее аутогезионной и адгезионной способности, особенно в отсутствии связывающих жидкостей. Микроскопические частицы в газовой среде слипаются между собой (аутогезия ) и прилипают к поверхности более крупных частиц, либо к стенкам аппарата (адгезия ) под действием межмолекулярных капиллярных сил, кулоновского взаимодействия разноименно заряженных частиц.

Способность слипаться у пылей оценивают по величине разрывной прочности. Количественно она равна силе, отнесенной к площади контакта, необходимой для разрыва слоя. По величине разрывной прочности слоя пылевидные материалы разделяют на четыре группы.


Гигроскопичностью пыли называется способность пыли поглощать влагу из окружающей среды до равновесия с влагосодержанием этой газовой среды.

Поглощенная пылью влага оказывает влияние на такие свойства пыли, как электрическая проводимость, слипаемость, сыпучесть и др. Содержание влаги в пыли выражается величиной влагосодержания или влажности.

Влажность (%) - отношение количества влаги в пыли ко всему количеству влажной пыли.

Существуют несколько методов определения гигроскопической влаги. Наиболее распространен метод высушивания пробы до постоянной массы при температуре 105 ± 2 °С. Однако этот метод не подходит для веществ с температурой разложения или плавления ниже 110 °С.

Под смачиванием понимают способность капли жидкости растекаться по поверхности твердого тела (частицы пыли). По способности к смачиванию твердые вещества делятся на хорошо смачиваемые - гидрофильные - и плохо смачиваемые - гидрофобные .

Абразивность ? это способность частиц пыли вызывать истирание стенок конструкций и аппаратов, с которыми соприкасается пылегазовый поток. Она зависит от твердости и плотности вещества, из которого образовалась пыль, размера частиц, их формы, скорости потока.

При значительной абразивности пыли воздуховоды, газоходы, стенки пылеулавливающих аппаратов выходят из строя за весьма короткий срок.

Абразивность пыли нужно учитывать при выборе материала и толщины стенок каналов, по которым перемещается пылегазовый потоки аппаратов для очистки этих потоков, а также при необходимости ограничивать скорость движения потоков. В ряде случаев применяют специальные облицовочные защитные материалы.

Считают, что износ металлических элементов вследствие абразивности пыли возрастает по мере увеличения размера частиц вплоть до 80 мкм, а затем, по мере дальнейшего увеличения размера, абразивные свойства уменьшаются.

Способность образовывать с воздухом взрывоопасную смесь и способность к воспламенению являются важнейшими отрицательными свойствами многих видов пыли, поскольку именно эти свойства способны вызывать (провоцировать) на предприятиях несчастные случаи с людьми, разрушение и повреждение оборудования, строительных конструкций и т.д.

В наибольшей степени различие физико-химических свойств пыли и твердых веществ, из которых она образована, проявляется в ее пожаро- и взрывоопасности. Такие вещества, как зерно и сахар хотя и способны сгорать при определенных условиях, не являются взрывоопасными веществами. Будучи же приведенными в пылевидное состояние, они становятся не только пожаро-, но и взрывоопасными.

Пыль, находящаяся во взвешенном состоянии в воздухе помещений, взрывоопасна . Осевшая пыль (гель) пожароопасна . При этом взрывоопасные свойства являются значительно более опасными, нежели пожароопасные. При взрыве реакция протекает значительно быстрее, распространяясь со скоростью сотни и тысячи метров в секунду, при горении - со скоростью несколько десятков метров в секунду. Процесс горения пыли, находящейся во взвешенном состоянии, протекает гораздо интенсивнее, чем горение осевшей пыли (аэрогель).

Локальный взрыв пыли может перевести во взвешенное состояние осевшую пыль, в результате чего фронт взрыва расширится. При первом или последующем взрыве происходит встряхивание здания и расположенного в нем оборудования. Пыль, покрывающая тонким слоем их поверхности, переходит во взвешенное состояние, образуя взрывоопасную смесь, которая вновь становится питательной средой для следующего взрыва.

Последующий более мощный взрыв способен разрушить ёмкости, где хранятся пылевидные материалы. Это уже будет средой для мощного взрыва, способного разрушить здание.

Взрыв - одна из разновидностей реакции горения. Ее характерным отличием является исключительно быстрое, практически мгновенное протекание реакции в объеме. Возбуждение взрыва пыли возможно при сочетании определенных условий, необходимых для взрыва. Если отсутствует хотя бы одно из этих условий, взрыв не произойдет, несмотря на наличие остальных. Такими условиями являются:

  • - концентрация пыли в воздухе между нижним и верхним пределами;
  • - наличие источника возбуждения взрыва достаточной температуры и мощности в запыленной зоне;
  • - питание кислородом, достаточное для обеспечения процесса горения.

Нижний концентрационный предел распространения пламени по пылевоздушным смесям (НКПРП ), г/м3, - минимальное содержание пыли в воздухе, достаточное для возникновения взрыва (при наличии других условий).

НКПРП соответствует определенному среднему значению расстояния между пылевыми частицами, при котором происходит достаточно интенсивный теплообмен между частицами. При этом накапливается необходимая для взрыва тепловая энергия. Если концентрация пыли в воздухе незначительна, расстояния между частицами пыли велики и теплообмен становится ограниченным.

Верхний концентрационный предел распространения пламени пылевоздушных смесей (ВКПРП ), г/м3 - максимальное содержание пыли в воздухе, при котором взрывообразование прекращается, несмотря на наличие прочих необходимых условий.

При концентрациях больше ВКПРП кислорода становится недостаточно для реакции, и процесс прекращается.

Между НКПРП и ВКПРП находится концентрация пыли в воздухе, которая является наиболее взрывоопасной. Ей соответствует наибольшее значение взрывного давления. Такое значение, естественно, имеется для каждого вида пыли.

НКПРП зависит от химического состава, дисперсности пыли и скорости газа в помещении. Высокодисперсный материал имеет большую поверхность контакта с окислителем (кислородом воздуха). У материала с развитой поверхностью большая электрическая ёмкость, следовательно, значительная способность получать заряды статического электричества вследствие трения частиц, что увеличивает пожарную опасность вещества.

На НКПРП пыли влияет также наличие в ее составе минеральных добавок, не участвующих во взрывообразовании. Являясь инертным компонентом, минеральная составляющая сдерживает взрывообразование в результате экранирования и поглощения теплоты.

При движении воздуха со скоростью 5 м/с нижний предел повышается в 2 - 3 раза.Уменьшить взрыво- и пожароопасность пыли можно путем ее увлажнения - мокрой уборки помещений.

Взрыво- и пожароопасные пыли делят на четыре класса. Критерием является значение НКПРП и температуры самовоспламенения.

  • § I класс - наиболее взрывоопасные пыли с НКПРП до 15 г/м3;
  • § II класс - взрывоопасные пыли с НКПРП 16 - 65 г/м3;
  • § III класс - наиболее пожароопасные пыли с температурой самовоспламенения в куче, в токе воздуха до 250 °С;
  • § IV класс - пожароопасные пыли, обладающие температурой самовоспламенения при тех же условиях выше 250 °С.

Температура самовоспламенения - самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Форма пылинок влияет на устойчивость аэрозоля в воздухе и поведение в организме. Форма пылевых частиц, образующихся в производственных условиях, может быть различной: сферической, плоской, волокнистой, оскольчатой, игольчатой и др.

При образовании аэрозолей конденсации пылинки большей частью имеют округлую форму, а в составе аэрозолей дезинтеграции - неправильную многоугольную, плоскую форму. Частицы сферической формы быстрее выпадают из воздуха, но и легче проникают в легочную ткань. Пылевые частицы, имеющие пластинчатую и игольчатую форму, могут длительно витать в воздухе, даже если размер их равен 50 мкм и более. Нитевидные частицы практически не оседают из воздуха, даже если длина их превышает сотни и тысячи микрон. Пылинки, имеющие острые края, попадая на слизистые оболочки верхних дыхательных путей, глаз и кожу, могут оказывать травмирующее и раздражающее действие.

Гигиеническое значение промышленных аэрозолей с твердой фазой обусловливается их физическими и химическими свойствами, из которых наиболее важными являются дисперсность, форма частиц, их консистенция, электрический заряд, растворимость, химический состав. С некоторыми из указанных свойств связана взрывчатость пыли.

Для гигиенической оценки пыли важным признаком является степень дисперсности ее, или размеры пылевых частиц, так как с этим связана как длительность пребывания взвешенной пылевой частицы в воздушной среде, так и глубина проникновения в дыхательные пути, патогенность и физико-химическая активность, электрозаряд частиц и другие свойства .

Физико-химические свойства пыли в основном зависят от ее природы, то есть от того материала или вещества, из которого образовалась эта пыль, и механизма ее образования - каким образом она получена: размельчением, конденсацией, сгоранием и т. п. По природе образования пыли делятся на две группы:

  • · органическую
  • · неорганическую.

К органической относятся: пыли растительного происхождения (древесины, хлопка, льна, различных видов муки и др.), животного (шерсти, волоса, размолотых костей и др.), химического (пластмасс, химических волокон и других органических продуктов химических реакций). В группу неорганических пылей входят пыль металлов и их окислов, различных минералов, неорганических солей и других химических соединений. Однако выделяют ещё один тип: смешанная , т.е.содержащая пыли первой и второй групп например, пыль, получающаяся при заточке инструментов и состоящая из минеральных и металлических частиц. В зависимости от происхождения пыли она может быть растворимой и нерастворимой в воде и в других жидкостях, включая и биосреды (кровь, лимфу, желудочный сок и т. п.). От происхождения пыли зависит также ее химический состав, удельный вес и ряд других свойств .

Однако наиболее важные физические и химические свойства пылей обуславливаются их дисперсностью, формой частиц, способностью к растворению и химическим составом. Структура пыли, то есть форма пылинок, зависит и от природы и от механизма образования пыли. По структуре пыль может быть аморфной (пылинки округлой формы), кристаллической (пылинки с острыми гранями), волокнистой (пылинки удлиненной формы), пластинчатой (пылинки в виде слоистых пластинок) и др.

Для гигиенической оценки пыли наиболее важным признаком является ее дисперсность . С размерами пылевых частиц связаны длительность пребывания их во взвешенном состоянии в воздухе, глубина проникновения в дыхательные пути, физико-химическая активность и другие свойства.

Дисперсность и поведение пылевых частиц в воздухе

При измельчении твердого вещества образующиеся пылинки получают то или иное количество электричества вследствие частичного перехода механической энергии в электрическую, кроме того, пылинки получают электрический заряд, адсорбируя на себе ионы из воздушной среды. Таким образом, пыль, находящаяся в воздухе, в той или иной степени несет на себе электрический заряд. Степень электрозаряженности оказывает существенное влияние на поведение пыли в воздухе. Электрозаряженные пылинки с противоположным знаком соединяются между собой (схлапливаются), образуя более крупные частицы, за счет чего быстрее осаждаются; пылинки с одинаковым зарядом, наоборот, отталкиваются друг от друга, что усиливает их движение в воздухе и замедляет осаждение. Исследования показывают, что высокодисперсная пыль в большей степени подвержена электрическим зарядам. Электрозаряженности способствует также нагревание пыли. Повышенная влажность воздуха или самой пыли снижает ее электрозаряженность.

Высокодисперсная пыль вследствие электрозаряженности обладает активной поверхностью, поэтому на ней сарбируются газы и другие мелкие частицы, находящиеся в воздухе. Чем меньше пылевые частицы, тем больше их активность. Газы, обволакивая пылевую частицу, способствуют более длительному витанию ее в воздухе, то есть сорбирование на пылевых частицах газов замедляет осаждение пыли.

При значительной запыленности воздуха высокодисперсной пылью электрические заряды пылевых частиц могут суммироваться и, достигнув определенного потенциала, образовывать электрические разряды -- взрывы. Чаще всего такие взрывы пыли возникают при наличии огня или сильно нагретого предмета в чрезмерно запыленной атмосфере, так как при повышении температуры резко увеличивается заряженность пылевых частиц, быстрее и с большей силой происходит электрический разряд .

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования. Только что образовавшиеся аэрозоли конденсации (дымы) имеют размеры меньше 1 мкм. С течением времени они агрегируются и в виде хлопьев выпадают из воздуха. Размеры аэрозолей дезинтеграции (пыли) зависят от вещества, из которого они получены, и интенсивности его размельчения. Чем тверже вещество и чем интенсивнее его размельчение, тем выше степень дисперсности пылевых частиц.

Благодаря сравнительно быстрому оседанию крупных пылевых частиц от 10 мкм и более, обычно в воздухе производственных помещений преобладают пылевые частицы до 10 мкм, причем 70--90% из них составляют частицы размером до 5 мкм.

Микроскопические частицы размером от 200 до 0,1 мк, как и все прочие тела, подчиняются закону тяготения. Но вследствие относительно большой поверхности на единицу массы они испытывают большое сопротивление воздуха и поэтому не оседают с постоянной скоростью по закону Стокса. В начале падения сила тяжести уравновешивает сопротивление воздуха, дальнейшее увеличение скорости падения вследствие этого прекращается и микроскопическая частица оседает с постоянной незначительной скоростью, измеряемой сантиметрами или миллиметрами в час. Сопротивление воздуха при движении в нем частицы изменяется в зависимости от ее размеров и формы, скорости ее оседания и подвижности воздуха.

В неподвижном воздухе кварцевые частицы диаметром 10 мк оседают медленно, а частицы менее 0,1 мк практически не оседают и находятся в постоянном броуновском движении. Таким образом, чем меньше размер пылевых частиц, тем дольше они задерживаются взвешенными в воздухе, следовательно, тем больше возможность попадания их в дыхательные пути.Некоторые изменения скорости оседания пылевых частиц возникают в связи с процессом флоккуляции. Это имеет значение в основном для аэрозолей конденсации, которые даже в неподвижном воздухе благодаря энергичному броуновскому движению часто сталкиваются друг с другом, агрегируются и в виде хлопьев выпадают из воздуха. Аэрозоли дезинтеграции не поддаются агрегированию главным образом вследствие относительно больших размеров-частиц; более того, пылевые частицы в них могут приобретать меньшие размеры.

Аэрозоли конденсации окиси магния минимальных размеров с течением времени превращаются в хлопья, а аэрозоли дезинтеграции мела в виде хлопьев -- в мельчайшие пылевые частицы. Влияние движения воздуха на флокуляцию незначительно. Увлажнение воздуха оказывает эффективное влияние на флокуляцию лишь в том случае, если оно интенсивное. Исследования показали, что аэрозоли дезинтеграции малого диаметра могут флокулироваться при наличии в воздухе водяных аэрозолей размером 0,55--0,4 мк в количестве, значительно превышающем количество твердых аэрозолей.

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования. Свежеполученные аэрозоли конденсации (дымы) имеют размеры частиц меньше 1 мк. Величина частиц аэрозолей дезинтеграции (пыль) зависит от вещества, из которого они получены, интенсивности дезинтеграции и возраста аэрозолей. Чем тверже вещество, чем интенсивнее дезинтеграция и чем больше возраст аэрозолей, тем больше пыли и тем выше степень дисперсности ее частиц .

Химический состав пыли.

Для гигиенической оценки пыли важно знать ее химический состав, от которого зависит биологическая активность, в частности фиброгенное (перерождение легочной ткани в соединительную), аллергенное, токсическое и раздражающее действие. Фиброгенность пыли зависит главным образом от содержания в ней свободной двуокиси кремния. Пыль, образующаяся при производстве огнеупорного кирпича, содержит 98% свободной двуокиси кремния; формовочная земля в чугунолитейных цехах - 60-80%; железная руда - до 30%, вмещающие ее породы - кварцит - до 70%; почти все породы угольных пластов Донбасса содержат более 10% свободной двуокиси кремния. Чем больше содержание в пыли двуокиси кремния, тем она более агрессивна.

Химическая активность пыли увеличивается с повышением ее дисперсности, т. е. с увеличением удельной поверхности размельчаемых веществ.

Большое значение имеет растворимость пыли. Если пыль не токсична и действие ее на ткань сводится к механическому раздражению, то хорошая растворимость такой пыли в тканевых жидкостях является благоприятным фактором. В случае токсичной пыли хорошая растворимость является отрицательным фактором.

Пыль оказывает вредное действие главным образом на дыхательные пути, вызывая заболевания как их верхних отделов, так и легких, а также действует на кожу и глаза.

При вдыхании пылевых частиц размером 5 мкм и более они всецело задерживаются в верхних дыхательных путях, в первую очередь в полости носа. Это вызывает травмирование и раздражение слизистой, которое при дальнейшем развитии процесса переходит в катар, вначале гипертрофический (т. е. с разрастанием ткани), а затем атрофический с заменой мерцательного эпителия плоским и гибелью железистого аппарата. Фильтрующая способность носовой полости поэтому сильно снижается, а в далеко зашедших случаях вовсе исчезает. Постепенно под влиянием длительного воздействия различных видов пылей развиваются хронические воспалительные процессы и на других участках дыхательных путей (риниты, фарингиты, трахеиты, бронхиты). Некоторые виды пыли, обладающие большой химической активностью (хром, мышьяк), могут при длительном воздействии вызвать изъязвление и прободение носовой перегородки.

Вне зависимости от физико-химических свойств все виды пылевых частиц вначале оказывают на легочную ткань механическое действие. При этом легочная ткань реагирует на них, как на инородное тело, стремясь удалить его. Защитная функция организма, способствующая очищению легких от пыли, носит название фагоцитоза и состоит в следующем.

Пыль, попавшая в легкие, поглощается так называемыми пылевыми клетками (клетками легочного эпителия), которые затем стремятся удалить пыль из легких различными путями. Один из путей -- удаление пыли вместе с мокротой. Другой путь -- удаление пыли по лимфатическим путям. Частицы пыли размером менее 1 мкм фагоцитируются легче; более крупные пылинки, а также кварцевая пыль удаляются медленно и накапливаются в легких и в лимфатических, узлах, приводя их к поражению.

Пыль, проникшая глубоко в дыхательные пути, может привести к развитию в них специфического заболевания -- пневмокониоза, сущность которого заключается в развитии фиброза, т. е. замещения легочной ткани соединительной тканью. В зависимости от характера вдыхаемой пыли различают следующие виды пневмокониозов:

  • · силикатоз , вызываемый воздействием пыли, содержащей двуокись кремния в связанном состоянии (силикаты -- пыль асбеста, талька);
  • · антракоз -- пневмокониоз, вызываемый воздействием угольной пыли;
  • · сидероз -- пневмокониоз, вызываемый, например, пылью железа.

Силикоз -- наиболее тяжелый и наиболее распространенный вид пневмокониоза. Это медленно протекающий хронический процесс, который, как правило, развивается только у лиц, проработавших несколько лет в условиях значительного загрязнения воздуха кремниевой пылью. Силикоз развивается обычно через 5--10 или 15 лет работы, связанной с вдыханием кварцсодержащей пыли при очень высоком содержании свободной SiO 2 во вдыхаемой пыли, однако в отдельных случаях возможно более быстрое возникновение и течение этого заболевания, когда за сравнительно короткий срок (2~4 года) процесс достигает конечной, терминальной, стадии.

Силикоз следует рассматривать как тяжелое заболевание организма в целом, при котором происходят значительные изменения в различных органах и системах (нервной, сердечно-сосудистой, лимфатической и др.). Нередко он осложняется туберкулезом.

Кроме пневмокониоза, вдыхание пыли может быть причиной повышенной заболеваемости воспалением легких. Особенно это относится к томасовой пыли, образующейся в сталеплавильном производстве и содержащей в своем составе фосфорные соединения.

Пыли, оказывающие раздражающее действие на кожу (пыли синтетических смол, извести, карбида кальция), могут вызвать различные воспалительные процессы вплоть до язвенных поражений (дерматиты, экземы). При большой запыленности воздуха попадающие на кожу пылевые частицы могут проникнуть в отверстия сальных и потовых желез, вызвать их закупорку, а следовательно, нарушить нормальную деятельность кожи, чем будет снижена ее сопротивляемость к проникновению микробов .

Тема: «Гигиеническая оценка производственной пыли».

Цель занятия: изучить механизмы воздействия производственной пыли на организм человека, принципы нормирования и методы гигиенической оценки производственной пыли, принципы разработки профилактических мероприятий.

Студент должен знать:

1. Классификацию пыли.

2. Основные физико-химические свойства пыли.

3. Определение запыленности воздуха производственных помещений.

4. Общие закономерности действия пыли на организм.

5. Гигиеническую характеристику пыли.

6. Значение пыли в развитии профессиональных заболеваний.

7. Классификация пневмокониозов.

Специфические и неспецифические заболевания;

8.Методы определения пыли в воздухе рабочих помещений;

9. Основные принципы профилактики вредного воздействия пыли.

Студент должен уметь:

1. определять уровни запыленности воздуха в помещении;

2. давать заключение о степени загрязнения воздуха промышленной пылью и возможном характере её действия на организм;

С позиций указанной теории удается наиболее убедительно связать клинические проявления пылевых заболеваний легких с количественными показателями запыленности, их химическим строением и физико-химическими свойствами пылей.

Современная пылевая патология органов дыхания определяет­ся как комбинация многочисленных реакций организма на пыль, таких, как межуточный фиброз, эмфизема, рефлекторный бронхоспазм, хронический астмоидный бронхит и т. д.

Крупные частицы пыли, размером 5-7 мкм. и более, благода­ря своим размерам проникают в бронхиальное дерево, оказывая при этом механическое травматическое воздействие на альвеоляр­ную стенку и вызывая развитие пылевых бронхитов. Пылевые частицы размером 0,5-2 мкм проникают в альвеолы и проявля­ют цитотоксическое действие, а также способствуют развитию узелковых форм пневмокониоза. Высокодисперсные пыли, с раз­мером пылинок 0,3-0,02 мкм, в течение длительного времени попадая в легкие, накапливаются по 7-10 в макрофагах и только тогда проявляют цитотоксическое действие как эффект декомпен­сации гипертрофированных кониофагов. Такая пыль способствует формированию диффузно-склеротических изменений легочной ткани. Этим может быть объяснен механизм действия пылей, обладающих малой цитотоксичностью, например антракоз.

От фиброгенности пыли и уровня запыленности зависит место формирования пылевых узелков. Так, при высокой концентрации кварцевой пыли усиленный распад микрофагов с пылью наблю­дается в полости альвеол, вокруг которых и образуются силикотические узелки, при снижении запыленности - в легочной па­ренхиме в области перибронхиальных и периваскулярных лимфа­тических фолликулов. При малом содержании пыли в воздухе узелки, образуются в региональных лимфатических узлах, а в легких преобладают диффузно-склеротические изменения.

Вирусная инфекция, другие причины, снижающие иммунобио­логическую реактивность организма, угнетают активность макро­фагов, тормозят самоочищение легких от пыли и этим способст­вуют более раннему развитию пылевых заболеваний.

Пылевые заболевания глаз. Пыль может оказывать влияние на орган зрения, приводить к воспалительным процессам в конъюнктиве (конъюнктивиты). Описаны случаи конъюнктивитов и кератитов у ра­бочих, контактирующих с пылью мышьяксодержащих соединений, анилиновых красок и акрихина.

Пыль тринитротолуола при длительном воздействии, оседая в хрусталике, вызывает развитие профессиональной ката­ракты. У рабочих, имеющих длительный контакт с пылью сер­нистых и бромистых солей серебра, наблюдается профессио­нальный аргироз конъюнктивы и роговицы в ре­зультате отложения в тканях восстановленного серебра.

Сильным сенсибилизирующим действием на слизистую оболоч­ку и роговицу глаза обладает пыль каменноугольного пека, вы­зывающая при работе на открытом воздухе в солнечную погоду тяжелые кератоконъюнктивиты - «пековые офтальмии».

Заболевания кожи от воздействия пыли. Загрязняя кожные покровы, пыль различного состава может оказывать раздражающее, сенсибилизирующее и фотодинамиче­ское действие.

Пыль мышьяка, извести, карбида кальция, суперфосфата дей­ствует раздражающе на кожные покровы, вызывая дермати­ты. Длительный контакт с аэрозолями СОЖ (продуктами неф­тяных и минеральных масел) вызывает развитие масляных фолликулов. Действие на кожу производственных аллерге­нов - пыли синтетических клеев, эпоксидных смол, капрона, ней­лона и других полимерных материалов, а также пыли хрома, ме­ди, никеля, кобальта приводит к развитию аллергических профдерматозов (дерматитов и экзем).

Аллергические дерматиты и экземы описаны у рабочих, контактирующих с цементной пылью. К веществам, об­ладающим фотодинамическим (фотосенсибилизирующим) дейст­вием, относятся продукты переработки каменного угля и нефти (смола, гудрон, асфальт, пек).

Загрязнение кожи этими соединениями на фоне инсоляции вызывает фотодерматит открытых участков кожи.

Многие пыли растительного и животного происхождения об­ладают выраженным аллергическим действием - пыль травы, хлопка, льна, зерна, муки, соломы, различных пород дерева, осо­бенно сосны, шелка, шерсти, кожи, перьев, канифоли и др.

Меры профилактики пылевых заболеваний

Меры борьбы с пылеобразованием в целях профилактики про­фессиональных заболеваний осуществляются широко и планомерно. В результате упорной работы по оздоровлению условий труда количество пылевых заболеваний легких в нашей стра­не резко снизилось и в настоящее время встречаются лишь еди­ничные случаи.

Гигиеническое нормирование . Основой проведения мероприя­тий по борьбе с пылью является гигиеническое нормирование. Установлены ПДК фиброгенных пылей в воздухе рабо­чих помещений - перечень их представлен в нормативных доку­ментах. Разработка нормативов осуществляется в соответствии с методическими рекомендациями - «Обоснование предельно до­пустимых концентраций (ПДК) аэрозолей в рабочей зоне».

Учитывая, что среди аэрозолей фиброгенного действия наи­большей агрессивностью обладает пыль, содержащая свободную двуокись кремния, ПДК таких пылей в зависимости от процент­ного содержания последней составляют 1 и 2 мг/м3. Для других видов пылей установлены ПДК от 2 до 10 мг/м3.

Задачей санитарного надзора в области борьбы с пылью а профилактики пылевых болезней легких является определение уровня этого фактора, выявление причин и источников пылеобразования, гигиеническая оценка степени загрязнения воздуха рабочей зоны пылью и разработка оздоровительных мероприятий .

Требование соблюдения установленных ГОСТом ПДК являет­ся основным при осуществлении предупредительного и текущего санитарного надзора. Систематический контроль за состоянием уровня запыленности осуществляется лабораторией СЭС, завод­скими санитарно-химическими лабораториями. На администрацию предприятий возложена ответственность за поддержание условий, препятствующих превышению ПДК пыли в воздушной среде.

При разработке системы оздоровительных мероприятий основ­ные гигиенические требования должны предъявляться к техноло­гическим процессам и оборудованию, вентиляции, строительно-планировочным решениям, рациональному медицинскому обслу­живанию рабочих, использованию средств индивидуальной защиты. При этом необходимо руководствоваться санитарными правилами организации технологических процессов и гигиениче­скими требованиями к производственному оборудованию, а также отраслевыми нормативами для производства с пылевыделениями на предприятиях различных отраслей народного хозяйства.

Мероприятия по снижению пыли на производстве и профи­лактике пневмокониозов должны быть комплексными и включать меры технологического, санитарно-технического, медико-биологи­ческого и организационного характера.

Технологические мероприятия. Устранение образования пыли на рабочих местах путем изменения технологии производства - основной путь профилактики пылевых заболеваний легких. Внед­рение непрерывных технологий, автоматизация и механизация производственных процессов, устраняющих ручной труд, дистан­ционное управление способствуют значительному облегчению и улучшению условий труда большого контингента рабочих. Так, широкое применение автоматических видов сварки с дистанци­онным управлением роботов-манипуляторов на операциях загруз­ки, пересыпки, упаковки сыпучих материалов значительно сни­жает контакт рабочих с источниками пылевыделения. Использо­вание новых технологий - кокильного литья или литья под давлением, электрохимические методы обработки металла , дробе­струйная, гидро - или электроискровая очистка исключили опера­ции, связанные с пылеобразованием в литейных цехах заводов.

Эффективными средствами борьбы с пылью являются приме­нение в технологическом процессе вместо порошкообразных про­дуктов брикетов гранул, паст, растворов и т. д., замена токсиче­ских веществ на нетоксические, например в смазочно-охлаждаю-щих жидкостях, консистентных смазках и др., переход от твердого топлива на газообразное, широкое использование высокочастот­ного электронагрева, значительно снижающего загрязнение про­изводственной среды дымами и топочными газами.

Предотвращению запыленности воздуха способствуют также следующие мероприятия: замена сухих процессов мокрыми, на­пример мокрое шлифование, помол и т. д., герметизация обору­дования, мест размола, транспортировки, выделение агрегатов, запыляющих рабочую зону, в изолированные помещения с устрой­ством дистанционного управления.

Основным методом борьбы с пылью в подземных выработках, наиболее опасных в отношении профессиональных пылевых за­болеваний легких, является применение форсуночного орошения с подачей воды под давлением не менее 3-4 атм. Оросительными устройствами должны обеспечиваться все виды горнодобывающе­го оборудования - комбайны, буровые установки и др. Орошение должно применяться и в местах погрузки и разгрузки угля, по­роды, а также при транспортировке. Водяные завесы используют­ся непосредственно перед взрывными работами и при взвешенной пыли, причем факел воды должен направляться навстречу облаку пыли.

Санитарно-технические мероприятия . Мероприятия санитарно-технического характера играют весьма существенную роль в пре­дупреждении пылевых заболеваний. К ним относятся местные укрытия пылящего оборудования с отсосом воздуха из-под укры­тия. Герметизация и укрытие оборудования сплошными пылене­проницаемыми кожухами с эффективной аспирацией являются ра­циональным средством предупреждения пылевыделения в воздух рабочей зоны. Местная вытяжная вентиляция (кожухи, боковые отсосы) применяется в случаях, когда по технологическим усло­виям невозможно увлажнение перерабатываемых материалов. Удаление пыли должно происходить непосредственно от мест пылеобразования. Перед выбросом в атмосферу запыленный воздух очищается.

Показателями эффективности противопылевых мероприятий являются уменьшение запыленности, снижение уровня заболевае­мости профессиональными заболеваниями легких.

Тестовый контроль:

1. Какое из физических свойств пыли наиболее важно для гигиенической оценки?

1. электрозаряженность

2. удельный вес

4. дисперсность

2. Наиболее эффективным средством борьбы с пылеобразованием в химической промышленности является:

1. увлажнение

2. таблетирование

3. вентиляция

3. В какой из этих классификаций лежит разделение пыли по дисперсности:

3. пыль, облако, дым.

4. В основе какой из этих классификаций лежит разделение пыли по способу образования?

1. аэрозоли дезинтеграции, конденсации

2. органическая, неорганическая и смешанная пыль

3. пыль, облако, дым.

5. В основе какой из этих классификаций лежит разделение пыли по происхождению?

1. аэрозоли дезинтеграции, конденсации

2. органическая, неорганическая и смешанная пыль

3. пыль, облако, дым

6. Каких размеров пылинки задерживаются больше в альвеолах?

1. 5 микрон и больше

2. 10 микрон

3. 1 микрон

4. 0,1 микрон

7. Процент задержки аэрозолей в легочной ткани больше….

1. заряженных

2. нейтральных

8. ПДК для пыли, содержащей двуокись кремния от 1 до 70 % составляет

9. Какой из названных видов пневмокониозов наиболее агрессивен?

1. сидероз

3. силикоз

4. асбестоз

10. Аэрозоль конденсации имеет форму….

1. пластинок

3. многогранников

4. шарообразную форму.

(Нормативные документы: СанПиН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки»,

МУ 4435-87 «Методические указания по гигиенической оценке производственной и непроизводственной шумовой нагрузки»).

ЗАДАНИЕ

А. Дайте гигиеническое заключение по шумовой ситуации в данном производственном помещении.

Б. Ответьте на следующие вопросы:

1 .Дайте определение шума как физического явления.

2.Физические показатели, характеризующие звуковую волну.

3.Понятие интенсивности как основной характеристики шума, октавные полосы для характеристики частотных показателей шума.

4.Характеристика шумов по происхождению.

5.Общие и специфические симптомы шумовой болезни.

6. Критерии нормирования производственного шума на рабочих местах.

7.Требования к производственным помещениям, где производственный цикл сопровождается генерированием шума.

8.Правила организации перерывов для отдыха в процессе рабочего дня.

9.Особенности организации периодических профессиональных осмотров на шумных производствах.

10. Врачи каких специальностей привлекаются к проведению профессиональных осмотров в профессиях, связанных с воздействием шума? Какие исследования необходимо проводить во время этих осмотров?

ЭТАЛОНЫ ОТВЕТОВ

А . При сравнении фактических уровней шума в дб в соответствующих частотных октавных полосах с нормативными величинами видно значительное превышение интенсивности шума в данном производственном помещении. Опасность этого превышения усугубляется преобладанием высокочастотных шумов, что требует строгого контроля за выполнением профилактического комплекса мероприятий,

1.Шум - беспорядочное сочетание звуков различной интенсивности и частоты, постоянно меняющихся во времени.

Звуковая волна несёт с собой звуковое давление, измеряемое в ньютонах/м2 и звуковую энергию, измеряемую в ватт/м.

Интенсивность, измеряемая в децибелах, зависит от величины звуковой
энергии, между которыми существует логарифмическая зависимость. С увеличением энергии на 1 порядок дает увеличение интенсивности на единицу. Наиболее часто встречающиеся на производстве шумы с частотой от 45 Гц до 11000 Гц разделены на 8 октавных полос. Оценка шума проводится по интенсивности и по частотной характеристике. С увеличением частоты вредность шума увеличивается.

4. Шумы по происхождению делятся на бытовые, уличные и производственные.

5. Шумовая болезнь включает в себя группу общих и специфических симптомов. Общие симптомы связаны с нарушением функции соматической и вегетативной нервных систем, резкого нарушения липидного обмена, развитием эндогенной гиперхолестеринемии, повышением артериального давления, развитием атеросклероза , подавлением психических функций.

Специфические изменения связаны с изменением слуха. Развивается профессиональная тугоухость и даже глухота вследствие постепенной атрофии кортиева органа.

Для каждого помещения в зависимости от его назначения и точности
выполняемой работы установлены предельно-допустимые уровни интенсивности для каждой октавной полосы и общего уровня шума, что зафиксировано в санитарных нормах 1996 года.

Основным требованием к рабочим помещения, где генерируется шум,
является отделка всех поверхностей звукопоглощающими материалами, по возможности отделением одного рабочего места от другого.

В целях профилактики шумовой болезни большое значение имеет
правильная организация перерывов, которые осуществляются через каждые 50
мин. работы. Перерыв проводится вне производственного помещения. Эти помещения за счет эстетического оформления должны вызывать положительные эмоции. В этих помещениях может звучать лёгкая приятно-мелодичная музыка, шум морского прибоя и др. Температура 16° -18°С.

Периодические профосмотры на шумных производствах в первые три года
проводятся через 3, 6, 9, 12 и т. д. месяцев. Если в течение 3-х лет не обнаружено никаких изменений, то осмотры проводятся 1 раз в год.

10. В профосмотрах принимают участие терапевт (цеховой врач), лор - специалист, невропатолог. Из инструментальных методов исследования - обязательная аудиометрия.

1. Введение……………………………………………………………………3

2. Понятие и классификация пыли………………………………………….4

3. Гигиеническое значение физико-химических свойств пыли…………...6

4. Пылевые заболевания легких……………………………………………14

4.1. Пневмокониозы. Классификация…………………………..………….15

4.2. Силикоз………………………………………………………………….16

4.3. Силикатозы……………………………………………………………..17

4.3.1Асбестоз………………………………………………………………..18

4.3.2. Талькоз………………………………………………………………..18

4.4. Металлоканиозы………………………………………………………..19

4.5. Биссиниоз……………………………………………………………….19

4.6. Пневмокониозы от смешанных пылей………………………………..20

4.7. Пылевые бронхиты……………………………………………………..21

4.8. Пыль и пневмония……………………………………………………...21

4.9. Пылевые заболевания глаз и кожи...………………………………….24

5. Меры профилактики пылевых заболевания…….……………………...25

5.1. Гигиеническое нормирование……………………….………………...25

5.2.Технологические мероприятия………………………….……………..27

5.3. Санитарно-технические мероприятия………………….……………..28

5.4. Индивидуальные средства защиты…………………………..………..28

5.5. Лечебно-профилактические мероприятия…….……………………...29

6. Тестовый контроль………………………………………………………30

7. Ответы…………………………………………………………………….32

8. Типовая ситуационная задача с эталоном ответа………………………32