Что такое ток: основные характеристики и понятия. Электрические и электромагнитные явления. Как работает электрический ток

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).

Электрический ток

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток - это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон - «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором - «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока - это когда один конец провода соединен с наэлектризованным телом, а другой - с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Основные величины электрического тока

Количество электричества и сила тока . Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение . Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц - электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение - это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд - в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление . После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника - L, площадь поперечного сечения - S. В этом случае можно сопротивление записать в виде формулы:

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Таблица 1. Удельное электрическое сопротивление некоторых материалов

Материал

р, Ом х м2/м

Материал

р, Ом х м2/м

Платино-иридиевый сплав

Металл или сплав

Манганин (сплав)

Алюминий

Константан (сплав)

Вольфрам

Нихром (сплав)

Никелин (сплав)

Фехраль (сплав)

Хромель (сплав)

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое - сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость . Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников - не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Яндекс.ДиректВсе объявления Квартиры посуточно Казань! Квартиры от 1000 руб. посуточно. Мини-гостиницы. Отчетные документы16.forguest.ru Квартиры посуточно в Казани Уютные квартиры во всех районах Казани. Быстрая аренда квартир посуточно.fatyr.ru Новый Яндекс.Браузер! Удобные закладки и надежная защита. Браузер для приятных прогулок по сети!browser.yandex.ru 0+

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока . Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение - в вольтах, сила тока - амперах, время - в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Основные законы электрического тока

Закон Ома . Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии - для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца . Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

где r - сопротивление проводника. В таком случае:

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них - осветительные лампы накаливания.

Закон электромагнитной индукции . В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики - закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца . Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

В настоящей статье показано, что в современной физике представление об электрическом токе мифологизировано и не имеет доказательств его современной интерпретации.

С позиций эфиродинамики обосновывается представление электрического тока как потока фотонного газа и условия его существования.

Введение. В истории науки XIX век назвали веком электричества. Удивительный XIX век, заложивший основы научно-технической революции, так изменившей мир, начался с гальванического элемента — первой батарейки, химического источника тока (вольтова столба) и открытия электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в. дали толчок проникновению электричества во все сферы жизнедеятельности человека. Современная жизнь немыслима без радио и телевидения, телефона, смартфона и компьютера, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.

Однако, широкое использование электричества с первых дней открытия электрического тока находится в глубоком противоречии его теоретическому обоснованию. Ни физика XIX в., ни современная не могут ответить на вопрос: что такое электрический ток? Например, в нижеприведенном утверждении из “Британской энциклопедии” :

“Вопрос: “Что такое электричество?”, как и вопрос: “Что такое материя?”, лежит за пределами сферы физики и принадлежит сфере метафизики”.

Первые, получившие широкую известность, опыты с электрическим током были проведены итальянским физиком Гальвани в конце XVIII в. Другой итальянский физик Вольта создал первое устройство, способное давать длительный электрический ток, – гальванический элемент. Вольта показал, что соприкосновение разнородных металлов приводит их в электрическое состояние и что от присоединения к ним жидкости, проводящей электричество, образуется непосредственное течение электричества. Ток, получающийся в названном случае, называется гальваническим током и само явление гальванизмом. При этом, ток в представлении Вольта это движение электрических жидкостей — флюидов.

Существенный сдвиг в понимании сущности электрического тока был сделан

М. Фарадеем. Им было доказана тождественность отдельных видов электричества, происходящих от различных источников. Наиболее важными работами стали эксперименты по электролизу . Открытие было воспринято как одно из доказательств того что движущееся электричество фактически идентично электричеству, обусловленному трением, т. е. статическому электричеству. Его серия остроумных экспериментов по электролизу послужила убедительным подтверждением идеи, суть которой сводится к следующему: если вещество по своей природе имеет атомную структуру, то в процессе электролиза каждый атом получает определенное количество электричества.

В 1874 году ирландский физик Дж. Стоней (Стони) выступил в Белфасте с докладом, в котором использовал законы электролиза Фарадея как основу для атомарной теории электричества. По величине полного заряда, прошедшего через электролит, и довольно грубой оценке числа выделившихся на катоде атомов водорода Стоней получил для элементарного заряда число порядка 10 -20 Кл (в современных единицах). Этот доклад не был полностью опубликован вплоть до 1881 года, когда немецкий ученый

Г. Гельмгольц в одной из лекций в Лондоне отметил, что если принять гипотезу атомной структуры элементов, нельзя не прийти к выводу, что электричество также разделяется на элементарные порции или «атомы электричества». Этот вывод Гельмгольца, по существу, вытекал из результатов Фарадея по электролизу и напоминал высказывание самого Фарадея. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории.

В 1891 году Стоней, который поддерживал идею, что законы электролиза Фарадея означают существование естественной единицы заряда, ввел термин – «электрон» .

Однако, вскоре термин электрон, введенный Стонеем, теряет свою первоначальную сущность. В 1892 году Х. Лоренц формирует собственную теорию электронов. По его утверждению электричество возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов.

В конце XIX в. начала развиваться электронная теория проводимости. Начала теории дал в 1900 г. немецкий физик Пауль Друде. Теория Друде вошла в учебные курсы физики под именем классической теории электропроводимости металлов. В этой теории электроны уподобляются атомам идеального газа, заполняющего кристаллическую решетку металла, а электрический ток представляется как поток этого электронного газа.

После представления модели атома Резерфорда, серии измерений величины элементарного заряда в 20-х годах ХХ ст. в физике окончательно сформировалось представление об электрическом токе, как потоке свободных электронов, структурных элементов атома вещества.

Однако, модель свободных электронов оказалась несостоятельной при объяснении сущности электрического тока в жидких электролитах, газах и полупроводниках. Для поддержки существующей теории электрического тока были введены новые носители электрического заряда – ионы и дырки.

На основании выше изложенного, в современной физике сформировалось окончательное по современным меркам понятие : электрический ток это направленное движение носителей электрических зарядов (электронов, ионов, дырок и т. п.).

За направление электрического тока принимают направление движения положительных зарядов; если ток создаётся отрицательно заряженными частицами (напр., электронами), то направление тока считают противоположным движению частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий: — наличие в среде свободных электрических зарядов; — создание в среде электрического поля.

Однако, данное представление электрического тока оказалось несостоятельным при описании явления сверхпроводимости. Кроме того, как выяснилось, существует много противоречий в указанном представлении электрического тока при описании функционирования практически всех типов электронных приборов. Необходимость интерпретации понятия электрический ток в разных условиях и в разных типах электронных приборах с одной стороны, а также непонимание сущности электрического тока с другой, заставило современную физику сделать из электрона – носителя электрического заряда, “фигаро” (“свободный”, “быстрый”, “выбитый”, “испущенный ”, “тормозной ”, “релятивистский”, “фото”, “термо” и т. п.), что окончательно завело вопрос “что такое электрический ток?” в тупик.

Значимость теоретического представления электрического тока в современных условиях значительно выросла не только из-за широкого применения электричества в жизнедеятельности человека, но и из-за высокой стоимости и технической целесообразности, например, научных мегапроектов , реализуемых всеми развитыми странами мира, в которых понятие электрического тока играет существенную роль.

Эфиродинамическая концепция представления электрического тока. Из выше приведенного определения следует, что электрический ток это направленное движение носителей электрических зарядов . Очевидно, что вскрытие физической сущности электрического тока находится в решении проблемы физической сущности электрического заряда и того, что является носителем этого заряда.

Проблема физической сущности электрического заряда это не решенная проблема, как классической физикой, так и современной квантовой на протяжении всей истории развития электричества. Решение этой проблемы оказалось возможным только с использованием методологии эфиродинамики , новой концепции физики XXI в..

Согласно эфиродинамическому определению : электрический заряд это мера движения потока эфира… . Электрический заряд это свойство присущее всем элементарным частицам и только. Электрический заряд это величина знакоопределенная, т. е. всегда положительная.

Из указанной физической сущности электрического заряда следует некорректность выше представленного определения электрического тока в части того, что ионы, дырки и т. п. не могут быть причиной электрического тока в связи с тем, что не являются носителями электрического заряда, так как не являются элементами организационного уровня физической материи – элементарные частицы (согласно определению).

Электроны, как элементарные частицы имеют электрический заряд, однако, согласно определению : являются одной из основных структурных единиц вещества, образуют электронные оболочки атомов , строение которых определяет большинство оптических, электрических, магнитных, механических и химических свойств вещества, не могут быть подвижными (свободными) носителями электрического заряда. Свободный электрон это миф, созданный современной физикой для интерпретации понятия электрический ток, не имеющий ни одного практического или теоретического доказательства. Очевидно, что, как только “свободный” электрон покинет атом вещества, образуя электрический ток, непременно должны произойти изменения физико-химических свойств этого вещества (согласно определению), чего в природе не наблюдается. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке : “прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их.” В настоящее время, зависимость физико-химических свойств вещества от наличия того или иного электрона в атоме вещества хорошо изучена и подтверждена экспериментально, например, в работе .

Также существует ссылка на опыты , выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси, но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси. В современной физике эти опыты служат непосредственным подтверждением того, что переносчиками электричества в металле следует считать свободные электроны.

Для того, чтобы понять некорректность этих опытов, достаточно рассмотреть схему и методику опыта , в котором в качестве проводника использовалась катушка индуктивности, которая раскручивалась вокруг своей оси и резко останавливалась. Катушка с помощью скользящих контактов была подключена к гальванометру , который регистрировал возникновение инерционной ЭДС. Фактически можно сказать, что в данном опыте роль сторонних сил, создающих ЭДС, играла сила инерции, т. е. если в металле есть свободные носители заряда, обладающие массой, то они должны подчиняться закону инерции . Утверждение “они должны подчиняться закону инерции ошибочно в том плане, что согласно уровневому подходу в организации физической материи , электроны, как элементы уровня “элементарные частицы“ подчиняются только законам электро- и газодинамики, т. е. законы механики (Ньютона) к ним не применимы.

Для убедительности этого предположения рассмотрим известную задачу 3.1: вычислить отношение электростатической (Fэ) и гравитационной (Fгр) сил взаимодействия между двумя электронами, между двумя протонами.

Решение: для электронов Fэ / Fгр = 4·10 42 , для протонов Fэ / Fгр = 1,24·10 36 , т.е. влияние гравитационных сил настолько мало, что принимать их во внимание не приходится. Данное утверждение справедливо и для сил инерции.

Это значит, что выражение для ЭДС (предложенное Р. Ч. Толменом и Т. Д. Стюартом), исходя из ее определения через сторонние силы F стор , действующие на заряды внутри проводника, подвергшегося торможению:

ε = 1/e ∫F стор ∙dl,

некорректно в своей постановке, ввиду того, что F стор → 0.

Тем не менее, в результате опыта наблюдалось кратковременное отклонение стрелки гальванометра, которое требует объяснения. Для понимания этого процесса следует обратить внимание на сам гальванометр, в качестве которого был использован так называемый баллистический гальванометр . Его инструкция по использованию имеет такой вариант.

Баллистический гальванометр может использоваться в качестве веберметра (т.е. измерять магнитный поток через замкнутый проводник, например катушку), для этого к контактам баллистического гальванометра подключают индуктивную катушку , которую помещают в магнитное поле . Если после этого резко убрать катушку из магнитного поля или повернуть так чтобы ось катушки была перпендикулярна силовым линиям поля, то можно измерить заряд прошедший через катушку, вследствие электромагнитной индукции , т.к. изменение магнитного потока пропорционально прошедшему заряду, проградуировав соответствующим образом гальванометр, можно определять изменение потока в веберах .

Из выше изложенного очевидно, что использование баллистического гальванометра в качестве веберметра соответствует методике опыта Р. Ч. Толмена и Т. Д. Стюарта по наблюдению инерционного тока в металлах. Открытым остается вопрос об источнике магнитного поля, которым, например, могло быть магнитное поле Земли. Влияние внешнего магнитного поля Р. Ч. Толменом и Т. Д. Стюартом во внимание не принималось и не исследовалось, что и привело к мифологизации результатов опыта.

Сущность электрического тока. Из выше изложенного следует, что ответом на вопрос, что такое электрический ток? также является решение проблемы носителя электрического заряда. На основании существующих представлений этой проблемы можно сформулировать ряд требований, которым должен удовлетворять носитель электрического заряда. А именно: носитель электрического заряда должен быть элементарной частицей; носитель электрического заряда должен быть свободным и долгоживущим элементом; носитель электрического заряда не должен разрушать структуру атома вещества.

Не сложный анализ существующих фактов позволяет сделать вывод, что выше указанным требованиям удовлетворяет только один элемент уровня “элементарные частицы” физической материи: элементарная частица – фотон .

Совокупность фотонов вместе со средой (эфиром), в которой они существуют, образуют фотонный газ.

Принимая во внимание физическую сущность фотона и выше приведенные сведения можно дать следующее определение:

электрический ток это поток фотонного газа, предназначенный для переноса энергии.

Для понимания механизма движения электрического тока рассмотрим известную модель транспортировки газа метана . Упрощенно она включает в себя магистральный трубопровод, который доставляет газ метан от газового месторождения к месту потребления. Для перемещения газа метана по магистральному трубопроводу необходимо выполнение условия – давление газа метана в начале трубопровода должно быть больше давления газа метана в его конце.

По аналогии с транспортировкой газа метана рассмотрим схему движения электрического тока, состоящую из батареи (источника электрического тока), имеющей два контакта “+” и “-“ и проводника. Если к контактам батареи подсоединить металлический проводник, то получим модель движения электрического тока, подобную транспортировке газа метана.

Условием существования электрического тока в проводнике по аналогии с моделью транспортировки газа метана является наличие: источника (газа) повышенного давления, т. е. источника высокой концентрации носителей электрического заряда; трубопровода – проводника; потребителя газа, т. е. элемента, обеспечивающего снижение давления газа, т. е. элемента (сток), обеспечивающего уменьшение концентрации носителей электрического заряда.

Отличием электрических схем от газо-, гидро- и др. является то, что конструктивно источник и сток исполняются в одном узле (химическом источнике тока-батарее, электрогенераторе и т. п.). Механизм протекания электрического тока заключается в следующем: после подсоединения проводника к батарее, например, химическому источнику тока , в зоне контакта “+” (анод) происходит химическая реакция восстановления, в результате которой осуществляется генерация фотонов, т. е. образуется зона повышенной концентрации носителей электрического заряда. В это же время, в зоне контакта “-“ (катода) под воздействием фотонов, оказавшихся в этой зоне в результате перетока по проводнику, происходит реакция окисления (потребления фотонов), т. е. образуется зона пониженной концентрации носителей электрического заряда. Носители электрического заряда (фотоны) из зоны высокой концентрации (источника) движутся по проводнику в зону низкой концентрации (стоку). Таким образом, сторонней силой или электродвижущей силой (ЭДС), обеспечивающей электрический ток в цепи является разность концентрации (давления) носителей электрического заряда (фотонов), образующейся в результате работы химического источники тока.

Это обстоятельство еще раз подчеркивает справедливость основного вывода энергодинамики , согласно которому силовые поля (и в том числе электрическое поле) создается не массами, зарядами и токами самими по себе, а их неравномерным распределением в пространстве.

Исходя из рассмотренной сущности электрического тока, очевидна абсурдность опыта Р. Ч. Толмена и Т. Д. Стюарта по наблюдению инерционного тока в металлах. Способа генерации фотонов за счет изменения скорости механического движения какого-либо макроскопического тела в природе в настоящее время не существует.

Интересным аспектом выше изложенного представления электрического тока является его сравнение с представлением понятия “свет”, рассмотренного в работе : свет это поток фотонного газа… . Указанное сравнение позволяет сделать вывод: свет это электрический ток. Различие в этих понятиях заключается только в спектральном составе фотонов, образующих свет или электрический ток, например, в металлических проводниках. Для более убедительного понимания этого обстоятельства рассмотрим схему генерации электрического тока с помощью солнечной батареи. Поток солнечного света (фотонов видимого диапазона) от источника (солнце) достигает солнечной батареи, которая преобразует падающий поток света в электрический ток (поток фотонов), который по металлическому проводнику поступает потребителю (сток). В данном случае солнечная батарея выполняет роль преобразователя спектра потока фотонов, излучаемого солнцем в спектр фотонов электрического тока в металлическом проводнике.

Выводы . В современной физике не существует доказательств, что электрический ток это направленное движение электронов или каких-либо других частиц. Напротив, современные представления об электроне, электрическом заряде и опыты Рикке показывают на ошибочность данного понятия электрического тока.

Обоснование совокупности требований к носителю электрического заряда, с учетом его эфиродинамической сущности, позволили установить, что электрический ток это поток фотонного газа, предназначенный для переноса энергии.

Движение электрического тока осуществляется из зоны высокой концентрации фотонов (исток) в зону низкой концентрации (сток).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение трех условий: поддержание (генерация) высокой концентрации фотонов в зоне истока, наличие проводника, обеспечивающего переток фотонов и создание зоны потребления фотонов в области стока.

Электричество Электрон.

  • Багоцкий В. С., Скундин А. М. Химические источники тока. – М.: Энергоиздат, 1981. – 360 с.
  • Эткин В.А. Энергодинамика (синтез теорий переноса и преобразования энергии).- СПб, Наука, 2008. 409 с.
  • Лямин В. С., Лямин Д. В. О постоянстве скорости света.
  • Лямин В.С. , Лямин Д. В. г. Львов

    Электрический ток это заряженные частицы, способные упорядоченно передвигаться в каком-либо проводнике. Это движение происходит под воздействием электрического поля. Возникновение электрических зарядов происходит, практически, постоянно. Особенно ярко это проявляется, когда различные вещества контактируют между собой.

    Если возможно полное свободное перемещение зарядов относительно друг друга, то эти вещества являются проводниками. Когда такое передвижение невозможно, данная категория веществ считается изоляторами. К проводникам относятся все металлы с различной степенью проводимости, а также соляные и кислотные растворы. Изоляторами могут быть природные вещества в виде эбонита, янтаря, различных газов и кварцев. Они могут иметь искусственное происхождение, например, ПВХ, полиэтилен и прочие.

    Величины электрического тока

    Как физическая величина, ток может измеряться по своим основным параметрам. По результатам измерений, определяется возможность использования электричества в той или иной области.

    Существует два вида электрического тока - постоянный и переменный. Первый, всегда остается неизменным во времени и направлении, а во втором случае, происходят изменения по этим параметрам за определенный промежуток времени.

    Что мы действительно знаем на сегодняшний день об электричестве? Согласно современным взглядам многое, но если более детально углубиться в суть данного вопроса, то окажется, что человечество широко использует электричество, не понимая истинной природы этого важного физического явления.

    Целью данной статьи не является опровержение достигнутых научно-технических прикладных результатов исследований в области электрических явлений, которые находят широкое применение в быту и промышленности современного общества. Но человечество непрерывно сталкивается с рядом феноменов и парадоксов, которые не укладываются в рамки современных теоретических представлений относительно электрических явлений ‒ это указывает на отсутствие всецелого понимания физики данного явления.

    Также на сегодняшний день науке известны факты, когда, казалось бы, изученные вещества и материалы проявляют аномальные свойства проводимости () .

    Такое явление как сверхпроводимость материалов также не имеет полностью удовлетворительной теории в настоящее время. Существует лишь предположение, что сверхпроводимость является квантовым явлением , которое изучается квантовой механикой. При внимательном изучении основных уравнений квантовой механики: уравнения Шрёдингера, уравнения фон Неймана, уравнения Линдблада, уравнения Гейзенберга и уравнения Паули, то станет очевидной их несостоятельность. Дело в том, что уравнение Шрёдингера не выводится, а постулируется методом аналогии с классической оптикой, на основе обобщения экспериментальных данных. Уравнение Паули описывает движение заряженной частицы со спином 1/2 (например, электрона) во внешнем электромагнитном поле, но понятие спина не связано с реальным вращением элементарной частицы, а также относительно спина постулируется то, что существует пространство состояний, никак не связанных с перемещением элементарной частицы в обычном пространстве.

    В книге Анастасии Новых «Эзоосмос» есть упоминание относительно несостоятельности квантовой теории: «А вот квантомеханическая теория строения атома, которая рассматривает атом как систему микрочастиц, не подчиняющихся законам классической механики, абсолютно не актуальна . На первый взгляд доводы немецкого физика Гейзенберга и австрийского физика Шрёдингера кажутся людям убедительными, но если всё это рассмотреть с другой точки зрения, то их выводы верны лишь отчасти, а в целом, так и вовсе оба не правы. Дело в том, что первый описал электрон, как частицу, а другой как волну. Кстати и принцип корпускулярно-волнового дуализма также неактуален, поскольку не раскрывает перехода частицы в волну и наоборот. То есть куцый какой-то получается у учёных господ. На самом деле всё очень просто. Вообще хочу сказать, что физика будущего очень проста и понятна. Главное дожить до этого будущего. А что касательно электрона, то он становится волной только в двух случаях. Первый — это когда утрачивается внешний заряд, то есть когда электрон не взаимодействует с другими материальными объектами, скажем с тем же атомом. Второй, в предосмическом состоянии, то есть когда снижается его внутренний потенциал» .

    Те же электрические импульсы, сгенерированные нейронами нервной системы человека, поддерживают активное сложное многообразное функционирование организма. Интересно отметить, что потенциал действия клетки (волна возбуждения, перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки) находится в определённом диапазоне (рис. 1).

    Нижняя граница потенциала действия нейрона находится на уровне -75 мВ, что очень близко к значению окислительно-восстановительного потенциала крови человека. Если проанализировать максимальное и минимальное значение потенциала действия относительно нуля, то оно очень близко к процентному округлённому значению золотого сечения , т.е. деление интервала в отношении 62% и 38%:

    \(\Delta = 75 мВ+40 мВ = 115 мВ\)

    115 мВ / 100% = 75 мВ / х 1 или 115 мВ / 100% = 40 мВ / х 2

    х 1 = 65,2%, х 2 = 34,8%

    Все, известные современной науке, вещества и материалы проводят электричество в той или иной мере, поскольку в их составе присутствуют электроны, состоящие из 13 фантомных частичек По, которые, в свою очередь, являются септонными сгустками («ИСКОННАЯ ФИЗИКА АЛЛАТРА» стр. 61) . Вопрос заключается только в напряжении электрического тока, которое необходимо для преодоления электрического сопротивления.

    Поскольку электрические явления тесно связаны с электроном, то в докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» приведена следующая информация относительно этой важной элементарной частицы: «Электрон является составной частью атома, одним из основных структурных элементов вещества. Электроны образуют электронные оболочки атомов всех известных на сегодняшний день химических элементов. Они участвуют почти во всех электрических явлениях, о которых ведают ныне учёные. Но что такое электричество на самом деле, официальная наука до сих пор не может объяснить, ограничиваясь общими фразами, что это, например, «совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов». Известно, что электричество не является непрерывным потоком, а переносится порциями ‒ дискретно ».

    Согласно современным представлениям: «электрический ток - это совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов». Но что такое электрический заряд?

    Электрический заряд (количество электричества) — это физическая скалярная величина (величина, каждое значение которой может быть выражено одним действительным числом), определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Электрические заряды разделяют на положительные и отрицательные (данный выбор считается в науке чисто условным и за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм).

    Электродинамика изучает электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля.

    Квантовая электродинамика изучает электромагнитные поля, которые обладают прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.

    Стоит задуматься, почему магнитное поле появляется вокруг проводника с током, или же вокруг атома, по орбитам которого перемещаются электроны? Дело в том, что «то, что сегодня называют электричеством ‒ это на самом деле особое состояние септонного поля , в процессах которого электрон в большинстве случаев принимает участие наравне с другими его дополнительными «компонентами» » («ИСКОННАЯ ФИЗИКА АЛЛАТРА» стр. 90) .

    А тороидальная форма магнитного поля обусловлена природой его происхождения. Как сказано в статье : «Учитывая фрактальные закономерности во Вселенной, а также тот факт, что септонное поле в материальном мире в пределах 6-ти измерений является тем фундаментальным, единым полем, на котором основаны все известные современной науке взаимодействия, то можно утверждать, что все они также имеют форму тора. И это утверждение может представлять особый научный интерес для современных исследователей» . Поэтому электромагнитное поле всегда будет принимать форму тора, подобно тору септона.

    Рассмотрим спираль, через которую протекает электрический ток и как именно формируется её электромагнитное поле (https://www.youtube.com/watch?v=0BgV-ST478M).

    Рис. 2. Силовые линии прямоугольного магнита

    Рис. 3. Силовые линии спирали с током

    Рис. 4. Силовые линии отдельных участков спирали

    Рис. 5. Аналогия между силовыми линиями спирали и атомов с орбитальными электронами

    Рис. 6. Отдельный фрагмент спирали и атом с силовыми линиями

    ВЫВОД : человечеству еще только предстоит узнать тайны загадочного явления электричества.

    Пётр Тотов

    Ключевые слова: ИСКОННАЯ ФИЗИКА АЛЛАТРА, электрический ток, электричество, природа электричества, электрический заряд, электромагнитное поле, квантовая механика, электрон.

    Литература:

    Новых. А., Эзоосмос, К.: ЛОТОС, 2013. - 312 с. http://schambala.com.ua/book/ezoosmos

    Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;