Что такое sin и cos. Тригонометрия. Тригонометрические тождества преобразования половины угла



|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Синус (sin α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.
Косинус (cos α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x


График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

Синусоида Косинусоида
y = sin x y = cos x
ОДЗ [-1; 1] ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Z cos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Z cos x = 1, при x = 2πk, где k ϵ Z
sin x = - 1, при x = 3π/2 + 2πk, где k ϵ Z cos x = - 1, при x = π + 2πk, где k ϵ Z
sin (-x) = - sin x, т. е. функция нечетная cos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период - 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk) cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk] возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk] убывает на промежутках
производная (sin x)’ = cos x производная (cos x)’ = - sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

  1. Y = tg x.
  2. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  3. Наименьший положительный период тангенсоиды равен π.
  4. Tg (- x) = — tg x, т. е. функция нечетная.
  5. Tg x = 0, при x = πk.
  6. Функция является возрастающей.
  7. Tg x › 0, при x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
  9. Производная (tg x)’ = 1/cos 2 ⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin 2 ⁡x Исправить

Если построить единичную окружность с центром в начале координат, и задать произвольное значение аргумента x 0 и отсчитать от оси Ox угол x 0, то этому углу на единичной окружности соответствует некоторая точка A (рис. 1) а ее проекцией на ось Ох будет точка М . Длина отрезка ОМ равна абсолютной величине абсциссы точки A . Данному значению аргумента x 0 сопоставлено значение функции y = cos x 0 как абсциссы точки А . Соответственно точка В (x 0 ; у 0) принадлежит графику функции у = cos х (рис. 2). Если точка А находится правее оси Оу , токосинус будет положителен, если же левее – отрицателен. Но в любом случае точка А не может покинуть окружность. Поэтому косинус лежит в пределах от –1 до 1:

–1 = cos x = 1.

Дополнительный поворот на любой угол, кратный 2p , возвращает точку A на то же место. Поэтому функция у = cos x p :

cos (x + 2p ) = cos x.

Если взять два значения аргумента, равные по абсолютной величине, но противоположные по знаку, x и –x , найти на окружности соответствующие точки A x и А -x . Как видно на рис. 3 их проекцией на ось Ох является одна и та же точка М . Поэтому

cos (–x ) = cos (x ),

т.е. косинус – четная функция, f (–x ) = f (x ).

Значит, можно исследовать свойства функции y = cos х на отрезке , а затем учесть ее четность и периодичность.

При х = 0 точка А лежит на оси Ох , ее абсцисса равна 1, а потому cos 0 = 1. С увеличением х точка А передвигается по окружности вверх и влево, ее проекция, естественно, только влево, и при х = p /2 косинус становится равен 0. Точка A в этот момент поднимается на максимальную высоту, а затем продолжает двигаться влево, но уже снижаясь. Ее абсцисса все убывает, пока не достигнет наименьшего значения, равного –1 при х = p . Таким образом, на отрезке функция у = cos х монотонно убывает от 1 до –1 (рис. 4, 5).

Из четности косинуса следует, что на отрезке [–p , 0] функция монотонно возрастает от –1 до 1, принимая нулевое значение при х = p /2. Если взять несколько периодов, получится волнообразная кривая (рис. 6).

Итак, функция y = cos x принимает нулевые значения в точках х = p /2 + kp , где k – любое целое число. Максимумы, равные 1, достигаются в точках х = 2kp , т.е. с шагом 2p , а минимумы, равные –1, в точках х = p + 2kp .

Функция y = sin х.

На единичной окружности углу x 0 соответствует точка А (рис. 7), а ее проекцией на ось Оу будет точка N . З начение функции у 0 = sin x 0 определяется как ордината точки А . Точка В (угол x 0 , у 0) принадлежит графику функции y = sin x (рис. 8). Ясно, что функция y = sin x периодическая, ее период равен 2p :

sin (x + 2p ) = sin (x ).

Для двух значений аргумента, х и – , проекции соответствующих им точек А x и А -x на ось Оу расположены симметрично относительно точки О . Поэтому

sin (–x ) = –sin (x ),

т.е. синус – функция нечетная, f(–x ) = –f(x ) (рис. 9).

Если точку A повернуть относительно точки О на угол p /2 против часовой стрелки (другими словами, если угол х увеличить на p /2), то ее ордината в новом положении будет равна абсциссе в старом. А значит,

sin (x + p /2) = cos x.

Иначе, синус – это косинус, «запоздавший» на p /2, поскольку любое значение косинуса «повторится» в синусе, когда аргумент возрастет на p /2. И чтобы построить график синуса, достаточно сдвинуть график косинуса на p /2 вправо (рис. 10). Чрезвычайно важное свойство синуса выражается равенством

Геометрический смысл равенства виден из рис. 11. Здесь х – это половина дуги АВ , а sin х – половина соответствующей хорды. Очевидно, что по мере сближения точек А и В длина хорды все точнее приближается к длине дуги. Из того же рисунка несложно извлечь неравенство

|sin x | x|, верное при любом х .

Формулу (*) математики называют замечательным пределом. Из нее, в частности, следует, что sin х » х при малых х .

Функции у = tg х, у = ctg х . Две другие тригонометрические функции – тангенс и котангенс проще всего определить как отношения уже известных нам синуса и косинуса:

Как синус и косинус, тангенс и котангенс – функции периодические, но их периоды равны p , т.е. они вдвое меньше, чем у синуса и косинуса. Причина этого понятна: если синус и косинус оба поменяют знаки, то их отношение не изменится.

Поскольку в знаменателе тангенса находится косинус, то тангенс не определен в тех точках, где косинус равен 0, – когда х = p /2 + kp . Во всех остальных точках он монотонно возрастает. Прямые х = p /2 + kp для тангенса являются вертикальными асимптотами. В точках kp тангенс и угловой коэффициент составляют 0 и 1 соответственно (рис. 12).

Котангенс не определен там, где синус равен 0 (когда х = kp ). В остальных точках он монотонно убывает, а прямые х = kp его вертикальные асимптоты. В точках х = p /2 + kp котангенс обращается в 0, а угловой коэффициент в этих точках равен –1 (рис. 13).

Четность и периодичность.

Функция называется четной, если f (–x ) = f (x ). Функции косинус и секанс – четные, а синус, тангенс, котангенс и косеканс – функции нечетные:

sin (–α) = – sin α tg (–α) = – tg α
cos (–α) = cos α ctg (–α) = – ctg α
sec (–α) = sec α cosec (–α) = – cosec α

Свойства четности вытекают из симметричности точек P a и Р - a (рис. 14) относительно оси х . При такой симметрии ордината точки меняет знак ((х ; у ) переходит в (х ; –у)). Все функции – периодические, синус, косинус, секанс и косеканс имеют период 2p , а тангенс и котангенс – p :

sin (α + 2) = sin α cos (α + 2) = cos α
tg (α + ) = tg α ctg (α + ) = ctg α
sec (α + 2) = sec α cosec (α + 2) = cosec α

Периодичность синуса и косинуса следует из того, что все точки P a + 2 kp , где k = 0, ±1, ±2,…, совпадают, а периодичность тангенса и котангенса – из того, что точки P a + kp поочередно попадают в две диаметрально противоположные точки окружности, дающие одну и ту же точку на оси тангенсов.

Основные свойства тригонометрических функций могут быть сведены в таблицу:

Функция Область определения Множество значений Четность Участки монотонности (k = 0, ± 1, ± 2,…)
sin x –Ґ x Ґ [–1, +1] нечетная возрастает при x О ((4k – 1) p /2, (4k + 1) p /2),убывает при x О ((4k + 1) p /2, (4k + 3) p /2)
cos x –Ґ x Ґ [–1, +1] четная Возрастает приx О ((2k – 1) p , 2kp ),убывает приx О (2kp , (2k + 1) p )
tg x x p /2 + p k (–Ґ , +Ґ ) нечетная возрастает приx О ((2k – 1) p /2, (2k + 1) p /2)
ctg x x p k (–Ґ , +Ґ ) нечетная убывает приx О (kp , (k + 1) p )
sec x x p /2 + p k (–Ґ , –1] И [+1, +Ґ ) четная Возрастает приx О (2kp , (2k + 1) p ),убывает приx О ((2k – 1) p , 2kp )
cosec x x p k (–Ґ , –1] И [+1, +Ґ ) нечетная возрастает приx О ((4k + 1) p /2, (4k + 3) p /2),убывает приx О ((4k – 1) p /2, (4k + 1) p /2)

Формулы приведения.

По этим формулам значение тригонометрической функции аргумента a , где p /2 a p , можно привести к значению функции аргумента a , где 0 a p /2, как той же, так и дополнительной к ней.

Аргумент b – a + a p – a p + a + a + a 2p – a
sin b cos a cos a sin a –sin a –cos a –cos a –sin a
cos b sin a –sin a –cos a –cos a –sin a sin a cos a

Поэтому в таблицах тригонометрических функций даются значения только для острых углов, причем достаточно ограничиться, например, синусом и тангенсом. В таблице даны только наиболее употребительные формулы для синуса и косинуса. Из них легко получить формулы для тангенса и котангенса. При приведении функции от аргумента вида kp /2 ± a , где k – целое число, к функции от аргумента a :

1) название функции сохраняется, если k четное, и меняется на «дополнительное», если k нечетное;

2) знак в правой части совпадает со знаком приводимой функции в точке kp /2 ± a , если угол a острый.

Например, при приведении ctg (a – p /2) убеждаемся, что a – p /2 при 0 a p /2 лежит в четвертом квадранте, где котангенс отрицателен, и, по правилу 1, меняем название функции: ctg (a – p /2) = –tg a .

Формулы сложения.

Формулы кратных углов.

Эти формулы выводятся прямо из формул сложения:

sin 2a = 2 sin a cos a ;

cos 2a = cos 2 a – sin 2 a = 2 cos 2 a – 1 = 1 – 2 sin 2 a ;

sin 3a = 3 sin a – 4 sin 3 a ;

cos 3a = 4 cos 3 a – 3 cos a ;

Формулу для cos 3a использовал Франсуа Виет при решении кубического уравнения. Он же впервые нашел выражения для cos n a и sin n a , которые позже были получены более простым путем из формулы Муавра.

Если в формулах двойного аргумента заменить a на a /2, их можно преобразовать в формулы половинных углов:

Формулы универсальной подстановки.

Используя эти формулы, выражение, включающее разные тригонометрические функции от одного и того же аргумента, можно переписать как рациональное выражение от одной функции tg (a /2), это бывает полезно при решении некоторых уравнений:

Формулы преобразования сумм в произведения и произведений в суммы.

До появления компьютеров эти формулы использовались для упрощения вычислений. Расчеты производились с помощью логарифмических таблиц, а позже – логарифмической линейки, т.к. логарифмы лучше всего приспособлены для умножения чисел, поэтому все исходные выражения приводили к виду, удобному для логарифмирования, т.е. к произведениям, например:

2 sin a sin b = cos (a – b ) – cos (a + b );

2 cos a cos b = cos (a – b ) + cos (a + b );

2 sin a cos b = sin (a – b ) + sin (a + b ).

Формулы для функций тангенса и котангенса можно получить из вышеприведенных.

Формулы понижения степени.

Из формул кратного аргумента выводятся формулы:

sin 2 a = (1 – cos 2a )/2; cos 2 a = (1 + cos 2a )/2;
sin 3 a = (3 sin a – sin 3a )/4; cos 3 a = (3 cosa + cos 3 a )/4.

С помощью этих формул тригонометрические уравнения можно приводить к уравнениям более низких степеней. Таким же образом можно вывести и формулы понижения для более высоких степеней синуса и косинуса.

Производные и интегралы тригонометрических функций
(sin x )` = cos x ; (cos x )` = –sin x ;
(tg x )` = ; (ctg x )` = – ;
т sin x dx = –cos x + C ; т cos x dx = sin x + C ;
т tg x dx = –ln |cos x | + C ; т ctg x dx = ln |sin x | + C ;

Каждая тригонометрическая функция в каждой точке своей области определения непрерывна и бесконечно дифференцируема. Причем и производные тригонометрических функций являются тригонометрическими функциями, а при интегрировании получаются так же тригонометрические функции или их логарифмы. Интегралы от рациональных комбинаций тригонометрических функций всегда являются элементарными функциями.

Представление тригонометрических функций в виде степенных рядов и бесконечных произведений.

Все тригонометрические функции допускают разложение в степенные ряды. При этом функции sin x b cos x представляются рядами. сходящимися для всех значений x :

Эти ряды можно использовать для получения приближенных выражений sin x и cos x при малых значениях x :

при |x| p /2;

при 0 x| p

(B n – числа Бернулли).

Функции sin x и cos x могут быть представлены в виде бесконечных произведений:

Тригонометрическая система 1, cos x , sin x , cos 2x , sin 2x , ¼, cos nx , sin nx , ¼, образует на отрезке [–p , p ] ортогональную систему функций, что дает возможность представления функций в виде тригонометрических рядов.

определяются как аналитические продолжения соответствующих тригонометрических функций действительного аргумента в комплексную плоскость. Так, sin z и cos z могут быть определены с помощью рядов для sin x и cos x , если вместо x поставить z :

Эти ряды сходятся по всей плоскости, поэтому sin z и cos z – целые функции.

Тангенс и котангенс определяются формулами:

Функции tg z и ctg z – мероморфные функции. Полюсы tg z и sec z – простые (1-го порядка) и находятся в точках z = p /2 + p n, полюсы ctg z и cosec z – также простые и находятся в точках z = p n , n = 0, ±1, ±2,…

Все формулы, справедливые для тригонометрических функций действительного аргумента, справедливы и для комплексного. В частности,

sin (–z ) = –sin z ,

cos (–z ) = cos z ,

tg (–z ) = –tg z ,

ctg (–z ) = –ctg z,

т.е. четность и нечетность сохраняются. Сохраняются и формулы

sin (z + 2p ) = sin z , (z + 2p ) = cos z , (z + p ) = tg z , (z + p ) = ctg z ,

т.е. периодичность также сохраняется, причем периоды такие же, как и для функций действительного аргумента.

Тригонометрические функции могут быть выражены через показательную функцию от чисто мнимого аргумента:

Обратно, e iz выражается через cos z и sin z по формуле:

e iz = cos z + i sin z

Эти формулы носят название формул Эйлера . Леонард Эйлер вывел их в 1743.

Тригонометрические функции также можно выразить через гиперболические функции:

z = –i sh iz , cos z = ch iz, z = –i th iz.

где sh, ch и th – гиперболические синус, косинус и тангенс.

Тригонометрические функции комплексного аргумента z = x + iy , где x и y – действительные числа, можно выразить через тригонометрические и гиперболические функции действительных аргументов, например:

sin (x + iy ) = sin x ch y + i cos x sh y ;

cos (x + iy ) = cos x ch y + i sin x sh y .

Синус и косинус комплексного аргумента могут принимать действительные значения, превосходящие 1 по абсолютной величине. Например:

Если неизвестный угол входит в уравнение как аргумент тригонометрических функций, то уравнение называется тригонометрическим. Такие уравнения настолько часто встречаются, что методы их решения очень подробно и тщательно разработаны. С помощью различных приемов и формул тригонометрические уравнения сводят к уравнениям вида f (x ) = a , где f – какая-либо из простейших тригонометрических функций: синус, косинус, тангенс или котангенс. Затем выражают аргумент x этой функции через ее известное значение а.

Поскольку тригонометрические функции периодичны, одному и тому же а из области значений отвечает бесконечно много значений аргумента, и решения уравнения нельзя записать в виде одной функции от а . Поэтому в области определения каждой из основных тригонометрических функций выделяют участок, на котором она принимает все свои значения, причем каждое только один раз, и находят функцию, обратную ей на этом участке. Такие функции обозначают, приписывая приставку агс (дуга) к названию исходной функции, и называют обратными тригонометрическими функциями или просто аркфункциями.

Обратные тригонометрические функции.

Для sin х , cos х , tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x »), arcos x , arctg x и arcctg x . По определению, arcsin х есть такое число у, что

sin у = х .

Аналогично и для других обратных тригонометрических функций. Но такое определение страдает некоторой неточностью.

Если отразить sin х , cos х , tg х и ctg х относительно биссектрисы первого и третьего квадрантов координатной плоскости, то функции из-за их периодичности становятся неоднозначными: одному и тому же синусу (косинусу, тангенсу, котангенсу) соответствует бесконечное количество углов.

Чтобы избавиться от неоднозначности, из графика каждой тригонометрической функции выделяется участок кривой шириной p , при этом нужно, чтобы между аргументом и значением функции соблюдалось взаимно однозначное соответствие. Выбираются участки около начала координат. Для синуса в качестве «интервала взаимной однозначности» берется отрезок [–p /2, p /2], на котором синус монотонно возрастает от –1 до 1, для косинуса – отрезок , для тангенса и котангенса соответственно интервалы (–p /2, p /2) и (0, p ). Каждая кривая на интервале отражается относительно биссектрисы и теперь можно определить обратные тригонометрические функции. Например, пусть задано значение аргумента x 0 , такое, что 0 Ј x 0 Ј 1. Тогда значением функции y 0 = arcsin x 0 будет единственное значение у 0 , такое, что –p /2 Ј у 0 Ј p /2 и x 0 = sin y 0 .

Таким образом, арксинус – это функция агсsin а , определенная на отрезке [–1, 1] и равная при каждом а такому значению a , –p /2 a p /2, что sin a = а. Ее очень удобно представлять с помощью единичной окружности (рис. 15). При |а| 1 на окружности есть две точки с ординатой a , симметричные относительно оси у. Одной из них отвечает угол a = arcsin а , а другой – угол p - а. С учетом периодичности синуса решение уравнения sin x = а записывается следующим образом:

х = (–1) n arcsin a + 2p n ,

где n = 0, ±1, ±2,...

Так же решаются другие простейшие тригонометрические уравнения:

cos x = a , –1 = a = 1;

x = ±arcos a + 2p n ,

где п = 0, ±1, ±2,... (рис. 16);

tg х = a ;

x = arctg a + p n,

где п = 0, ±1, ±2,... (рис. 17);

ctg х = а ;

х = arcctg a + p n,

где п = 0, ±1, ±2,... (рис. 18).

Основные свойства обратных тригонометрических функций:

arcsin х (рис. 19): область определения – отрезок [–1, 1]; область значений – [–p /2, p /2], монотонно возрастающая функция;

arccos х (рис. 20): область определения – отрезок [–1, 1]; область значений – ; монотонно убывающая функция;

arctg х (рис. 21): область определения – все действительные числа; область значений – интервал (–p /2, p /2); монотонно возрастающая функция; прямые у = –p /2 и у = p /2 – горизонтальные асимптоты;


arcctg х (рис. 22): область определения – все действительные числа; область значений – интервал (0, p ); монотонно убывающая функция; прямые y = 0 и у = p – горизонтальные асимптоты.

Т.к. тригонометрические функции комплексного аргумента sin z и cos z (в отличие от функций действительного аргумента) принимают все комплексные значения, то и уравнения sin z = a и cos z = a имеют решения для любого комплексного a x и y – действительные числа, имеют место неравенства

½|e\e y e -y | ≤|sin z |≤½(e y +e -y),

½|e y e -y | ≤|cos z |≤½(e y +e -y ),

из которых при y ® Ґ вытекают асимптотические формулы (равномерно относительно x )

|sin z | » 1/2 e |y| ,

|cos z | » 1/2 e |y| .

Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу тригонометрическими функциями, встречаются уже в 3 в. до н. э. в работах математиков Древней Греции Евклида , Архимеда , Аполлония Пергского и других, однако эти соотношения не являлись самостоятельным объектом исследования, так что тригонометрические функции как таковые ими не изучались. Они рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 – 2-я половина 3 вв. до н. э.), Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30" с точностью до 10 –6 . Это была первая таблица синусов. Как отношение функция sin a встречается уже у Ариабхаты (конец 5 в.). Функции tg a и ctg a встречаются у аль-Баттани (2-я половина 9 – начало 10 вв.) и Абуль-Вефа (10 в.), который употребляет также sec a и cosec a . Ариабхата знал уже формулу (sin 2 a + cos 2 a ) = 1, а также формулы sin и cos половинного угла, с помощью которых построил таблицы синусов для углов через 3°45"; исходя из известных значений тригонометрических функций для простейших аргументов. Бхаскара (12 в.) дал способ построения таблиц через 1 с помощью формул сложения. Формулы преобразования суммы и разности тригонометрических функций различных аргументов в произведение выводились Региомонтаном (15 в.) и Дж. Непером в связи с изобретением последним логарифмов (1614). Региомонтан дал таблицу значений синуса через 1". Разложение тригонометрических функций в степенные ряды получено И.Ньютоном (1669). В современную форму теорию тригонометрических функций привел Л.Эйлер (18 в.). Ему принадлежат их определение для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией и ортогональности системы синусов и косинусов.