…Безобидны ли белые следы от самолетов? Увидеть невидимое… Инверсионный след, эффект Прандтля-Глоерта и прочие интересности

Конденсационный след от самолёта с четырьмя двигателями. Конденсируется водяной пар, образующийся при сгорании топлива

Конденсационный след от двухмоторного самолёта

Вихревые жгуты с законцовок крыла самолёта F/A-18

Конденсационный след от самолёта в ясную погоду держится долго и расползается на полнеба.

Внешние изображения
Примеры различных конденсационных следов
Boeing 777-269ER, Kuwait Airways. Сопровождается истребителем F-18 . Самолеты летят в одинаковых условиях, но мощность двигателей у B-777 больше, выбрасывается больше водяного пара. В результате – его след более насыщенный и начинает образовываться раньше, чем у истребителя.
Boeing 777, Turkish. Airbus A330, Air Berlin . Интервал по высоте – 6000 футов (1829 метров). Самолеты летят в разных условиях. У того, который летит выше, – след образуется, у другого – нет.
Fokker 100, BMI . Хотя у самолета два двигателя, они расположены недалеко друг от друга. Поэтому оба следа сливаются в один.
Airbus A319-132, Air China . Конденсационный след возникает в результате понижения давления и температуры воздуха над крылом.
Boeing 747-243B(SF), Southern Air . В образовании такого следа принимают участие обе причины – и понижение давления воздуха над крылом, и конденсация водяного пара, содержащегося в отработанных газах. Радуга – в результате отражения и преломления солнечного света на частицах следа.
Boeing 737-232, Canadian North . В комментарии к фотографии сказано: «Когда снаружи -39, нет необходимости смотреть вдаль в поисках конденсационного следа»
Ми-8ТВ, КомиАвиаТранс . Конденсационный след может появиться и у вертолета. Хорошо выявляется вихревая структура возмущённого воздуха.
Boeing 737-476, Qantas . Конденсат над крылом, по причине относительно высокой температуры испаряется, как только покидает зону пониженного давления. Интенсивные вихри, сбегающие с законцовок закрылков, существуют продолжительное время. Виден конденсат внутри вихрей.

Конденсационные следы до сих пор являются демаскирующим фактором для деятельности военной авиации, поэтому вероятность их появления рассчитывается авиационными метеорологами по соответствующим методикам, и экипажам выдаются рекомендации. Изменение высоты полёта в определённых пределах позволяет избежать или полностью устранить нежелательное влияние этого фактора.

Существует и антипод (противоположность) конденсационному следу - «обратный», «отрицательный» (очень редко встречаемые названия) след, образующийся при рассеивании элементов облачности (кристаллов льда) в пределах спутного следа при определённых условиях. Напоминает «обращение цвета» в графических редакторах компьютерных программ, когда голубое небо является облаком, а сам след - чистым голубым пространством. Отчётливо наблюдается с земли при слоистой или кучевой облачности незначительной вертикальной мощности и отсутствии других слоёв облачности, маскирующих голубой фон верхних слоёв атмосферы. Прекрасно видим экипажами самолётов, идущих в группе, и особенно хорошо с кормовой кабины (бомбардировщика, транспортного самолёта и т.п.)

Конденсационный след не следует путать со спутным следом (см. отдельную статью). Спутный след - это возмущенная область воздуха, всегда образующаяся за движущимся летательным аппаратом. Однако конденсационный след, взаимодействуя со спутным следом, рельефно выявляет вихревую структуру возмущенного воздуха, образуя интересные визуальные эффекты.

Интересно, что при работе турбореактивного двигателя на земле при определённых условиях может возникать отчётливо видимый вихревой жгут всасываемого в воздухозаборник воздуха.

Влияние на окружающую среду

По заявлениям климатологов , конденсационные следы оказывают влияние на климат , уменьшая температуру за счёт того, что вырождаются в

Иногда мы видим, как трассы от самолётов - белые следы в небе - висят в воздухе по несколько часов, иногда - даже суток. Нормально ли это и безопасны ли нерассеивающиеся белые следы?

Ответ редакции

В то, время как большинство людей не придают этому значения, часть населения Земли убеждена: это не обычные конденсационные следы, которые на больших высотах оставляют реактивные двигатели, а признаки распыления в воздухе какого-то химического аэрозоля. А в состав этого аэрозоля, как подозревают теоретики, может входить всё - от ядохимикатов до вирусов, разработанных в лабораториях.

Что такое «химиотрассы»

Слово «химиотрассы» (калька с английского «chemtrails» - химические следы) придумали для того, чтобы обозначать особенные, нетипичные следы, которые чертят в небе реактивные самолёты. Обычные трассы - белые следы, которые остаются за пролетающим на большой высоте реактивным самолётом, - рассасываются через несколько минут после появления. Химиотрассы же не исчезают несколько часов, иногда могут висеть на небе до двух суток, постепенно расплываясь и превращаясь в тонкие, полупрозрачные вытянутые облака, которых в природе в норме не бывает. Нередко на небе можно наблюдать и целую сетку из неисчезающих авиационных следов. Сторонники теории заговоров убеждены: посредством химиотрасс «мировое правительство» распыляет в атмосфере планеты химикаты, которые сделают климат более податливым к воздействию погодного оружия. Кстати, в США существует огромный парк самолётов типа «Боинг КС-135 Стратотанкер», который, будучи оборудован распылительным оборудованием, внешне неотличим от пассажирских боингов.

Кому это нужно

На Западе считается, что история с химиотрассами началась после публикации в 1996 году работы «Климат как усилитель силы: обладание погодой к 2025 году». Подписанная семью американскими военными в звании от майора до полковника, эта исследовательская работа заложила основу для американской военной доктрины XXI века. Суть новой концепции в том, что ядерное оружие отныне не только не считается главным, но и переводится на скамейку запасных. В 2000-х годах США не испытали ни одной атомной бомбы, а роль всепланетного пугала теперь принадлежит климатическому оружию.

Что такое HAARP

Этой англоязычной аббревиатурой называют программу высокочастотных исследований полярных сияний. Комплекс HAARP, расположенный на Аляске, почти аналогичен российскому комплексу «Сура», с той лишь разницей, что отечественный комплекс может только исследовать ионосферу, а HAARP - и исследовать, и модифицировать. А благодаря этому исследовательский, казалось бы, комплекс может быть эффективным климатическим оружием.

Во время одного из первых пусков система HAARP продемонстрировала: при помощи луча энергии высокой частоты, направленного в небо, можно создавать необычные погодные явления - например, не существующие в природе типы облаков, а также дожди, засухи и землетрясения. Однако для того чтобы системе было с чем работать, в атмосфере должны присутствовать определённые химикаты. Так, HAARP смог создать экспериментальные облака только после того, как два распыляющих самолёта создали над базой облако, состоящее из слаборадиоактивных солей бария.

Какая связь с нами

Сегодня длинные неисчезающие авиаследы наблюдают люди по всему миру. А журнал NationalGeographic даже посвятил химиотрассам целый фильм. Интересно, что на химиотрассы жалуются не только за пределами США, но и в самих Штатах. Так, например, в 2004 году группа жителей Гавайского архипелага выступила с ужасающим заявлением. По их мнению, в состав аэрозолей, распыляемых над их островами, кроме всего прочего входят и соли алюминия. Обычная земная флора гибнет при контакте с веществом такого аэрозоля: кора пальм трескается и теряет прочность, а древесина едва ли не превращается в жидкость. Для чего кому-то может понадобиться такой вандализм? Оказывается, Гавайские острова уже давно обхаживает американская суперкорпорация «Монсанто». Как убеждены гавайцы, распыляя над островами алюминиевые аэрозоли, неизвестные силы пытаются заставить жителей архипелага покупать у «Монсанто» саженцы растений, стойкие к алюминию.

Угроза здоровью

Разумеется, доверять силам, которые позволяют себе модифицировать химический состав атмосферы, не хочет никто. И в адрес таинственных распылителей звучат серьёзные обвинения: исследователи и просто озабоченные граждане всех стран мира подозревают - новые штаммы гриппа, атипичной пневмонии и эпизоотических вирусов, вероятно, попадают в атмосферу после распылений. Но чтобы досконально изучить феномен и с уверенностью подтвердить или опровергнуть эти предположения, необходимо взять на анализ материал конденсационного следа. А для этого требуется специально оборудованная авиалаборатория.

Красивые пушистые полосы, заставляющие долго смотреть вслед пролетающему самолету, не только привлекают взгляды на земле, но и заметно влияют на климат. Поэтому ученые из Европы, где власти всерьез озабочены сокращением выбросов парниковых газов, предлагают все более экзотические решения, касающиеся в том числе авиации - одного из основных техногенных источников загрязнения атмосферы.

Инверсионный (конденсационный) след самолета - не что иное, как частички льда, которые конденсируются из водяного пара при движении самолета, летящего, как правило, на эшелоне, на высотах около 10 км. След образуется не всегда: для его формирования самолет

должен влететь в область с очень низкой температурой и повышенной влажностью, близкой к состоянию насыщения.

Как правило, непосредственной причиной возникновения следа являются отработанные газы реактивных двигателей. В их состав входит водяной пар, углекислый газ, оксиды азота, углеводороды, копоть и соединения серы. Из этого только водяной пар и сера ответственны за появление инверсионного следа. Сера служит образованию точек конденсации, при этом сам инверсионный след может формироваться как из водяного пара, входящего в состав отработанных газов, так и из пара, входящего в состав пересыщенной атмосферы.

Задумываться о воздействии искусственных облаков на климат ученые начали давно. Сегодня известно, что инверсионные облака могут способствовать как охлаждению, отражая солнечный свет обратно в космос, так и работать на глобальное потепление, удерживая инфракрасное излучение Земли в атмосфере и не давая ему покинуть планету.

Однако три года назад ученые доказали, что второй эффект, парниковый, гораздо сильнее.

В зависимости от условий атмосферы и скорости ветра инверсионный след может оставаться в небе до 24 часов и иметь длину до 150 км. Ученые из Университета Рединга (Великобритания) решили выяснить, как заставить самолеты летать бесследно, сохранив при этом рентабельность перевозок.

«Может показаться, что самолету нужно делать немалый крюк, чтобы избежать инверсионного следа. Но из-за кривизны Земли вам требуется лишь немного увеличить расстояние, чтобы избежать действительно длинных следов», — говорит Эмма Ирвин, автор исследования, опубликованного в журнале Environmental Research Letters .

Их расчеты показали, что для небольших ближнемагистральных самолетов отклонение от насыщенных влагой областей, даже в 10 раз превышающее длину самого инверсионного следа, способно уменьшить негативное влияние на климат.

«Для больших самолетов, которые выбрасывают больше углекислого газа на километр, имеет смысл отклонение в три раза большее (чем след. — «Газета.Ru»)», — говорит Ирвин. В своем исследовании ученые оценили воздействие на климат, оказываемое лайнерами, летящими на одной и той же высоте.

К примеру, самолету, летящему из Лондона в Нью-Йорк, чтобы избежать образования длинного следа, достаточно отклониться на два градуса,

что добавит к его пути 22 км, или 0,4% всего расстояния.

В настоящее время ученые вовлечены в работу над проектом, целью которого является оценка возможности перекройки существующих трансатлантических маршрутов с учетом воздействия авиации на климат. Реализовать предложения климатологов значит в будущем столкнуться с проблемами в области экономики и безопасности авиационных перевозок, признают эксперты. «Диспетчерские службы должны оценить, являются ли подобные перекройки маршрутов рейс от рейса осуществимыми и безопасными, а синоптики - понять, способны ли они надежно прогнозировать, где и когда могут образоваться инверсионные облака», — считает Ирвин.

Увидеть невидимое… Инверсионный след, эффект Прандтля-Глоерта и прочие интересности.

Мы ведь даже самое простое, движение воздуха, увидеть не можем. Воздух – газ, и газ этот прозрачный, этим все сказано

Но все же природа слегка сжалилась над нами и дала нам небольшую возможность поправить положение. А возможность эта в том, чтобы прозрачную среду сделать непрозрачной или хотя бы цветной. Говоря умным словом, визуализировать, пишет Юрий

Насчет цвета – это мы можем сделать сами (правда не всегда и не везде, но можем), например использовать дым (лучше цветной). А насчет обычной непрозрачности, тут природа нам помогает сама.

Самое непрозрачное в атмосфере – это облака, то есть влага, та которая конденсировалась из воздуха. Вот этот самый процесс конденсации и позволяет нам, хоть и косвенно, но все же довольно наглядно увидеть кое-какие процессы, происходящие при взаимодействии летательного аппарата с воздушной средой.

Немного о конденсации. Когда она происходит, то есть когда вода, находящаяся в воздухе становится видна. Водяной пар может накапливаться в воздухе до определенного уровня, называемого уровнем насыщения. Это что-то типа соляного раствора в банке с водой.

Соль в этой воде будет растворяться только до определенного уровня, а потом происходит насыщение и растворение прекращается. В детстве не раз это пробовал делать.

Уровень насыщения атмосферы водяным паром определяется точкой росы. Это такая температура воздуха при которой водяной пар в нем достигает состояния насыщения. Этому состоянию (то есть этой точке росы) соответствует определенное постоянное давление и определенная влажность.

Когда атмосфера в какой-то ее области достигает состояния перенасыщения, то есть пара становится слишком много для данных условий, то происходит конденсация в этой области.

То есть вода выделяется в виде мельчайших капелек (либо сразу кристаллов льда, если окружающая температура очень низкая) и становится видна. Как раз то, что нам и надо.

Чтобы это произошло, надо либо повысить количество воды в атмосфере, что означает увеличить влажность, либо понизить температуру окружающего воздуха ниже точки росы. В обоих случаях произойдет выделение лишнего пара в виде сконденсировавшейся влаги и мы увидим белый туман (или что-то вроде того).

То есть, как уже понятно, в атмосфере этот процесс может иметь место, а может и нет. Все зависит от местных условий.

То есть для этого нужна влажность не ниже определенной величины, определенная, соответствующая ей температура и давление. Но если все эти условия соответствуют друг другу, мы можем наблюдать иной раз довольно интересные явления.Однако обо всем по порядку.

Первое – это всем известный инверсионный след . Это название произошло от метеорологического термина инверсия (переворот), точнее температурная инверсия, когда с ростом высоты местная температура воздуха не падает, а растет (бывает и такое).

Такое явление может способствовать образованию тумана (или облаков), но для самолетного следа оно по сути своей не подходит и считается устаревшим. Сейчас вернее говорить конденсационный след . Ну, правильно, суть ведь здесь именно в конденсации.

В шлейфе газа выходящего из авиационных двигателей содержится достаточное количество влаги, повышающее местную точку росы в воздухе непосредственно за двигателями. И, если она становится выше температуры окружающего воздуха, то при остывании имеет место конденсация.

Ее облегчает наличие так называемых центров конденсации, вокруг которых из перенасыщенного (неустойчивого, можно сказать) воздуха концентрируется влага. Этими центрами становятся частички сажи или несгоревшего топлива, вылетающие из двигателя.

Если окружающая температура достаточно низка (ниже 30-40° С), то происходит так называемая сублимация. То есть пар, минуя жидкую фазу, сразу превращается в кристаллики льда. В зависимости от атмосферных условий и взаимодействия со спутной струей, тянущейся за самолетом, инверсионный (конденсационный) след может приобретать различные, порой довольно причудливые формы.

На видео показано образование инверсионного (конденсационного) следа , заснятое из кормовой кабины самолета (кажется это ТУ-16, хотя не уверен). Видны стволы кормовой огневой установки (пушки).

Второе о чем следовало бы сказать, это вихревые жгуты . Явление это серьезное, напрямую связанное с индуктивным сопротивлением, и, конечно, неплохо было бы как-то его визуализировать.

Кое-что в этом плане мы уже видели. Я имею ввиду приведенный в указанной статье ролик, показывающий использование дыма на наземной установке.

Однако это же самое можно сделать и в воздухе. И при этом получить потрясающе зрелищные виды. Дело в том, что у многих военных летательных аппаратов, особенно у тяжелых бомбардировщиков, транспортников, а также вертолетов присутствуют на борту так называемые пассивные средства защиты. Это, например, ложные тепловые цели (ЛТЦ).

Многие боевые ракеты, способные атаковать летательный аппарат (как класса «земля-воздух», так и класса «воздух-воздух») обладают инфракрасными головками самонаведения. То есть реагируют на тепло. Чаще всего это бывает тепло двигателя летательного аппарата.

Так вот ЛТЦ обладают температурой значительно большей, нежели температура двигателя, и ракета при своем движении отклоняется на эту ложную цель, а самолет (или вертолет) остается целым.

Но это так, для общего знакомства Главное тут в том, что ЛТЦ отстреливаются в большом количестве, и каждая из них (представляя собой миниатюрную ракету) оставляет за собой дымный след.

И, вот, множество этих следов, объединяясь и закручиваясь в вихревых жгутах , визуализируют их и создают подчас потрясающие по красоте картины. Одна их самых известных – это «Дымный ангел». Он получился при выстреле ЛТЦ транспортного самолета Boeing C-17 Globemaster III.

Справедливости ради стоит сказать, что и другие летательные аппараты тоже неплохие художники …

Однако, вихревые жгуты можно увидеть и без использования дыма. Конденсация атмосферного пара нам поможет и здесь. Как мы уже знаем, воздух в жгуте получает вращательное движение и, тем самым перемещение от центра жгута к его периферии.

Это приводит к расширению и падению температуры в центре жгута, и, если влажность воздуха достаточно высока, то могут создаться условия для конденсации влаги.

Тогда мы можем увидеть вихревые жгуты воочию. Эта возможность зависит как от условий атмосферы, так и от параметров самого летательного аппарата.

И чем больше углы атаки, на которых летает самолет, тем вихревые жгуты более интенсивны и визуализация их за счет конденсации более вероятна. Особенно это характерно для маневренных истребителей, а также хорошо проявляется на выпущенных закрылках.

Кстати, точно такого же рода атмосферные условия позволяют увидеть вихревые жгуты, образующиеся на концах лопастей (которые в данной ситуации суть те же крылья) турбовинтовых или поршневых двигателей некоторых самолетов. Тоже довольно эффектная картина.

Из приведенных видео характерен ролик с самолетами ЯК-52. Там явно идет дождь и влажность, таким образом, высокая.

Часто происходит взаимодействие вихревых жгутов с инверсионным (конденсационным) следом , и тогда картины могут быть довольно причудливы.

Теперь следующее. Ранее я об этом уже упоминал, но не грех сказать еще раз. Подъемная сила. Как пошутил бы мой приснопамятный товарищ: «Да где она?! Кто ее видел?» Да вобщем никто. Но косвенное подтверждение все-таки можно увидеть.

Чаще всего такая возможность предоставляется на каком-нибудь авиашоу. Самолеты, выполняющие различные, довольно экстремальные эволюции конечно оперируют с большими величинами подъемной силы, возникающей на их несущих поверхностях.
Но большая подъемная сила, чаще всего означает большое падение давления (а значит и температуры) в области над крылом, что, как мы уже знаем, при определенных условиях может вызвать конденсацию водяного атмосферного пара, и тогда мы воочию убедимся в том, что условия для создания подъемной силы есть ….

Для иллюстрации сказанного о вихревых жгутах и подъемной силе есть хорошее видео:

В следующем видео эти процессы сняты во время посадки из пассажирского салона самолета:

Однако справедливости ради надо сказать, что это явление в визуальном плане может сочетаться с эффектом Прандтля-Глоерта (по сути дела это, вобщем-то, он и есть).

Название страшное, но принцип все тот же, а визуальный эффект значительный …

Суть этого явления заключается в том, что позади летательного аппарата (чаще всего самолета), движущегося с высокой скоростью (достаточно близкой к скорости звука) может образовываться облако сконденсировавшегося водяного пара.

Происходит это из-за того,что при движении самолет как бы двигает перед собой воздух и, тем самым, создает область повышенного давления перед собой и область пониженного после себя.

После пролета, воздух начинает заполнять эту область с малым давлением из близлежащего пространства, и, таким образом, в этом пространстве объем его увеличивается, а температура падает.

И если при этом есть достаточная влажность воздуха, а температура опускается ниже точки росы, то происходит конденсация пара и появляется небольшое облако.

Существует оно обычно недолго. Когда давление выравнивается, то поднимается местная температура и сконденсировавшаяся влага вновь испаряется.

Частенько при появлении такого облака говорят, что самолет проходит звуковой барьер, то есть переходит на сверхзвук. На самом деле это не совсем так. Эффект Прандтля- Глоерта , то есть возможность конденсации зависит от влажности воздуха и его местной температуры, а также от скорости самолета.

Чаще всего такое явление характерно для околозвуковых скоростей (при относительно малой влажности), но может происходить и на относительно малых скоростях при высокой влажности воздуха и на малых высотах, особенно над водной поверхностью.

Однако форма пологого конуса, которую часто имеют облака конденсации при движении на больших скоростях тем не менее часто получается из-за наличия так называемых местных скачков уплотнения, образующихся на больших около- и сверхзвуковых скоростях.

Не могу также не вспомнить о своих любимых турбореактивных двигателях. Конденсация и тут позволяет увидеть кое-что интересное. При работе двигателя на земле на больших оборотах и достаточной влажности можно увидеть “воздух на входе в двигатель”

На самом деле не совсем так, конечно. Просто двигатель интенсивно всасывает воздух и на входе образуется некоторое разрежение, как следствие падение температуры, из-за которого происходит конденсация водяного пара.

Кроме того часто возникает еще и вихревой жгут , потому что воздух на входе закручивается рабочим колесом компрессора (вентилятора). В жгуте по известным нам уже причинам тоже конденсируется влага и он становится виден. Все эти процессы хорошо видны на видео.

Ну и в завершение приведу еще один очень интересный, на мой взгляд, пример. Он уже не связан с конденсацией пара и цветной дым нам тут не понадобится. Однако природа и без этого наглядно иллюстрирует свои законы.

Все мы неоднократно наблюдали за тем, как многочисленные стаи птиц улетают осенью на юг, а весной потом возвращаются в родные места. При этом большие тяжелые птицы, такие, как гуси (я уж не говорю про лебедей) летят, обычно, интересным строем, клином. Впереди идет вожак, а сзади по косой линии расходятся вправо и влево остальные птицы. Причем каждая последующая летит правее (либо левее) впереди летящей. Никогда не задумывались почему они летят именно так?

Оказывается это имеет прямое отношение к нашей теме. Птица – тоже своего рода летательный аппарат, и за ее крыльями образуются примерно такие же вихревые жгуты, как и за крылом самолета. Они также вращаются (ось горизонтального вращения проходит через концы крыльев), имея за корпусом птицы направление вращения вниз, а за оконечностями ее крыльев вверх.

То есть получается, что птица, летящая сзади и правее (левее) попадает во вращательное движение воздуха вверх. Этот воздух как бы поддерживает ее и ей легче держаться на высоте.

Она меньше тратит сил. Это очень важно для тех стай, которые преодолевают большие расстояния. Птицы меньше устают и могут лететь дальше. Только вожаки не имеют такой поддержки. И именно поэтому они периодически меняются, становясь в конец клина для отдыха.

Образцом такого рода поведения часто называют канадских гусей. Считается, что таким способом они при дальних перелетах «в команде» экономят до 70% своих сил, значительно повышая эффективность перелетов.

Это и есть еще один способ косвенной, но достаточно наглядной визуализации аэродинамических процессов.

Природа наша достаточно сложно и очень целесообразно устроена и периодически нам об этом напоминает. Человеку остается только не забывать это и перенимать у нее тот огромный опыт, которым она с нами щедро делится. Главное здесь только не переусердствовать и не навредить…

И в конце видео о канадских гусях.

Окт 26, 2016 Галинка

В детстве мы часто любили наблюдать, как летают самолеты, особенно интересно было видеть в голубом небе белую дорогу от лайнера. Тогда мы не задумывались, как называется след от самолета в небе, почему он оставляет за собой дорогу. В школе мы изучали физические явления, которые просто объясняли этот «феномен», но сейчас стоит о них вспомнить, чтобы четко можно было объяснить хотя бы своему ребенку, почему самолет оставляет след в небе.

След от самолета в небе

Маленькие дети вряд ли знают такой термин, как конденсация, хотя в самом раннем возрасте мы им объясняем, почему идет дождь. Конденсацию можно объяснить на примерах, показав зеркало в ванной или трубы, еще можно видеть как запотевают зимой окна в машине.

Происходит это потому, что горячий пар переходит в жидкое состояние и оседает в виде конденсата. Вообще, для того чтобы он образовался нужны три вещи:

  • влажный воздух;
  • разница температур;
  • островки конденсации, например, пылинки в воздухе, они везде есть.

В ванной, после горячего душа, влажный горячий воздух соприкасается с холодным зеркалом, пар переходит в жидкость (воду) и оседает на нем, получается конденсат.

Утренняя роса на тюльпанах

Проведем эксперимент

Конденсат можно сделать самому и быстро увидеть, как происходит это явление. Налейте воду в любую емкость, например в пластмассовую бутылку, и поместите ее в морозилку, минут на 10-20. После этого достаньте ее и посмотрите, как емкость покроется каплями воды – это конденсат. Теплые пары воздуха, присутствующие в комнате, соприкасаются с емкостью и переходят в жидкость, которая стекает каплями по ней.

В природе мы часто наблюдаем капли росы на траве. Теперь мы можем объяснить ребенку откуда она там взялась. Воздух ночью охлаждается, вместе с ним и водяной пар, который контактируя с теплыми объектами, находящимися на Земле (например, с травой), переходит в воду.

Как образуется след от самолета

Теперь посмотрим, что происходит, когда самолет курсирует на большой высоте. Раньше когда говорили, что самолет оставляет белый след, называли его конденсационным по аналогии с физическим явлением. Температура воздуха в атмосфере понижается с высотой, на каждом километре высоты, она ниже на 6 градусов.

Там, где курсируют самолеты, температура воздуха может быть ниже -40 градусов по Цельсию. Из двигателя работающего аэролайнера вылетают горячие струи газов и пара, который конденсируется вокруг частичек дыма от не полностью сжигаемого топлива. Образуется что-то в виде длинного облака, которое впоследствии «рассосется». Иногда его называют не конденсационный, а инверсионный след от самолета. Но в Википедии стоит пометка, что это устаревшее название. Да и лучше пользоваться термином, который связан с физическим явлением и поэтому становится «говорящим».

Как следы самолета влияют на климат планеты

Воздух в атмосфере бывает слишком влажным, но влага не может конденсироваться из-за того, что нет ядер конденсации, например, частичек пыли. Самолет же, пролетая высоко, оставляет за собой такие ядра конденсации, частички неполного сгорания топлива. Чем ярче виден след от самолета, тем влажность воздуха больше и следует ждать дождей. Если же след слабый и быстро исчезает, то погода, скорее всего, будет ясной.

Конденсационные следы самолетов на небе, видимые со спутника

Ученые считают, что следы от самолетов могут влиять на климат планеты. Над теми территориями, где часто курсируют самолеты, все небо покрывается белыми следами. Так вот, мнения ученых о влиянии их на климат расходятся. Одни считают, что образующиеся облака препятствуют охлаждению атмосферы и этим вызывают потепление климата. Другие считают это явление положительным, так как следы от самолетов увеличивают отражательную способность атмосферы, защищая все живое на земле от слишком сильного воздействия ультрафиолетовых лучей.