«Закон сохранения электрического заряда

— один из фундаментальных законов природы. Закон сохранения заряда был открыт в 1747 г. Б. Франклином.

Электрон - частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации , была предложена Э. Резерфордом . На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.

Знания о строении атома позволяют объяснить явление электризации трением . Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов , а на другом - их избыток . В этом случае первое тело становится заряженным положительно , а второе - отрицательно .

При электризации происходит перераспределение заряда , электризуются оба тела, приобретая равные по модулю заряды противоположных знаков. При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной:

q 1 + q 2 + … + q n = const.

Алгебраическая сумма зарядов пластин до и после электризации равна нулю. Записанное равенство выражает фундаментальный закон природы - закон сохранения электрического заряда .

Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел , т.е. для совокупности тел, изолированных от других объектов.

Хендрик Антон Лоренц. Закон Био-Савара-Лапласа. Ампер Андре-Мари. Магнитное поле. Вектор магнитной индукции. Инструкция к просмотру. Линии магнитной индукции полей. Ханс Эрстед. Графическое изображение полей. Индукция магнитного поля прямолинейного тока. Направление вектора магнитной индукции. Масс-спектрограф. Опыт Эрстеда. Применение. Ампер присутствовал на заседании Академии. Модуль вектора магнитной индукции.

«Программа энергосбережения» - С уважением к энергосбережению. Щели в оконных рамах. Программа повышения энергетической эффективности. Кран. Работа в творческих мастерских. Цветной телевизор. Экономические задачи. Заседание дискуссионного клуба. Умное потребление. Энергосбережение. Час Земли. Энергопотребление и его последствия. Энергетические проблемы человечества. Рациональное использование энергии. Холодильник. Острова. Анкета.

««Законы Ньютона» 10 класс» - Скорость лыжника. Силы, с которыми тела действуют друг на друга. Проверь себя. Принцип относительности Галилея. Неинерциальные системы отсчета. Яблоко и Земля. Законы Ньютона. Найдите построением равнодействующую сил. Заполнить обобщающую таблицу. Ускорение тела. Системы отсчета. Динамика. Лебедь. Особенности III закона. Принцип суперпозиции сил. Направления скорости. Инерция. Скорость тела. Ускорение тела прямо пропорционально силе.

«МАГАТЭ» - Конфликт. Сферы деятельности. Дуайт Эйзенхауэр. Атом для мира. Состав и организационная структура. Агентство по атомной энергии. Штаб-квартира МАГАТЭ. Широкий спектр услуг. Контрольные функции. Участники. Создание МАГАТЭ. МАГАТЭ. Межправительственная организация. Нераспространение ядерного оружия. Мохаммед аль-Барадеи.

««Тепловые двигатели» 10 класс» - Двухтактный двигатель. Основные компоненты двигателя. Степень сжатия. Иван Ползунов. Охрана природы. Виды двигателей. Паровая турбина. Двигатель работает по четырехтактному циклу. Томас Ньюкомен. Опасность. Дизельные двигатели. Этапы развития ДВС. КПД двигателя. Огненное сердце. Немного истории. Пионеры ракетно-космической техники. Автомобили на ДВС завоевали мир. Профилактические меры. Решение выше перечисленных проблем жизненно важно для человека.

«Электролиз растворов электролитов» - Электрический ток в электролитах. Получение химически чистых веществ. Электрический ток. Распад нейтральных молекул. Первый закон электролиза. Заряд. Применение электролиза. Гальванопластика. Гальваностегия. Электролитическая диссоциация. Получение алюминия. Источник тока. Законы электролиза. Гальванотехника. Применение. Электролиз. Электрический ток в жидкостях. Анод. Катод. NaCl.

О том, что электрические заряды в природе существуют, человечество знало со времен древнегреческих натурфилософов, которые открыли, что кусочки янтаря, если их потереть кошачьей шерстью, начинают отталкиваться друг от друга. Сегодня мы знаем, что электрический заряд, подобно массе, является одним из фундаментальных свойств материи. Все без исключения элементарные частицы, из которых состоит материальная Вселенная, имеют тот или иной электрический заряд — положительный (подобно протонам в составе атомного ядра), нейтральный (подобно нейтронам того же ядра) или отрицательный (подобно электронам, образующим внешнюю оболочку атомного ядра и обеспечивающим его электрическую нейтральность в целом).

Одним из полезнейших приемов в физике является выявление совокупных (суммарных) свойств системы, которые не изменяются ни при каких изменениях ее состояния. Такие свойства, выражаясь научным языком, являются консервативными , поскольку для них выполняются законы сохранения . Любой закон сохранения сводится к констатации того факта, что в замкнутой (в смысле полного отсутствия «утечки» или «поступления» соответствующей физической величины) консервативной системе соответствующая величина, характеризующая систему в целом, со временем не изменяется.

Электрический заряд как раз и относится к категории консервативных характеристик замкнутых систем. Алгебраическая сумма положительных и отрицательных электрических зарядов — чистый суммарный заряд системы — не изменяется ни при каких обстоятельствах, какие бы процессы в системе ни происходили. В частности, при химических реакциях, отрицательно заряженные валентные электроны могут каким угодно образом перераспределяться между внешними оболочками образующих химические связи атомов различных веществ — ни совокупный отрицательный заряд электронов, ни совокупный положительный заряд протонов в ядре в замкнутой химической системе не изменится. И это лишь самый простой пример, поскольку при химических реакциях не происходит трансмутаций самих протонов и электронов, в результате чего число положительных и отрицательных зарядов в системе можно просто подсчитать.

При более высоких энергиях, однако, электрически заряженные элементарные частицы начинают вступать во взаимодействия друг с другом, и проследить за соблюдением закона сохранения электрического заряда становится значительно сложнее, однако он выполняется и в этом случае. Например, при реакции спонтанного распада изолированного нейтрона происходит процесс, который можно описать следующей формулой:

где p — положительно заряженный протон, n — нейтрально заряженный нейтрон, e — отрицательно заряженный электрон, а v — нейтральная частица, называемая нейтрино. Нетрудно увидеть, что и в исходном материале, и в продукте реакции суммарный электрический заряд равен нулю (0 = (+1) + (-1) + 0), однако в этом случае налицо изменение общего числа положительно и отрицательно заряженных частиц в системе. Это — одна из реакций радиоактивного распада , в которых закон сохранения алгебраической суммы электрических зарядов выполняется, несмотря на образование новых заряженных частиц. Такие процессы характерны для взаимодействий между элементарными частицами, при которых из частиц с одними электрическими зарядами рождаются частицы с другими электрическими зарядами. Суммарный электрический заряд замкнутой системы, в любом случае, остается неизменным.

В основе всего разнообразия явлений природы лежат 4 фундаментальных взаимодействия между элементарными частицами: сильное, электромагнитное, слабое и гравитационное. Каждый вид взаимодействия связывается с определенной характеристикой частиц: например – электромагнитное – с электрическим зарядом. Электрический заряд является неотъемлемым свойством некоторых элементарных частиц. Элементарными частицами будем называть мельчайшие известные в настоящее время частицы материи. Все тела в природе способны электризоваться, т.е. приобретать электрический заряд. Электрический заряд частицы - основная ее характеристика. Он обладает тремя фундаментальными свойствами:

Самая маленькая частица электрического заряда - называется элементарным зарядом.

Заряд всех элементарных частиц (если он не равен нулю) одинаков по абсолютной величине.

Положительный элементарный заряд будем обозначать символом (+е), отрицательный – (-е).

Из протонов, электронов и нейтронов построены атомы и молекулы любого вещества. Известны также частицы, называемые резонансами, заряд которых равен 2е.

2) Всякий заряд q образуется совокупностью элементарных зарядов, и является целым кратным е.

Электрический элементарный заряд очень мал, поэтому можно считать возможную величину макроскопических зарядов изменяющейся непрерывно.

3) Если физическая величина может принимать только определенные, дискретные значения, то говорят, что эта величина квантуется. Электрический заряд квантуется.

Величина заряда, измеряемая в различных инерциальных системах отсчета, оказывается одинаковой. Его величина не зависит от системы отсчета, а значит, не зависит от того, движется он или покоится.

Электрический заряд является релятивистски инвариантным. Электрические заряды могут исчезать и возникать вновь. Но всегда возникают или исчезают 2 электрических заряда противоположных знаков. Электрон и позитрон при встрече аннигилируют , т.е. превращаются в нейтральные гамма-фотоны, при этом исчезают заряды +е и -е. Если гамма-фотон попадает в поле атомного ядра, то рождается пара частиц – электрон и позитрон, при этом возникают заряды +е и -е.

Закон сохранения электрического заряда . Он был установлен из обобщения опытных данных и экспериментально подтвержден в 1843 г. физиком М. Фарадеем.

Электрически изолированной системой будем называть систему, если между ней и внешними телами нет обмена электрическими зарядами. В такой системе могут возникать новые электрически заряженные частицы, но всегда рождаются частицы, суммарный электрический заряд которых равен нулю.

Алгебраическая сумма электрических зарядов любой электрически замкнутой системы остается неизменной, какие бы процессы не происходили внутри этой системы .

где- q 1 и q 2 -заряды тел системы до взаимодействия, а q 1 ¢ и q 2 ¢ - после взаимодействия.

Закон сохранения электрического заряда связан с релятивистской инвариантностью заряда. Действительно, если бы величина заряда зависела от его скорости, то, приведя в движение заряды одного какого-то знака, мы изменили бы суммарный заряд изолированной системы.

В нашей стране с 1982 введена система единиц СИ. Обозначается электрический заряд буквами - q или Q . Единицей измерения электрического заряда в СИ является Кулон, ([q] = 1 Кл), кулон – производная единица измерения.

1 Кулон - это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1 сек.

- [м], - [кг], -[сек], [ I ]-, - K ,

1Кл = 2,998 ·10 9 СГСЭ единиц заряда; или 1СГСз = 1/3·10 -9 Кл, e = +1,6·10 -19 Кл.

СГСЭ система - (см, г, с и СГСЭ единица заряда) называется абсолютной электростатической системой единиц.

СГСЭ единица заряда это такой заряд, который взаимодействует в вакууме с равным ему и находящимся на расстоянии 1 см зарядом с силой в 1 дину.

Элементарный заряд равен: e =+1,6·10 -19 Кл = 4,80·10 -10 СГСЭ - единиц заряда.

В СИ единицей силы служит ньютон (Н), 1Н= 10 5 дин .