Закон джоуля ленца обозначение. Применение закона Джоуля-Ленца. Закон Джоуля - Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника , в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt .

Учитывая, что U = IR , в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Где применяется закон Джоуля-Ленца?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии . Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей . Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Энергия направленного движения заряженных частиц расходуется на нагрев кристаллической решетки проводника.

2. Чему равно количество теплоты, получаемое кристаллической решеткой проводника от направленно движущихся заряженных частиц?

Количество теплоты, которое получила кристаллическая решетка, равно работе электрического тока.

3. Сформулируйте закон Джоуля-Ленца. Запишите его математическое выражение.

Количество теплоты, которое выделилось в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и

времени прохождения тока по проводнику.

4. Дайте определение мощности электрического тока. Приведите формулу для расчета этой мощности.

Мощность электрического тока - работа электрического поля, совершаемая при упорядоченном движении заряженных частиц по проводнику, отнесенная ко времени, за которое эта работа совершается.

5. Как зависит мощность, выделяемая в проводниках с током, от типа их соединения?

Если проводники соединены последовательно, то мощность прямо пропорциональна их сопротивлению. Если параллельно - то мощность обратно пропорциональны их сопротивлению. Закон Джоуля - Ленца

Закон Джоуля - Ленца (по имени английского физика Джеймса Джоуля и русского физика Эмилия Ленца, одновременно, но независимо друг от друга открывших его в 1840г) - закон, дающий количественную оценку теплового действия электрического тока.

При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причём количество выделенного тепла будет равно работе электрических сил:

Q = W

Закон Джоуля - Ленца: количество тепла, выделяемого в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени его прохождения.

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии, понижая в результате силу тока. Повышение напряжения снижает электробезопасность линий электропередачи. В случае применения высокого напряжения в цепи для сохранения прежней мощности потребителя придется увеличить сопротивление потребителя (квадратичная зависимость. 10В, 1 Ом = 20В, 4 Ом). Подводящие провода и потребитель соединены последовательно. Сопротивление проводов (R w ) постоянное. А вот сопротивление потребителя (R c ) растет при выборе более высокого напряжения в сети. Также растет соотношение сопротивления потребителя и сопротивления проводов. При последовательном включении сопротивлений (провод - потребитель - провод) распределение выделяемой мощности (Q ) пропорционально сопротивлению подключенных сопротивлений. ; ; ; ток в сети для всех сопротивлений постоянен. Следовательно имеем соотношение Q c / Q w = R c / R w ; Q c и R w это константы (для каждой конкретной задачи). Определим, что . Следовательно, мощность выделяемая на проводах обратно пропорциональна сопротивлению потребителя, то есть уменьшается с ростом напряжения. так как . (Q c - константа); Объеденим две последние формулы и выведем, что ; для каждой конкретной задачи - это константа. Следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.Ток проходит равномерно.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Основная статья : Предохранитель (электричество)

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Закон Джоуля - Ленца

Эмилий Христианович Ленц (1804 - 1865) – русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление индукционного тока, и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте тепловые действия тока, независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля – Ленца, формула его выражает следующим образом:

где Q – количество выделившейся теплоты, l – ток, R – сопротивление проводника, t – время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами – джоулями. Поэтому коэффициент пропорциональности в законе Джоуля – Ленца равен единице. В этой системе формула Джоуля – Ленца имеет вид:

Закон Джоуля – Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля – Ленца.

На основании закона Ома

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля – Ленца:

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае электрический ток во всех проводниках одинаков. Поэтому, когда происходит последовательное соединение нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров – медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как удельное сопротивление её наибольшее, она сильнее и нагревается.

Если проводники соединить параллельно, то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки – медную, железную и никелиновую – параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в медной проволоке, она и нагреется сильнее остальных.

Беря за основу закон Джоуля – Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

Закон Джоуля - Ленца

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq = Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

(99.1)

Если сопротивление проводника R, то, используя закон Ома (98.1), получим

(99.2)

Из (99.1) и (99.2) следует, что мощность тока

(99.3)

Если сила тока выражается в амперах, напряжение - в вольтах, сопротивление - в омах, то работа тока выражается в джоулях, а мощность - в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт-ч) и киловатт-час (кВт-ч). 1 Вт×ч - работа тока мощностью 1 Вт в течение 1 ч; 1 Вт-ч = 3600 Вт-с = 3,6-103 Дж; 1 кВт-ч=103 Вт-ч=3,6-106 Дж.

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

(99.6)

Используя дифференциальную форму закона Ома (j = gE)и соотношение r = 1/g, получим

(99.7)

Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля - Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847-1923) лампы накаливания. На нагревании проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761-1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.

Формула закона джоуля ленца. краткоо

Нина холод

Закон Джоуля Ленца определяет выделенное количество тепла на участке электрической цепи обладающей конечным сопротивлением при прохождении тока через нее. Обязательным условием является тот факт, что на этом участке цепи должны отсутствовать химические превращения. Возьмём проводник, к концам которого приложено напряжение. Следовательно, через него протекает ток. Таким образом, электростатическое поле и внешние силы совершают работу по перемещению электрического заряда от одного конца проводника к другому.
Если при этом проводник остается неподвижный и внутри него не происходят химические превращения. То вся работа, затрачиваемая внешними силами электростатического поля, идет на увеличение внутренней энергии проводника. То есть на его разогрев.

Эмилий Христианович Ленц (1804 - 1865) - русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля - Ленца, формула его выражает следующим образом:

где Q - количество выделившейся теплоты, l - ток, R - сопротивление проводника, t - время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами - джоулями. Поэтому коэффициент пропорциональности в законе Джоуля - Ленца равен единице. В этой системе формула Джоуля - Ленца имеет вид:

Закон Джоуля - Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля - Ленца.

На основании закона Ома

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля - Ленца:

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае во всех проводниках одинаков. Поэтому, когда происходит нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров - медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как её наибольшее, она сильнее и нагревается.

Если то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки - медную, железную и никелиновую - параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в она и нагреется сильнее остальных.

Беря за основу закон Джоуля - Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

Закон Джоуля Ленца в интегральной форме в тонких проводах:

Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.

- Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

В формуле мы использовали:

Количество теплоты

Работа тока

Напряжение в проводнике

Сила тока в проводнике

Промежуток времени