Термоядерная реакция происходит при температуре. Ядерные реакции. Термоядерный синтез. Когда появятся термоядерные электростанции

Атом - это строительный элемент Вселенной. Существует всего около сотни атомов различных типов. Большинство элементов стабильны (например, кислород и азот атмосферы; углерод, кислород и водород - основные составляющие нашего тела и всех других живых организмов). Другие элементы, главным образом очень тяжелые, нестабильны, и это означает, что они спонтанно распадаются, порождая другие элементы. Это преобразование называется ядерной реакцией.

Ядерные реакции - превращения атомных ядер при взаимодействии с элементарными частицами, г-квантами или друг с другом.

Ядерные реакции разделяют на два вида: ядерное деление и термоядерный синтез.

Ядерная реакция деления -- процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным.

Самопроизвольное (спонтанное) - это деление ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.

Самопроизвольное деление впервые было обнаружено для природного урана. Как и любой другой вид радиоактивного распада, спонтанное деление характеризуется периодом полураспада (периодом деления). Период полураспада для спонтанного деления меняется для разных ядер в очень широких пределах (от 1018 лет для 93Np237 до нескольких десятых долей секунды для трансурановых элементов).

Вынужденное деление ядер может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, б-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления. Для атомной энергетики большее значение играет деление, вызванное нейтронами. Реакция деления тяжелых ядер осуществлена впервые на уране U235. Чтобы ядро урана распалось на два осколка, ему сообщается энергия активации. Эту энергию ядро урана получает, захватывая нейтрон. Ядро приходит в возбужденное состояние, деформируется, возникает "перемычка" между частями ядра и под действием кулоновских сил отталкивания происходит деление ядра на два осколка неравной массы. Оба осколка радиоактивны и испускают 2 или 3 вторичных нейтрона.

Рис. 4

Вторичные нейтроны поглощаются соседними ядрами урана, что вызывает их деление. При соответствующих условиях может возникнуть саморазвивающийся процесс массового деления ядер, называемый цепной ядерной реакцией. Такая реакция сопровождается выделением колоссальной энергии. Например, при полном сгорании 1 г урана выделяется 8.28·1010 Дж энергии. Ядерная реакция характеризуется тепловым эффектом, который представляет собой разность масс покоя вступающих в ядерную реакцию и образующихся в результате реакции ядер, т.е. энергетический эффект ядерной реакции определяется в основном разницей масс конечных и исходных ядер. На основании эквивалентности энергии и массы можно вычислить энергию, выделяющуюся или затраченную при протекании ядерной реакции, если точно знать массу всех ядер и частиц, участвующих в реакции. Согласно закону Эйнштейна:

  • ?Е=?mс2
  • ?E = (mA + mx - mB - my)c2

где mА и mх - массы соответственно ядра мишени и бомбардирующего ядра(частицы);

mB и my - массы и образующихся в результате реакции ядер.

Чем больше энергии выделяется при образовании ядра, тем оно прочнее. Энергией связи ядра называют количество энергии, требуемой для разложения ядра атома на составные части - нуклоны (протоны и нейтроны).

Примером неуправляемой цепной реакции деления может послужить взрыв атомной бомбы, управляемая ядерная реакция осуществляется в ядерных реакторах.

Термоядерный синтез - это реакция, обратная делению атомов, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Осуществление управляемого термоядерного синтеза даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии, который основан на столкновении ядер изотопов водорода, а водород - самое распространенное вещество во Вселенной.

Процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. С несравненно большей скоростью идут реакции между тяжёлыми изотопами водорода (дейтерием 2H и тритием 3H) с образованием сильно связанных ядер гелия.

2D + 3T > 4He (3,5 МэВ) + 1n (14,1 МэВ)

Эти реакции представляют наибольший интерес для проблемы управляемого термоядерного синтеза. Дейтерий содержится в морской воде. Его запасы общедоступны и очень велики: на долю дейтерия приходится около 0,016% общего числа атомов водорода, входящих в состав воды, в то время как мировой океан покрывает 71% площади поверхности Земли. Реакция с участием трития является более привлекательной, т. к. сопровождается большим выделением энергии и протекает со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития.

Реакция c так называемым лунным изотопом 3Не имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией.

2D + 3He > 4He (3,7 МэВ) + 1p (14,7 МэВ)

Преимущества:

  • 1. 3He не радиоактивен.
  • 2. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
  • 3. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии.

Природная изотопная распространённость в атмосфере 3He составляет 0,000137 %. Большая часть 3He на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу. На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год.

Гелий-3 является побочным продуктом реакций, протекающих на Солнце. В результате, на Луне, у которой нет атмосферы, этого ценного вещества находится до 10 миллионов тонн (по минимальным оценкам -- 500 тысяч тонн). При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 миллионов тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного грунта. Содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 миллионов тонн грунта. Температура, при которой возможно осуществление реакции термоядерного синтеза достигает величины порядка 108 - 109 К. При этой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой. Таким образом, сооружение реактора предполагает: получение плазмы, нагретой до температур в сотни миллионов градусов; сохранение плазменной конфигурации в течение времени, для протекания ядерных реакций.

Термоядерная энергетика имеет важные преимущества перед атомными станциями: в ней используется абсолютно нерадиоактивные дейтерий и изотоп гелия-3 и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. В природных условиях термоядерные реакции протекают в недрах звёзд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет.

Все химические элементы нашей планеты и Вселенной в целом образовались в результате термоядерных реакций, которые происходят в ядрах звезд. Термоядерные реакции в звездах приводят к постепенному изменению химического состава звездного вещества, что вызывает перестройку звезды и ее продвижение по эволюционному пути. Первый этап эволюции заканчивается истощением водорода в центральных областях звезды. Затем после повышения температуры, вызванного сжатием центральных слоев звезды, лишенных источников энергии, становятся эффективными термоядерные реакции горения гелия, которые сменяются горением C, O, Si и последующих элементов - вплоть до Fe и Ni. Каждому этапу звездной эволюции соответствуют определенные термоядерные реакции. Первыми в цепи таких ядерных реакций стоят водородные термоядерные реакции. Они протекают двумя путями в зависимости от начальной температуры в центре звезды. Первый путь - водородный цикл, второй путь - CNO-цикл.

Водородный цикл:

  • 1H + 1H = 2D + e+ + v +1,44 МэВ
  • 2D + 1H = 3He + г +5,49 МэВ

I: 3He + 3He = 4He + 21H + 12,86 МэВ

или 3He + 4He = 7Be + г + 1,59 МэВ

7Be + e- = 7Li + v + 0,862 МэВ или 7Be + 1H = 8B + г +0,137 МэВ

II: 7Li + 1H = 2 4He + 17,348 МэВ 8B = 8Be* + e+ + v + 15,08МэВ

III. 8Be* = 2 4He + 2,99 МэВ

Водородный цикл начинается реакцией столкновения двух протонов (1H, или р) с образованием ядра дейтерия (2D). Дейтерий реагирует с протоном, образуя лёгкий (лунный) изотоп гелия 3Не с испусканием гамма-фотона (г). Лунный изотоп 3Не может реагировать двумя различными путями: два ядра 3Не при столкновении образуют 4Не с отщеплением двух протонов либо 3Не соединяется с 4Не и даёт 7Ве. Последний в свою очередь захватывает либо электрон (е-), либо протон и возникает ещё одно разветвление протон - протонной цепочки реакций. В результате водородный цикл может заканчиваться тремя различными путями I, II и III. Для реализации ветви I первые две реакции В. ц. должны осуществиться дважды, поскольку в этом случае исчезают сразу два ядра 3Не. В ветви III испускаются особенно энергичные нейтрино при распаде ядра бора 8В с образованием неустойчивого ядра бериллия в возбуждённом состоянии (8Ве*), который почти мгновенно распадается на два ядра 4Не. CNO-цикл -- это совокупность трёх сцепленных друг с другом или, точнее, частично перекрывающихся циклов: CN, NO I, NO II. Синтез гелия из водорода в реакциях этого цикла протекает при участии катализаторов, роль которых играют малые примеси изотопов C, N и O в звездном веществе.

Основной путь реакции CN-цикла:

  • 12C + p = 13N + г +1,95 МэВ
  • 13N = 13C + e+ + н +1,37 МэВ
  • 13C + p = 14N + г +7,54 МэВ (2,7·106 лет)
  • 14N + p = 15O + г +7,29 МэВ (3,2·108 лет)
  • 15O = 15N + e+ + н +2,76 МэВ (82 секунды)
  • 15N + p = 12C + 4He +4,96 МэВ (1,12·105 лет)

Суть этого цикла состоит в непрямом синтезе б-частицы из четырёх протонов при их последовательных захватах ядрами, начиная с 12C.

В реакции с захватом протона ядром 15N возможен ещё один исход -- образование ядра 16О и рождается новый цикл NO I-цикл.

Он имеет в точности ту же структуру, что и CN-цикл:

  • 14N + 1H = 15O + г +7,29 МэВ
  • 15O = 15N + e+ + н +2,76 МэВ
  • 15N + 1H = 16O + г +12.13 МэВ
  • 16O + 1H = 17F + г +0,60 МэВ
  • 17F = 17O + e+ + н +2,76 МэВ
  • 17O + 1H = 14N + 4He +1,19 МэВ

NO I-цикл повышает темп энерговыделения в CN-цикле, увеличивая число ядер-катализаторов CN-цикла.

Последняя реакция этого цикла также может иметь другой исход, порождая ещё один NO II-цикл:

  • 15N + 1H = 16O + г +12.13 МэВ
  • 16O + 1H = 17F + г +0,60 МэВ
  • 17F = 17O + e+ + н +2,76 МэВ
  • 17O + 1H = 18F + г +5,61 МэВ
  • 18O + 1H = 15N + 4He +3, 98 МэВ

Таким образом, циклы CN, NO I и NO II образуют тройной CNO-цикл.

Имеется ещё один очень медленный четвёртый цикл, OF-цикл, но его роль в выработке энергии ничтожно мала. Однако этот цикл является весьма важным, при объяснении происхождения 19F.

  • 17O + 1H = 18F + г + 5.61 МэВ
  • 18F = 18O + e+ + н + 1.656 МэВ
  • 18O + 1H = 19F + г + 7.994 МэВ
  • 19F + 1H = 16O + 4He + 8.114 МэВ
  • 16O + 1H = 17F + г + 0.60 МэВ
  • 17F = 17O + e+ + н + 2.76 МэВ

При взрывном горении водорода в поверхностных слоях звёзд, например, при вспышках сверхновых, могут развиваться очень высокие температуры, и характер CNO-цикла резко меняется. Он превращается в так называемый горячий CNO-цикл, в котором реакции идут очень быстро и запутанно.

Химические элементы тяжелее 4He начинают синтезироваться лишь после полного выгорания водорода в центральной области звезды:

4He + 4He + 4He > 12C + г + 7,367 МэВ

Реакции горения углерода:

  • 12C + 12C = 20Ne + 4He +4,617 МэВ
  • 12C + 12C = 23Na + 1H -2,241 МэВ
  • 12C + 12C = 23Mg + 1n +2,599 МэВ
  • 23Mg = 23Na + e+ + н + 8, 51 МэВ
  • 12C + 12C = 24Mg + г +13,933 МэВ
  • 12C + 12C = 16O + 24He -0,113 МэВ
  • 24Mg + 1H = 25Al + г

При достижении температуры 5·109 K в звездах в условиях термодинамического равновесия протекает большое количество разнообразных реакций, в результате чего образуются атомные ядра вплоть до Fe и Ni.

Термоядерные реакции – экзотермические реакции синтеза легких ядер, эффективно протекающие при сверхвысоких температурах (порядка 10 7 – 10 9 К), самопродолжающиеся за счет значительного выделения в них энергии. Высокие температуры в них необходимы для того, чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновского потенциального барьера ядер, сближения на расстояние порядка действия ядерных сил и последующего возбуждения реакции синтеза, сопровождающегося выделением энергии в виде избыточной кинетической энергии продуктов реакции.

При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Это видно из кривой зависимости удельной энергии связи от массового числа A (см. 8.1.2). Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением A. Поэтому синтез любого ядра с A < 60 из более лёгких ядер должен сопровождаться выделением энергии. Общая масса продуктов реакции синтеза будет в этом случае меньше массы первоначальных частиц.

Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка 2·10 -15 м, преодолев электрическое отталкивание их положительных зарядов. Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры T приводит к величине порядка 10 8 – 10 9 К. Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой.

Энергия, которая выделяется при термоядерных реакциях, в расчете на один нуклон в несколько раз превышает удельную энергию, выделяющуюся в цепных реакциях деления ядер. В качестве примера рассмотрим некоторые реакции синтеза:

(Q=3.3 МэВ); (8.48.55)

(Q=17.6 МэВ);

(Q=22.4 МэВ),

где – выделившаяся энергия. Так, например, в реакции слияния ядер дейтерия и трития выделяется 3,5 МэВ/нуклон. В целом в этой реакции выделяется 17,6 МэВ. Это одна из наиболее перспективных термоядерных реакций. Термоядерные реакции дают наибольший вклад энергии на единицу массы “горючего”, чем любые другие превращения. Например, количество дейтерия в стакане простой воды энергетически эквивалентно примерно 60 л бензина. Понятен интерес к осуществлению управляемой термоядерной реакции.

Управляемый термоядерный синтез, основой которого являются термоядерные реакции, потенциально представляет собой неистощимый источник энергии, является экологически и экономически перспективным направлением энергетики будущего. Для управляемого термоядерного синтеза наиболее важной представляется реакция слияния ядер дейтерия и трития с образованием ядра гелия и выделением 17,6 МэВ энергии на один акт синтеза. Для инициирования реакции синтеза необходимо нагреть смесь дейтерия и трития до температуры более 100 млн градусов. При этой температуре смесь представляет собой полностью ионизированную плазму, возникает проблема удержания плазмы и эффективной термоизоляции ее от стенок рабочего объема. В 1950 г. академики И.Е.Тамм и А.Д.Сахаров предложили идею удержания и термоизоляции плазмы сильным магнитным полем специальной конфигурации, создаваемым в тороидальной камере магнитными катушками. Эта идея была положена в основу конструкции термоядерных установок, получивших название токамаков (сокращение от «тороидальная камера с магнитными катушками»).


Первые экспериментальные исследования этих систем в СССР начались в 1956 г. под руководством акад. Л.А.Арцимовича. Началом современной эпохи в изучении термоядерного синтеза следует считать 1969 г., когда на российской термоядерной установке «Токамак-3» в плазме объемом 1 м 3 была достигнута температура 3 млн К. В 1975 г. в Институте атомной энергии была запущена крупнейшая в мире термоядерная установка «Токамак-10», в которой была получена плазма с температурой 7-8 млн К. в объеме 5 м 3 . В настящее время на существующих установках типа токамак достигнуты температуры порядка 150 млн К (европейская установка JET – Joint Europpean Torus). С 1988 г. СССР (с 1992 г. – Россия), США, странами Европы и Японией совместно разрабатывается проект Международного термоядерного экспериментального реактора - токамака ITER, который должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. Мощность реактора должна составлять не менее 500 МВт. Запуск реактора планируется осуществить в 2018 г., а получение водородно-дейтериевой плазмы – в 2026 г.

Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Во-первых, энергия излучения Солнца и звезд имеет термоядерное происхождение. Во-вторых, термоядерные реакции являются одним из основных механизмов нуклеосинтеза.

Для нормальных гомогенных звезд, в том числе Солнца, ядерный синтез осуществляется по так называемому протон-протонному, или водородному циклу. Водородный цикл (протон-протонная цепочка) – последовательность термоядерных реакций в звездах, приводящая к превращению водорода в гелий без участия катализатора; основной источник энергии звезд с массой М <1,2 М с (М с – масса Солнца) на начальной стадии их существования. Суммарный результат реакций, в которых происходит образование ядер гелия из водорода, можно записать так:

4 2e + + 2 + 26,73 МэВ.

Разумеется, такое превращение происходит не сразу, а в несколько этапов. Наиболее важными реакциями водородного цикла являются следующие:

Конечным результатом этой последовательности реакций (протон-протонного или водородного цикла) является превращение четырех ядер водорода в ядро атома гелия. Полная энергия, выделяющаяся при такой реакции, равна 26,73 МэВ. Нейтрино, образующиеся при этой реакции, слабо взаимодействуют с веществом и покидают звезду, унося свою энергию – примерно 0,5 МэВ (так называемые солнечные нейтрино). Эта реакция может идти при температурах порядка 13 млн К. По этой схеме происходит примерно 70% всех реакций водородного цикла на Солнце. В 30% случаев может соединиться с и тогда реакции пойдут по следующей схеме:

На Солнце водородный цикл эффективнее углеродно-азотного и обеспечивает 98,4% энерговыделения.

Если в звезде имеется некоторое количество углерода, то может осуществиться углеродно-азотный цикл – серия термоядерных реакций, приводящая к синтезу гелия из водорода с участием азота и углерода в качестве катализаторов. Углеродно-азотный цикл открыт независимо друг от друга Г.Бете и немецким физиком и астрофизиком К. фон Вейцзеккером. Этот цикл состоит из шести реакций:

Конечным результатом этой цепочки является превращение четырех протонов в одно ядро гелия с выделением 26,73 МэВ энергии, при этом 1,7 МэВ уносится с нейтрино. Так как в этой последовательности реакций участвуют ядра углерода и азота, то ее и называют углеродно-азотным циклом. Углеродно-азотный цикл является основным источником энергии звезд, масса которых более 1,2 массы Солнца. В центре этих звезд температура около 20 млн. К, и углеродно-азотный цикл оказывается эффективнее водородного. Углеродно-азотный цикл протекает и на Солнце, но он обеспечивает только около 1,6% энерговыделения. В недрах Солнца каждую секунду сгорает 3,6∙10 38 протонов, т.е. около 630 млн. т водорода превращаются в гелий. При этом мощность излучения Солнца составляет 3,86∙10 26 Вт.

Контрольные вопросы для самоподготовки студентов :

1. Какие вы знаете виды радиоактивности?

2. Закон радиоактивного распада. Правила смещения.

3. Закономерности -распада.

4. Что такое нейтрино? При каком распаде оно испускается?

5. Какие явления сопровождают прохождение - излучения через вещество и в чем их суть?

6. Типы ядерных реакций.

7. Под действием каких частиц ядерные реакции более эффективны?

8. Что представляет собой реакция деления ядер?

9. Почему деление тяжелых ядер и синтез атомных ядер сопровождается выделением большого количества энергии?

10. По каким признакам можно классифицировать ядерные реакторы?

Литературные источники:

1. Трофимова, Т.И. Курс физики: учеб. пособие для вузов / Т.И. Трофимова. – М.: ACADEMIA, 2008.

2. Савельев, И.В. Курс общей физики: учеб. пособие для втузов: в 3-х томах / И.В.Савельев. – СПб.: Спец. лит., 2005.


1.9. Термоядерные реакции.

Термоядерные реакции на Солнце и звездах. Водородный цикл. Углеродный цикл. Нуклеосинтез. Термоядерный взрыв. Управляемый термоядерный синтез

Термоядерные реакции – реакции слияния (синтеза) легких атомных ядер в более тяжелые, происходящие при очень высоких температурах (более 10 8 К ). Термоядерные реакции – это процесс образования плотно упакованных ядер из более рыхлых легких ядер. Это экзоэнергетические реакции, идущие с выделением в продуктах реакции избыточной кинетической энергии, равной увеличению полной энергии связи.

Для всех реакций синтеза ядер необходимо сблизить реагирующие ядра на расстояние радиуса действия ядерных сил. Для этого следует преодолеть электростатический кулоновский барьер отталкивания ядер. На рис 1.15 показан график зависимости потенциальной энергии от расстояния между ядрами.

Рис. 1.15. Потенциальная энергия межъядерного взаимодействия как функция расстояния между ядрами. Штриховкой показано «срезание» барьера отталкивания на боровском радиусе отрицательного мюона в кулоновском поле ядра


Чтобы преодолеть кулоновский барьер, необходима энергия сталкивающихся ядер ~ 0,1 МэВ. Механизмы преодоления кулоновского барьера следующие:

1. Бомбардировка ядер пучком дейтронов бесперспективна. Энергия дейтронов будет тратиться на ионизацию и возбуждение электронов в атомах мишени. Эффективное сечение взаимодействия дейтронов с электронами σ e ~ 10 -16 см 2 , а с ядрами σ я ~ 10 -24 см 2 σ e >> σ я.

2. Мюонный катализ (теоретически возможен, экспериментально не реализован). Кулоновское поле ядра можно экранировать мюоном («тяжелым электроном» с временем жизни 2,2 . 10 -6 сек) на боровской орбите. Размер атома уменьшается в 212 раз, т.к. . Образуются мезомолекулярные ионы. DH μ . Возможна реакция

3. «Смятие» внешней широкой части потенциального кулоновского барьера показано штриховкой (на рис.1.15). Осуществляется силой тяготения , создающей колоссальное давление при плотности плазмы >> 10 4 г/см 3 в звездах.

4. При нагреве вещества до температуры ядер Т Я ~ 10 9 К, (1эВ соответствует 11 000 К, 0,1МэВ = 10 5 эВ ~ 10 9 К). Вещество при таких температурах образует высокотемпературную плазму. Механизм реализован в земных условиях.

Примеры термоядерных реакций:

1. Реакция синтеза изотопов водорода дейтрона и тритона с образованием ядра гелия и нейтрона:

Сечение реакции σ ма x = 5 барн. Энергия налетающего дейтрона Т d = 0,1 МэВ. Энерговыделение на один нуклон в термоядерной реакции синтеза ( МэB/нуклон) превышает выделение энергии на 1 нуклон в ядерной реакции деления урана-235 (q дел = 200/235 = 0,85 МэB/нуклон) в 4 раза.

2. Реакция синтеза двух дейтронов:

1-й выходной канал: сечение реакции σ ма x = 0,09 барн, Т d = 1 МэВ.

2-й выходной канал: сечение реакции σ ма x = 0,16 барн, Т d = 2 МэВ.

Сечения термоядерных реакций при малых значениях энергий (Е
,

где А и В постоянные.


Скорости термоядерных реакций

Термоядерные реакции происходят в результате парных столкновений между ядрами. Число столкновений в единице объема в единицу времени равно

N 12 = n 1 n 2 v σ (v )> ,
Термоядерный взрыв

Искусственная термоядерная реакция реализуется в земных условиях в неуправляемом режиме в термоядерном (водородном) устройстве, где температура > 10 7 K создается взрывoм плутониевого или уранового детонатора. Вещество дейтери – гидрид лития . Время разлета составляет микросекунды. Вероятная схема реакций


МэB, (1.94)

МэB. (1.97)
Нейтроны для реакции (1.97) происходят от деления ядер . Основная энергия выделяется в реакциях (1.96) и (1.97), которые образуют цикл, взаимно поддерживая друг друга и оставляют без изменения количество нейтронов и ядер трития. Реакции (1.94) и (1.95) служат начальным источником нейтрон и ядер трития. Скорость реакции (1.94) и (1.95) в 100 раз меньше, чем скорость реакций (1.96) и (1.97) .
Управляемый термоядерный синтез (УТС)

Управляемый термоядерный синтез – процесс слияния легких атомных ядер , проходящий с выделением энергии при высоких температурах в регулируемых управляемых условиях. УТС до сих пор не реализован (2010г.).

Для реакции синтеза необходимо сблизить ядра на расстояние ~ 10 –11 см, после чего начинается слияние ядер за счет туннельного эффекта. Для протонов необходима энергия 10 кэB, что соответствует Т = 10 8 К.

Все работы по УТС основаны на осуществлении реакции

Воспроизводство трития можно осуществить, окружив рабочую зону слоем лития, и использовать реакцию

Пусть τ – среднее время удержания частиц в активной зоне , n – концентрация частиц (ядер). Пусть коэффициент преобразования в электрическую энергию энергии ядерной реакции. энергии электромагнитного излучения плазмы и тепловой энергии частиц плазмы одинаков и равен . В условиях стационарной работы системы при нулевой полезной мощности уравнение баланса энергии в термоядерном реакторе имеет вид нагревание очень малых объемов термоядерного вещества.

Работы по УТС продолжаются путем создания термоядерных реакторов на основе токамака (тороидальной камеры с дейтериево-тритьевой плазмой и тороидальным магнитным полем) и стелларатора (тороидальная система с дейтериево-тритьевой плазмой и магнитным полем, создаваемым внешними обмотками).

Схема Международного термоядерного реактора – экспериментального реактора-токамака ИТЭР представлена на рис.1.17. Его параметры: большой радиус плазмы 8,1 м, малый радиус плазмы 3 м, тороидальное магнитное поле на оси 5,7 Тл, номинальный ток плазмы 21 МА, номинальная термоядерная мощность с дейтерий-тритьевым топливом 1500 МВт. Реактор содержит следующие основные узлы: соленоид 1, индуцированное или электрическое поле осуществляет пробой газа и нагревает плазму , первая стенка 9 обращена к высокотемпературной плазме и воспринимает поток тепла в виде излучения и частиц, бланкет 2 – защита, в которой воспроизводится тритий, сгоревший в плазме, катушки 8 из сверхпроводника NB 3 Sn создают тороидальное магнитное поле. Дивертор 10 служит для отвода тепла из плазмы в виде потока заряженных частиц и откачки продуктов реакции гелия и протия (водорода). Вакуумная камера 4 и средства откачки 5 создают высокий вакуум в рабочей камере реактора , где создается плазма. Строительство намечено во Франции (2010 г.). Участники проекта: Россия, США, Евроатом, Япония. Стоимость порядка 2 млрд. долл.



Рис.1.17. Проект международного термоядерного реактора ИТЭР

Термоядерная реакция относится к разряду ядерных, но, в отличие от последних, в ней происходит процесс образования, а не разрушения.
На сегодняшний день разработала два варианта проведения термоядерного синтеза – взрывной термоядерный синтез и управляемый термоядерный синтез.

Кулоновский барьер или почему люди еще не взлетели на воздух

Атомные ядра несут положительный заряд. Это означает, что при их сближении начинает действовать сила отталкивания, которая обратно пропорциональна квадрату расстояния между ядрами. Однако на определенном расстоянии, которое равно 0,000 000 000 001 см, начинает действовать сильное взаимодействие, приводящие к слиянию атомных ядер.

В результате выделяется колоссальное количество энергии. То расстояние, которое препятствует слиянию ядер, называется кулоновским барьером, или потенциальным барьером. Условие, при котором это происходит - высокая температура, порядка 1 миллиарда градусов Цельсия. При этом любое вещество превращается в плазму. Основным веществами для осуществления термоядерной реакции являются и тритий.

Взрывной термоядерный синтез

Такой способ проведения термоядерной реакции возник намного раньше управляемого и впервые был применен в водородной бомбе. Основным взрывающимся веществом является дейтерид лития.

Бомба состоит из триггера – плутониевого заряда с усилителем и контейнера с термоядерным горючим. Сначала взрывается триггер с испусканием импульса мягкого рентгеновского излучения. Оболочка второй ступени вместе с пластиковым наполнителем поглощают эти излучения, нагреваясь до высокотемпературной плазмы, которая находится под высоким давлением.

Создается реактивная тяга, которая сдавливает объем второй ступени, уменьшая межъядерной расстояние в тысячи раз. При этом термоядерная реакция не происходит. Завершающим этапом является ядерный взрыв плутониевого стержня, который и запускает ядерную реакцию. Дейтерид лития с нейтронами с образованием трития.

Управляемый термоядерный синтез

Управляемый термоядерный синтез возможен потому, что применяются особые типы реакторов. Топливом служит дейтерий, тритий, гелия, литий, бор-11.

Реакторы:
1) Реактор, основанный на создании квазистационарной системы, в которой плазма удерживается магнитным полем.
2) Реактор на основе импульсной системы. В этих реакторах небольшие мишени, содержащие дейтерий и тритий, кратковременно нагревают сверхмощным потоком частиц или лазером.

Протекающая при очень высокой температуре (выше 108 К). При этом образуется большое количество энергии в виде нейтронов с высоким энергетическим показателем и фотонов - частиц света.

А следовательно, и большие энергии ядер, которые сталкиваются, необходимы для преодоления электростатического барьера. Этот барьер обусловлен взаимным отталкиванием ядер (как одноименно заряженных частиц). Иначе они не смогли бы сблизиться на расстояние, достаточное для действия ядерных сил (а это примерно 10-12 см).

Термоядерная реакция представляет собой процесс образования ядер, которые сильно связаны между собой, из более рыхлых. Почти все подобные реакции относятся к реакциям слияния (синтеза) более легких ядер в тяжелые.

Необходимая для преодоления взаимного отталкивания, должна увеличиваться по мере увеличения заряда ядра. Поэтому легче всего проходит синтез легких ядер, обладающих малым электрическим зарядом.

В природе термоядерная реакция может протекать лишь в недрах звезд. Для ее осуществления в земных условиях необходимо разогреть вещество одним из возможных способов:

  • ядерным взрывом;
  • бомбардировкой интенсивным пучком частиц;
  • мощным импульсом лазерного излучения или газовым разрядом.

Термоядерная реакция, которая идет в недрах звезд, играет архиважную роль в эволюции Вселенной. Во-первых, из водорода в звездах образуются ядра будущих химических элементов, а во-вторых, это энергетический источник звезд.

Термоядерные реакции на Солнце

На Солнце в качестве основного источника энергии выступают реакции протон-протонного цикла, когда из четырех протонов рождается одно ядро гелия. Энергия, которая выделяется в процессе синтеза, уносится образующими ядрами, нейтронами, нейтрино и квантами электромагнитного излучения. Изучая идущий от Солнца поток нейтрино, ученые могуть установить, природу и интеснивность ядерных реакций, которые происходят в его центре.

Средняя интенсивность энерговыделения Солнца по земным меркам ничтожна - всего 2 эрг/с*г (на 1 грамм солнечной массы). Эта величина гораздо меньше, чем скорость электровыделения в живом организме в процессе стандартного обмена веществ. И только благодаря огромной массе Солнца (2*1033 г) общий объем излучаемой им мощности составляет такую гигантскую величину, как 4*1028 Вт.

Благодаря огромным размерам и массе Солнца и остальных звезд, проблема удержания и термоизоляции плазмы решается в них идеально: реакции протекают в горячем ядре, а теплоотдача происходит с более холодной поверхности. Только поэтому звезды могут настолько эффективно производить энергию в столь медленных процессах, как протон-протонных цикл. В земных условиях такие реакции практически неосуществимы.

Термоядерная энергетика - основа будущего

На нашей планете есть смысл применять и использовать только наиболее эффективные из термоядерных реакций - прежде всего синтез гелия из ядер лейтерия и трития. Подобные реакции в сравнительно крупных масштабах осуществимы пока только в испытательных взрывах водородных бомб. Тем не менее, постоянно ведутся все новые разработки с целью эффективного получения мирной электроэнергии. Традиционная атомная энергетика использует реакцию распада, а в термоядерной энергетике задействован синтез. При этом термоядерная реакция имеет ряд неоспоримых преимуществ перед реакцией ядерного распада.

1. При термоядерных реакциях есть возможность избежать выделения радиоактивного излучения, поскольку энергетическим продуктом в данном случае является «чистая» энергия света.

2. По количеству получаемой энергии термоядерные процессы намного обгоняют традиционные атомные реакции, которые используются в современных реакторах.

3. Чтобы поддерживать реакцию ядерного распада, необходим постоянный контроль потока нейтронов, иначе может последовать неуправляемая цепная реакция, опасная для человечества. Для получения термоядерной энергии вместо потока нейтронов используется высокая температура, поэтому подобные риски исчезают.

4. Топливо для термоядерных реакций безвредно, в отличие от продуктов распада реакторов.

Не так давно американские ученые сумели создать рабочую модель термоядерной реакции, в которой энергоотдача в сто раз превышает энергозатраты. Это является хорошей заявкой на дальнейшее успешное "приручение" термоядерной энергетики.