Спирты. Одноатомные спирты. Как получить предельный одноатомный спирт

Следующий класс веществ, которые хотелось бы рассмотреть - это спирты. Это соединения, имеющие в составе группу -OH, связанную с атомом углерода. Такая группа одновалентна и из любого алкана можно сделать спирт, если поменять один из водородов на OH. Например, метану соответствует метиловый спирт, этану - этиловый и так далее. Также они сокращённо именуются с окончанием "ол": метанол, этанол, пропанол.

Метанол, этанол, пропанол


Начиная с пропанола, у спиртов появляется изомерия - помимо того, что сами алканы имеют изомеры, так ещё и гидроксильная группа может быть присоединена к разным атомам углерода. Например, названию "бутанол" соответствуют уже 4 различных по строению молекулы.

Четыре изомерных бутиловых спирта: н-бутанол, втор-бутанол, трет-бутанол, изобутанол.


Как видно, тот спирт, что сохраняет линейное строение, по аналогии с алканами называется "нормальным". Такие спирты также являются первичными, поскольку атом углерода, соединённый с гидроксильной группой, соединён напрямую только с одним атомом углерода. Существуют также вторичные и третичные спирты (две средних структуры на рисунке).

Спирты чем-то схожи в свойствах с водой: вода тоже содержит гидроксил (а так называется группа -OH), но связанную с атомом водорода (поэтому её можно назвать гидроксидом водорода, хотя никто так не делает). Благодаря гидроксильным группам молекулы оказываются более сильно связаны друг с другом (из-за водородных связей), поэтому даже низший спирт - метанол - представляет собой жидкость, хоть и довольно легко испаряющуюся. Жидкими являются почти все низшие спирты, вплоть до октанола. Опять же, здесь возникает сложность из-за большого количества изомеров.
Общая формула спиртов C n H 2n+1 OH.
Самый известный из спиртов - это этанол, он же этиловый спирт - тот самый, что содержится в алкогольных напитках. Он кипит при 78 и перегонкой его можно выделить из раствора, но концентрацию таким образом нельзя поднять выше 96% (что не мешает, однако, получать 100%-ый этанол другими способами, например, удаляя воду из 96%-ного при помощи осушителя). Наверняка все слышали про метанол, который по виду и запаху неотличим от этанола, но смертельно ядовит. Однако если не пробовать его на вкус, то метанол - отличный растворитель, а также топливо и полупродукт для множества химических процессов.

Поскольку метанол и этанол контролируются законом, то зачастую вместо них используют следующий спирт - пропанол. Причём н-пропанол встречается гораздо реже своего изомера - изопропанола, который часто используется как растворитель и обезжириватель (для спиртовок тоже подходит, если что). Он отличается запахом от метанола и этанола, более вязкий (особенно при низкой температуре) и кипит при немного более высокой температуре.

Бутанол и примеси более тяжёлых спиртов составляют основу сивушных масел - они в небольших количествах образуются при брожении и имеют неприятный тяжёлый запах. В остальном такие спирты используются преимущественно как реагенты для получения других соединений.

Функциональных групп в молекуле может быть несколько, в частности - спиртовых. Все рассматривавшиеся выше соединения называются одноатомными спиртами - по количеству гидроксильных групп. Существуют также двухатомный спирт этиленгликоль и трёхатомный спирт глицерин:


Этиленгликоль и глицерин


Они имеют свойства, аналогичные первичным спиртам, но ещё более выраженные: это густые жидкости с высокой температурой кипения (этиленгликоль используется как компонент теплоносителей в отоплении, а также как компонент антифризов "тосол"). И тот, и другой смешиваются с водой в любых пропорциях. В отличие от этиленгликоля, глицерин малотоксичен, а вдобавок ещё и имеет сладкий вкус (отсюда название: "гликос" - сладкий), из-за некоторого сходства в строении с углеводами, которые тоже формально являются спиртами. Это объясняет, в частности, почему углеводы (в том числе сахар) хорошо растворяются в воде.

Спирты похожи на алканы, в молекулу которых "встроили" атом кислорода. И действительно во многих учебниках пишут, что метанол можно получить неполным окислением метана. Для этого, правда, требуются совершенно особые условия, реализуемые только в промышленности: высокие давления, контроль температуры, использование катализаторов. Также его получают из т.н. "синтез-газа" - смеси монооксида углерода и водорода, а синтез-газ, в свою очередь, получают из метана и воды при высокой температуре.


Получение метанола из синтез-газа


Вообще метанол - крупнотоннажный продукт (в 2004 году его производство оценивалось в 32млн. тонн во всём мире), а промышленная химия обычно сильно отличается от лабораторной (сравните ректификационные колонны и лабораторный перегонный аппарат). В небольших количествах метанол образуется при сухой перегонке древесины, поэтому другое его название - древесный спирт.

Для получения этанола используют брожение: некоторые виды микроорганизмов могут превращать сахара, присутствующие в растительном материале (например, в пшенице или сахарном тростнике) в этанол, получая при этом энергию. Этанол затем отделяют ректификацией и используют, например, как добавку к автомобильному топливу (т.н. биотопливо). Таким образом производится порядка 60млн. тонн этанола в год (в основном в США и Бразилии). При таких масштабах и не хочется говорить о получении из нефтепродуктов, но всё-таки есть способ получения из этилена: углеводорода, в котором два атома углерода связаны не одной, а двойной связью. При определённых условиях эта связь может раскрываться, присоединяя молекулу воды. При этом образуется этанол; таким же образом могут быть получены другие спирты из соответствующих алкенов.


Реакция гидратация этилена


Метанол окисляется в формальдегид или муравьиную кислоту. Этанол, соответственно - в ацетальдегид или уксусную кислоту.


Чем и в каких условиях, а также о прочих реакциях спиртов будет описано в следующей статье.

Статистику по производству биоэтанола можно найти здесь: http://ethanolrfa.org/resources/industry/statistics/

Производные углеводородов с одним или несколькими водородными атомами в молекуле, замещенными на группу -OH (гидроксильная группа или оксигруппа), — это спирты. Химические свойства определяются углеводородным радикалом и гидроксильной группой. Спирты образуют отдельный в нем каждый последующий представитель отличается от предыдущего члена на гомологическую разность, соответствующую =CH2. Все вещества этого класса могут быть представлены формулой: R-OH. Для одноатомных предельных соединений общая химическая формула имеет вид CnH2n+1OH. По международной номенклатуре названия могут быть образованы от углеводорода с добавлением окончания -ол (метанол, этанол, пропанол и так далее).

Это очень разнообразный и обширный класс химических соединений. В зависимости от количества групп -OH в молекуле, он подразделяется на одно-, двух- трехатомные и так далее — многоатомные соединения. Химические свойства спиртов зависят также от содержания оксигрупп групп в молекуле. Эти вещества являются нейтральными и не диссоциируют на ионы в воде, как, например, сильные кислоты или сильные основания. Однако могут слабо проявлять как кислотные (снижаются с увеличением в ряду спиртов молекулярной массы и разветвленности углеводородной цепи), так и основные (растут с увеличением молекулярной массы и разветвленности молекулы) свойства.

Химические свойства спиртов зависят от вида и пространственного расположения атомов: молекулы бывают с изомерией цепи и изомерией положения. В зависимости от максимального количества одинарных связей углеродного атома (связанного с оксигруппой) с другими атомами углерода (с 1-м, 2-мя или 3-мя) различают первичные (нормальные), вторичные или третичные спирты. У первичных спиртов гидроксильная группа присоединена к первичному углеродному атому. У вторичных и третичных — ко вторичному и третичному соответственно. Начиная с пропанола, появляются изомеры, которые отличаются положением гидроксильной группы: пропиловый спирт C3H7—OH и изопропиловый спирт CH3—(CHOH)—CH3.

Нужно назвать несколько основных реакций, которые характеризуют химические свойства спиртов:

  1. При взаимодействии со или их гидроокисями (реакция депротонирования) образуются алкоголяты (атом водорода замещается на атом металла), в зависимости от углеводородного радикала получаются метилаты, этилаты, пропилаты и так далее, например, пропилат натрия: 2CH3CH2OH + 2Na → 2CH3CH2ONa + H2.
  2. При взаимодействии с концентрированными галогенводородными кислотами образуются HBr + CH3CH2OH ↔ CH3CH2Br + H2O. Эта реакция является обратимой. В результате происходит нуклеофильное замещение ионом галогена гидроксильной группы.
  3. Спирты могут окисляться до диоксида углерода, до альдегидов или до кетонов. Спирты горят в присутствии кислорода: 3O2 + C2H5OH →2CO2 + 3H2O. Под действием сильного окислителя (хромовая кислота, и так далее) первичные спирты преобразуются в альдегиды: C2H5OH → CH3COH + H2O, а вторичные — в кетоны: CH3—(CHOH)—CH3 → CH3—(CHO)—CH3 + H2O.
  4. Реакция дегидратации протекает при нагревании в присутствии водоотнимающих веществ серная кислота и так далее). В результате образуются алкены: C2H5OH → CH2=CH2 + H2O.
  5. Реакция этерификации протекает также при нагревании в присутствии водоотнимающих соединений, но, в отличие от предыдущей реакции, при более низкой температуре и с образованием 2C2H5OH → C2H5—O—C2H5O. С серной кислотой реакция происходит в две стадии. Сначала образуется эфир кислоты серной: C2H5OH + H2SO4 → C2H5O—SO2OH + H2O, затем при нагревании до 140 °С и в избытке спирта образуется диэтиловый (его часто называют серный) эфир: C2H5OH + C2H5O—SO2OH → C2H5—O—C2H5O + H2SO4.

Химические свойства многоатомных спиртов, по аналогии с их физическими свойствами, зависят от типа углеводородного радикала, образующего молекулу, и, конечно, количества гидроксильных групп в ней. Например, этиленгликоль CH3OH—CH3OH (температура кипения 197 °С), являющийся 2-х атомным спиртом, представляет собой жидкость бесцветную (имеет сладковатый вкус), которая смешивается с H2O, а также низшими спиртами в любых соотношениях. Этиленгликоль, как и его высшие гомологи, вступают во все реакции, характерные для одноатомных спиртов. Глицерин CH2OH—CHOH—CH2OH (температура кипения 290 °С) является простейшим представителем 3-х атомных спиртов. Это густая сладкая на вкус жидкость, которая но смешивается с ней в любых соотношениях. Растворяется в спирте. Для глицерина и его гомологов также характерны все реакции одноатомных спиртов.

Химические свойства спиртов определяют направления их применения. Их используют в качестве топлива (биоэтанол или биобутанол и другие), в качестве растворителей в различных отраслях промышленности; как сырье для производства ПАВ и моющих средств; для синтеза полимерных материалов. Некоторые представители этого класса органических соединений широко используются как смазочные материалы или гидравлические жидкости, а также для изготовления лекарственных средств и биологически активных веществ.

В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.

Спиртами называют соединения, в которых гидроксильная группа соединена с углеводородным радикалом, но не присоединена непосредственно к ароматическому ядру, если таковой имеется в структуре радикала.

Примеры спиртов:

Если в структуре углеводородного радикала содержится ароматическое ядро и гидроксильная группа, при том соединена непосредственно с ароматическим ядром, такие соединения называют фенолами .

Примеры фенолов:

Почему же фенолы выделяют в отдельный от спиртов класс? Ведь, например, формулы

очень похожи и создают впечатление веществ одного класса органических соединений.

Однако непосредственное соединение гидроксильной группы с ароматическим ядром существенно влияет на свойства соединения, поскольку сопряженная система π-связей ароматического ядра сопряжена также и с одной из неподеленных электронных пар атома кислорода. Из-за этого в фенолах связь О-Н более полярна по сравнению со спиртами, что существенно повышает подвижность атома водорода в гидроксильной группе. Другими словами, у фенолов значительно ярче, чем у спиртов выражены кислотные свойства.

Химические свойства спиртов

Одноатомные спирты

Реакции замещения

Замещение атома водорода в гидроксильной группе

1) Спирты реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от защитной пленки Al 2 O 3), при этом образуются алкоголяты металлов и выделяется водород:

Образование алкоголятов возможно только при использовании спиртов, не содержащих растворенной в них воды, так как в присутствии воды алкоголяты легко гидролизуются:

CH 3 OK + Н 2 О = СН 3 ОН + KOH

2) Реакция этерификации

Реакцией этерификации называют взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами, приводящее к образованию сложных эфиров.

Такого типа реакции являются обратимыми, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию желательно проводить при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего агента:

Замещение гидроксильной группы

1) При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода:

2) При пропускании смеси паров спирта с аммиаком через нагретые оксиды некоторых металлов (чаще всего Al 2 O 3) могут быть получены первичные, вторичные или третичные амины:

Тип амина (первичный, вторичный, третичный) будет в некоторой степени зависеть от соотношения исходного спирта и аммиака.

Реакции элиминирования (отщепления)

Дегидратация

Дегидратация, фактически подразумевающая отщепление молекул воды, в случае спиртов различается на межмолекулярную дегидратацию и внутримолекулярную дегидратацию.

При межмолекулярной дегидратации спиртов одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.

В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

Внутримолекулярная дегидратация спиртов протекает таким образом, что одна молекула воды отщепляется от одной молекулы спирта. Данный тип дегидратации требует несколько более жестких условий проведения, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При дегидратации метанола возможно образование только простого эфира (CH 3 -O-CH 3).

Нужно четко усвоить тот факт, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

Дегидрирование спиртов

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

б) В случае вторичных спиртов аналогичные условия приведут у образованию кетонов:

в) Третичные спирты в аналогичную реакцию не вступают, т.е. дегидрированию не подвергаются.

Реакции окисления

Горение

Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

2СН 3 -ОН + 3O 2 = 2CO 2 + 4H 2 O + Q

Неполное окисление

Неполное окисление первичных спиртов может приводить к образованию альдегидов и карбоновых кислот.

В случае неполного окисления вторичных спиртов возможно образование только кетонов.

Неполное окисление спиртов возможно при действии на них различных окислителей, например, таких, как кислород воздуха в присутствии катализаторов (металлическая медь), перманганат калия, дихромат калия и т.д.

При этом из первичных спиртов могут быть получены альдегиды. Как можно заметить, окисление спиртов до альдегидов, по сути, приводит к тем же органическим продуктам, что и дегидрирование:

Следует отметить, что при использовании таких окислителей, как перманганат калия и дихромат калия в кислой среде возможно более глубокое окисление спиртов, а именно до карбоновых кислот. В частности, это проявляется при использовании избытка окислителя при нагревании. Вторичные спирты могут в этих условиях окислиться только до кетонов.

ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ

Замещение атомов водорода гидроксильных групп

Многоатомные спирты так же, как и одноатомные реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от пленки Al 2 O 3 ); при этом может заместиться разное число атомов водорода гидроксильных групп в молекуле спирта:

2. Поскольку в молекулах многоатомных спиртов содержится несколько гидроксильных групп, они оказывают влияние друг на друга за счет отрицательного индуктивного эффекта. В частности, это приводит к ослаблению связи О-Н и повышению кислотных свойств гидроксильных групп.

Бо льшая кислотность многоатомных спиртов проявляется в том, что многоатомные спирты, в отличие от одноатомных, реагируют с некоторым гидроксидами тяжелых металлов. Например, нужно запомнить тот факт, что свежеосажденный гидроксид меди реагирует с многоатомными спиртами с образованием ярко-синего раствора комплексного соединения.

Так, взаимодействие глицерина со свежеосажденными гидроксидом меди приводит к образованию ярко-синего раствора глицерата меди:

Данная реакция является качественной на многоатомные спирты. Для сдачи ЕГЭ достаточно знать признаки этой реакции, а само уравнение взаимодействия уметь записывать необязательно.

3. Так же, как и одноатомные спирты, многоатомные могут вступать в реакцию этерификации, т.е. реагируют с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами и является обратимой. В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье:

Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры называют жирами.

В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении:

Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Кроме того, 1%-ный раствор данного вещества в спирте обладает мощным сосудорасширяющим действием, что используется при медицинских показаниях для предотвращения приступа инсульта или инфаркта.

Замещение гидроксильных групп

Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.

Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:

Химические свойства фенолов

Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.

Реакции с участием гидроксильной группы

Кислотные свойства

Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы:

Бо льшая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами:

Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот – угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту:

Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов:

3) Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами:

Реакции замещения в ароматическом ядре

Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара- положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом.

Галогенирование

Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола:

Нитрование

При действии на фенол смеси концентрированных азотной и серной кислот (нитрующей смеси) образуется 2,4,6-тринитрофенол – кристаллическое взрывчатое вещество желтого цвета:

Реакции присоединения

Поскольку фенолы являются ненасыщенными соединениями, возможно их гидрирование в присутствии катализаторов до соответствующих спиртов.

Спиртами называют соединения, содержащие одну или несколько гидроксильных групп, непосредственно связанных с углеводородным радикалом.

Классификация спиртов

Спирты классифицируют по различным структурным признакам.

1. По числу гидроксильных групп спирты подразделяются на

o одноатомные (одна группа -ОН)

Например, С H 3 OH метанол, CH 3 CH 2 OH этанол

o многоатомные (две и более групп -ОН).

Современное название многоатомных спиртов - полиолы (диолы, триолы и т.д). Примеры:

двухатомный спирт – этиленгликоль (этандиол)

HO–СH 2 –CH 2 –OH

трехатомный спирт – глицерин (пропантриол-1,2,3)

HO–СH 2 –СН(ОН)–CH 2 –OH

Двухатомные спирты с двумя ОН-группами при одном и том же атоме углерода R–CH(OH) 2 неустойчивы и, отщепляя воду, сразу же превращаются в альдегиды R–CH=O. Спирты R–C(OH) 3 не существуют.

2. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты

o первичные R–CH 2 –OH,

o вторичные R 2 CH–OH,

o третичные R 3 C–OH.

Например:

В многоатомных спиртах различают первично-, вторично- и третичноспиртовые группы. Например, молекула трехатомного спирта глицерина содержит две первичноспиртовые (HO–СH 2 –) и одну вторичноспиртовую (–СН(ОН)–) группы.

3. По строению радикалов, связанных с атомом кислорода, спирты подразделяются на

o предельные (например, СH 3 – CH 2 –OH)

o непредельные (CH 2 =CH–CH 2 –OH)

o ароматические (C 6 H 5 CH 2 –OH)

Непредельные спирты с ОН-группой при атоме углерода, соединенном с другим атомом двойной связью, очень неустойчивы и сразу же изомеризуются в альдегиды или кетоны.

Например, виниловый спирт CH 2 =CH–OH превращается в уксусный альдегид CH 3 –CH=O

Предельные одноатомные спирты

1. Определение

ПРЕДЕЛЬНЫЕ ОДНОАТОМНЫЕ СПИРТЫ – кислородсодержащие органические вещества, производные предельных углеводородов, в которых один атом водорода замещён на функциональную группу (- OH )

2. Гомологический ряд


3. Номенклатура спиртов

Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы (если это необходимо). Например:


Нумерация ведется от ближайшего к ОН-группе конца цепи.

Цифра, отражающая местоположение ОН-группы, в русском языке обычно ставится после суффикса "ол".

По другому способу (радикально-функциональная номенклатура) названия спиртов производят от названий радикалов с добавлением слова "спирт ". В соответствии с этим способом приведенные выше соединения называют: метиловый спирт, этиловый спирт, н -пропиловый спирт СН 3 -СН 2 -СН 2 -ОН, изопропиловый спирт СН 3 -СН(ОН)-СН 3 .

4. Изомерия спиртов

Для спиртов характерна структурная изомерия :

· изомерия положения ОН-группы (начиная с С 3);
Например:

·углеродного скелета (начиная с С 4);
Например, изомеры углеродного скелета для C 4 H 9 OH:

· межклассовая изомерия с простыми эфирами
Например,

этиловый спирт СН 3 CH 2 –OH и диметиловый эфир CH 3 –O–CH 3

Возможна также пространственная изомерия – оптическая.

Например, бутанол-2 СH 3 C H(OH)СH 2 CH 3 , в молекуле которого второй атом углерода (выделен цветом) связан с четырьмя различными заместителями, существует в форме двух оптических изомеров.

5. Строение спиртов

Строение самого простого спирта - метилового (метанола) - можно представить формулами:

Из электронной формулы видно, что кислород в молекуле спирта имеет две неподеленные электронные пары.

Свойства спиртов и фенолов определяются строением гидроксильной группы, характером ее химических связей, строением углеводородных радикалов и их взаимным влиянием.

Связи О–Н и С–О – полярные ковалентные. Это следует из различий в электроотрицательности кислорода (3,5), водорода (2,1) и углерода (2,4). Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атому кислорода в спиртах свойственна sp 3 -гибридизация. В образовании его связей с атомами C и H участвуют две 2sp 3 -атомные орбитали, валентный угол C–О–H близок к тетраэдрическому (около 108°). Каждая из двух других 2 sp 3 -орбиталей кислорода занята неподеленной парой электронов.

Подвижность атома водорода в гидроксильной группе спирта несколько меньше, чем в воде. Более "кислым" в ряду одноатомных предельных спиртов будет метиловый (метанол).
Радикалы в молекуле спирта также играют определенную роль в проявлении кислотных свойств. Обычно углеводородные радикалы понижают кислотное свойства. Но если в них содержатся, электроноакцепторные группы, то кислотность спиртов заметно увеличивается. Например, спирт (СF 3) 3 С-ОН за счет атомов фтора становится настолько кислым, что способен вытеснять угольную кислоту из ее солей.

ОПРЕДЕЛЕНИЕ

Спирты – соединения, содержащие одну или несколько гидроксильных групп –ОН, связанных с углеводородным радикалом.

Общая формула гомологического ряда предельных одноатомных спиртов C n H 2 n +1 OH . В названии спиртов присутствует суффикс – ол.

В зависимости от числа гидроксильных групп спирты делят на одно- (CH 3 OH — метанол, C 2 H 5 OH — этанол), двух- (CH 2 (OH)-CH 2 -OH — этиленгликоль) и трехатомные (CH 2 (OH)-CH(OH)-CH 2 -OH — глицерин). В зависимости от того, при каком углеродном атоме находится гидроксильная группа, различают первичные (R-CH 2 -OH), вторичные (R 2 CH-OH) и третичные спирты (R 3 C-OH).

Для предельных одноатомных спиртов характерна изомерия углеродного скелета (начиная с бутанола), а также изомерия положения гидроксильной группы (начиная с пропанола) и межклассовая изомерия с простыми эфирами.

СН 3 -СН 2 -СН 2 -СН 2 -ОН (бутанол – 1)

СН 3 -СН(СН 3)- СН 2 -ОН (2-метилпропанол – 1)

СН 3 -СН(ОН)-СН 2 -СН 3 (бутанол – 2)

СН 3 -СН 2 -О-СН 2 -СН 3 (диэтиловый эфир)

Химические свойства спиртов

1. Реакция, протекающие с разрывом связи О-Н:

— кислотные свойства спиртов выражены очень слабо. Спирты реагируют с щелочными металлами

2C 2 H 5 OH + 2K → 2C 2 H 5 OK + H 2

но не реагируют с щелочами. В присутствии воды алкоголяты полностью гидролизуются:

C 2 H 5 OK + Н 2 О → C 2 H 5 OH + KOH

Это означает, что спирты – более слабые кислоты, чем вода

— образование сложных эфиров под действием минеральных и органических кислот:

CH 3 -CO-OH + H-OCH 3 ↔ CH 3 COOCH 3 + H 2 O

— окисление спиртов под действием дихромата или перманганата калия до карбонильных соединений. Первичные спирты окисляются в альдегиды, которые, в свою очередь, могут окисляться в карбоновые кислоты.

R-CH 2 -OH + [O] → R-CH = O + [O] → R-COOH

Вторичные спирты окисляются в кетоны:

R-CH(OH)-R’ + [O] → R-C(R’) = O

Третичные спирты более устойчивы к окислению.

2. Реакция с разрывом связи С-О.

— внутримолекулярная дегидратация с образованием алкенов (происходит при сильном нагревании спиртов с водоотнимающими веществами (концентрированная серная кислота)):

CH 3 -CH 2 -CH 2 -OH → CH 3 -CH = CH 2 + H 2 O

— межмолекулярная дегидратация спиртов с образованием простых эфиров (происходит при слабом нагревании спиртов с водоотнимающими веществами (концентрированная серная кислота)):

2C 2 H 5 OH → C 2 H 5 -O-C 2 H 5 + H 2 O

— слабые основные свойства спиртов проявляются в обратимых реакциях с галогеноводородами:

C 2 H 5 OH + HBr →C 2 H 5 Br + H 2 O

Физические свойства спиртов

Низшие спирты (до С 15) – жидкости, высшие – твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в оде падает. Спирты имеют высокие температуры кипения и плавления за счет образования водородных связей.

Получение спиртов

Получение спиртов возможно с помощью биотехнологического (брожение) способа из древесины или сахара.

К лабораторным способам получения спиртов относятся:

— гидратация алкенов (реакция протекает при нагревании и в присутствии концентрированной серной кислоты)

СН 2 = СН 2 + Н 2 О → СН 3 ОН

— гидролиз алкилгалогенидов под действием водных растворов щелочей

СН 3 Br + NaOH → CH 3 OH + NaBr

СН 3 Br + Н 2 О → CH 3 OH + HBr

— восстановление карбонильных соединений

CH 3 -CH-O + 2[H] → CH 3 – CH 2 -OH

Примеры решения задач

ПРИМЕР 1

Задание Массовые доли углерода, водорода и кислорода в молекуле предельного одноатомного спирта 51,18, 13,04 и 31, 18%, соответственно. Выведите формулу спирта.
Решение Обозначим количество элементов, входящих в молекулу спирта индексами x, y, z. Тогда, формула спирта в общем виде будет выглядеть — С x H y O z .

Запишем соотношение:

x:y:z = ω(С)/Ar(C): ω(Н)/Ar(Н) : ω(О)/Ar(О);

x:y:z = 51,18/12: 13,04/1: 31,18/16;

x:y:z = 4,208: 13,04: 1,949.

Разделим получившиеся значения на наименьшее, т.е. на 1,949. Получим:

x:y:z = 2: 6: 1.

Следовательно, формула спирта – С 2 H 6 O 1 . Или C 2 H 5 OH – это этанол.

Ответ Формула предельного одноатомного спирта — C 2 H 5 OH.