Сн2 название вещества алкена. Алкены

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены) . Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены ), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных углеводородов - алканов.

Строение алкенов

Ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле СnН2n. Свое второе название - олефины - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел.
Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р-орбиталей
соседних атомов углерода образуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π — связи. Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π -связь, располагаются перпендикулярно плоскости молекулы. Двойная связь (0,132 им) короче одинарной, а ее энергия больше, т. к. она является более прочной. Тем не менее, наличие подвижной, легко поляризуемой π -связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Строение этилена

Образование двойной связи в алкенах

Гомологический ряд этена

Неразветвленные алкены составляют гомологи- ческий ряд этена (этилена ): С 2 Н 4 - этен, С 3 Н 6 - пропен, С 4 Н 8 - бутен, С 5 Н 10 - пентен, С 6 Н 12 - гексен, С 7 Н 14 - гептен и т.д.

Изомерия алкенов

Для алкенов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, - это бутен:


Особым видом структурной изомерии является изомерия положения двойной связи:

Алкены изомерны циклоалканам (межклассовая изомерия), например:



Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис- и транс- изомерии .


Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости π -связи, а следовательно, и свойствами.

Номенклатура алкенов

1. Выбор главной цепи. Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.
Например,правильное название соединения:

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

3. Формирование названия. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс -ен , обозначающий принадлежность соединения к классу алкенов. Например:

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов - газы; вещества состава С5Н10 — С16Н32 - жидкости; высшие алкены - твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения . Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения .
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов - платины, палладия, никеля:

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов) . Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (СС14) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
3. Гидрогалогенирование (присоединение галогеноводорода) .

Эта реакция подчиняется
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.


4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты .

Эта реакция протекает также в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа - к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободнорадикальному механизму.
Реакции окисления.
1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:

2. Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:




АЛКЕНЫ

Углеводороды, в молекуле которых помимо простых σ-связей углерод - углерод и углерод - водород имеются углерод-угле­родные π-связи, называются непредельными. Так как образование π-связи формально эквивалентно потере моле­кулой двух атомов водорода, то непредельные углеводороды содержат на 2п атомов водорода меньше, чем предельные, где п - число π -связей:

Ряд, члены которого отличаются друг от друга на (2Н) n , называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексаны, гексены, гексадиены, гексины, гексатриены и т. д.

Углеводороды, содержащие одну π-связь (т. е. двойную связь), называются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда С п Н 2л.

1. Номенклатура

В соответствии с правилами ИЮПАК при построении назва­ний алкенов наиболее длинная углеродная цепь, содержащая двойную связь, получает название соответствующего алкана, в котором окончание -ан заменено на -ен. Эта цепь нумеруется таким образом, чтобы углеродные атомы, участвующие в образовании двойной связи, получили номера, наименьшие из возможных:

Радикалы называются и нумеруются как и в случае алканов.

Для алкенов сравнительно простого строения разрешается применять более простые названия. Так, некоторые наиболее часто встречающиеся алкены называют, добавляя суффикс -ен к названию углеводородного радикала с тем же углеродным скелетом:

Углеводородные радикалы, образованные из алкенов, по­лучают суффикс -енил. Нумерация в радикале начинается от углеродного атома, имеющего свободную валентность. Однако для простейших алкенильных радикалов вместо систематиче­ских названий разрешается использовать тривиальные:

Водородные атомы, непосредственно связанные с ненасы­щенными атомами углерода, образующими двойную связь, часто называют винилъными атомами водорода,

2. Изомерия

Помимо изомерии углеродного скелета, в ряду алкенов по­является еще и изомерия положения двойной связи. В общем виде изомерия такого типа - изомерия положения заместителя (функции) - наблюдается во всех случаях, когда в моле­куле имеются какие-либо функциональные группы. Для алкана С 4 Н 10 возможны два структурных изомера:

Для алкена С 4 Н 8 (бутена) возможны три изомера:

Бутен-1 и бутен-2 являются изомерами положения функ­ции (в данном случае ее роль выполняет двойная связь).

Пространственные изомеры различаются пространственным расположением заместителей относительно друг друга и называются цис-изомерами, если заместители расположены по одну сторону от двойной связи, и транс-изомерами, если по разные стороны:

3. Строение двойной связи

Энергия разрыва молекулы по двойной связи С=С равна 611 кДж/моль; так как энергия σ-связи С-С рав­на 339 кДж/моль, то энергия разрыва π -связи равна лишь 611-339 = 272 кДж/моль. π -электроны значительно легче σ -электронов поддаются влиянию, например, поляризующих растворителей или воздействию любых атакующих реагентов. Это объясняется различием в симметрии распреде­ления электронного облака σ- и π-электронов. Максимальное перекрывание р-орбиталей и, следовательно, минимальная сво­бодная энергия молекулы реализуются лишь при плоском стро­ении винильного фрагмента и при укороченном расстоянии С-С, равном 0,134нм, т.е. значительно меньшем, чем рас­стояние между углеродными атомами, связанными простой связью (0,154 нм). С поворотом «половинок» молекулы относи­тельно друг друга по оси двойной связи степень перекрывания орбиталей снижается, что связано с затратой энергии. Следст­вием этого является отсутствие свободного вращения по оси двойной связи и существование геометрических изомеров при соответствующем замещении у атомов углерода.

4. Физические свойства

Как и алканы, низшие гомологи ряда простейших алкенов при обычных условиях - газы, а начиная с С 5 - низкокипя­щие жидкости.

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворите­лях, за исключением метилового спирта; все они имеют мень­шую плотность, чем вода.

5. Химические свойства

При рассмотрении реакционной способности сложных ор­ганических соединений действует общий принцип. В боль­шинстве реакций участвует не «инертный» углеводородный радикал, а имеющиеся функциональные группы и их ближай­шее окружение. Это естественно, ибо большинство связей менее прочны, чем связи С-С и С-Н, и, кроме того, связи в функци­ональной группе и вблизи нее наиболее поляризованы.

Естественно ожидать, что реакции алкенов будут проходить по двойной связи, которую тоже можно считать функциональ­ной группой, а следовательно, будут реакциями присоедине­ния, а не реакциями замещения, характерными для ранее рас­смотренных алканов.

Присоединение водорода

Присоединение водорода к алкенам приводит к образованию алканов:

Присоединение водорода к этиленовым соединениям в от­сутствие катализаторов происходит лишь при высоких темпе­ратурах, при которых часто начинается разложение органиче­ских веществ. Значительно легче присоединение водорода идет в присутствии катализа­торов. Катализаторами служат металлы платиновой группы в мелкодисперсном состоянии, сама платина и особен­но палладий - уже при обычной температуре. Большое прак­тическое значение имело открытие Сабатье, применившего специально приготовленный мелкораздробленный никель при температуре 150-300°С и в многочисленных работах пока­завшего универсальность этого катализатора для целого ряда реакций восстановления.

Присоединение галогенов

Галогены присоединяются к алкенам с образованием дигалогенопроизводных, содержащих атомы галогена у соседних атомов углерода:

На первой стадии этой реакции происходит взаимодействие между π-электронами двойной связи и электрофильной частицей галогена с образованием π-комплекса (I). Далее π-комплекс перегруппировывается в ониевый (бромониевый) ион (II) с ощеплением аниона галогена, находящийся в равновесии с карбкатионом (III). Затем анион атакует ониевый ион с образованием продукта присоединения (IV):

Атака анионом бромониевого иона (II) с образованием дибромида (IV) происходит в транс-положение. Так, в случае присоединения Вг 2 к циклопентену образуется только транс-1,2-дибромдикло-пентан:

Доказательством двухстадийного присоединения галогена к алкенам является тот факт, что при присоединении Вг 2 к циклогексену в присутствии МаС1 образуется не только транс-1,2-дибромциклогексан, но и транс-1-бром-2-хлорциклогексан:

Радикальное галогенирование

В жестких условиях (газовая фаза, 500°С) галогены не присоединяются по двойной связи, а происхо­дит галогенирование α-положения:

В этом случае реакция идет по радикальному механизму.

Присоединение галогеноводородов

Галогеноводороды присоединяются к алкенам с образованием галогеналкилов. Присоединение в случае несимметричных молекул идет по правилу Марковникова, т. е. водород присоединяется к наи­более гидрогенизированному атому углерода (с наибольшим числом водородных атомов):

Эта реакция, как и присоединение брома к этилену, идет после образования π-комплекса через стадию образования протониевого иона:

В присутствии перекисей бромоводород присоединяется не по правилу Марковникова (эффект Хараша):

В присутствии перекисей реакция идет не по механизму электрофильного присоединения, как выше, а по радикально­му механизму. Первой стадией является атака перекисного радикала на молекулу НВг:

Возникший радикал брома присоединяется к пропилену с образованием нового радикала:

Последний стабилизируется за счет вырывания водорода из новой молекулы НВг с регенерацией нового радикала брома и т. д.:

И в этом случае направление процесса определяется устойчи­востью радикалов бромпропана: образуется преимущественно более устойчивый, приводя к 1-бромпропану.

Присоединение воды и серной кислоты

В присутст­вии кислот вода присоединяется по двойной связи по правилу Марковникова:

Так же идет реакция и с серной кислотой:

Окисление перманганатом калия в нейтральной или слабощелочной среде (реакция Вагнера)

На первой стадии по механизму цис-присоединения идет присоедине­ние иона МпО 4 к кратной связи с последующим гидролитическим расщепле­нием неустойчивого продукта присоединения и выделения иона МпО 3 -

Реакция идет по схеме цис-присоединения:

Кислые растворы перманганата окисляют алкены с разры­вом цепи по С=С-связи и образованием кислот или кетонов:

Действие озона на алкены

Эта реакция приводит к кристаллическим сильновзрывчатым озонидам, которые при гидролизе образуют альдегиды или кетоны:

Реакция часто применяется для определения положения двойной связи в молекуле, так как по образующимся карбо­нильным соединениям можно представить себе и строение ис­ходного алкена.

Реакция идет путем цис-циклоприсоединения через стадию неустой­чивого мольозонида, который подвергается диссоциации и последующей рекомбинации:

Полимеризация алкенов

Особо важное значение полу­чила полимеризация этилена и пропилена в полимеры с молеку­лярной массой около 10 5 . До 1953 г. в основном применялась радикальная (инициируемая свободными радикалами) полиме­ризация, хотя в принципе использовалось и анионное, и катионное инициирование процесса.

После работ Циглера и Натта, которые получили Нобелев­скую премию за эти исследования, наиболее широко стала ис­пользоваться так называемая координационная полимериза­ция. Простейший «циглеровский» катализатор этого типа со­стоит из триэтилалюминия и соединений титана (IV). При этом происходит образование полимеров с высокой степенью стереорегулярности. Например, при полимеризации пропиле­на образуется изотактический полипропилен - полимер, в ко­тором все боковые СН 3 -группы занимают одинаковое про­странственное положение:

Это придает полимеру большую прочность, и он может даже применяться для изготовления синтетического волокна.

Полиэтилен, получаемый этим способом, представляет со­бой предельный углеводород с неразветвленной цепью. Он ме­нее эластичен, чем полиэтилен, получаемый при высоких дав­лениях, но обладает большей твердостью и способен выдержи­вать воздействие более высоких температур.

Благодаря сочетанию многих ценных свойств полиэтилен имеет очень широкое применение. Он является одним из лучших материалов для изоляции кабелей, для применения в радарной технике, радиотехнике, сельском хозяйстве и др. Из него изготавливают трубы, шланги, сосуды, тару для сель­скохозяйственных продуктов и удобрений, пленки различной толщины и многие бытовые предметы. Прочные пленки из полиэтилена начали применяться даже в качестве покрытия дна искусственных каналов для придания им водонепроницае­мости.

Теломеризация

Интересен имеющий промышленное примене­ние процесс сополимеризации этилена с тетрахлоридом углерода, назван­ный теломеризацией. Если в смесь этилена с СС1 4 внести перекись бензоила или другой инициатор, распадающийся с образованием свободных радикалов, происходит следующий процесс:

Радикалы СС1 3 " инициируют цепную полимеризацию этилена:

При встрече с другой молекулой СС1 4 рост цепи прекращается:

Радикал СС1 3 - дает начало новой цепи.

Образующиеся низкомолекулярные продукты полимеризации, со­держащие на концах цепи атомы галогена, называются теломерами. По­лучены теломеры со значениями п =2,3, 4, ...,15.

При гидролизе продуктов теломеризации образуются ω-хлорзаме-щенные карбоновые кислоты, являющиеся ценными химическими про­дуктами.

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г

Выясним, что представляет собой реакция гидратации алкена. Для этого дадим краткую характеристику данного класса углеводородов.

Общая формула

Алкены - это ненасыщенные органические соединения, имеющие общую формулу СпН2п, в молекулах которых есть одна двойная связь, а также присутствую одинарные (простые) связи. Углеродные атомы при ней находятся в sp2 гибридном состоянии. Представителей этого класса называют этиленовыми, так как родоначальником данного ряда является этилен.

Особенности номенклатуры

Для того чтобы понять механизм гидратации алкена, необходимо выделить особенности их наименования. Согласно систематической номенклатуре, при составлении названия алкена используют определенный алгоритм действий.

Для начала необходимо определить самую длинную углеродную цепочку, включающую двойную связь. Цифрами указывают расположение углеводородных радикалов, начиная с самого маленького в русском алфавите.

При наличии в молекуле нескольких одинаковых радикалов, в названии добавляют уточняющие приставки ди-, три-, тетра.

Только после этого называют саму цепочку из углеродных атомов, добавляя в конце суффикс -ен. Чтобы уточнить расположение в молекуле непредельной (двойной) связи, ее указывают цифрой. Например, 2метилпентен-2.

Гибридизация в алкенах

Чтобы справиться с заданием следующего типа: «Установите молекулярную формулу алкена, гидратацией которого получили вторичный спирт», необходимо выяснить особенности строения представителей этого класса углеводородов. Наличие двойной связи объясняет способность СхНу вступать в реакции присоединения. Угол между двойными связями составляет 120 градусов. По ненасыщенной связи не наблюдается вращения, поэтому для представителей этого класса характерна геометрическая изомерия. В качестве основного реакционного места в молекулах алкенов выступает именно двойная связь.

Физические свойства

Они аналогичны предельным углеводородам. Низшие представители данного класса органических углеводородов являются при нормальных условиях газообразными веществами. Далее наблюдается постепенный переход к жидкостям, а для алкенов, в молекулах которых содержится больше семнадцати атомов углерода, характерно твердое состояние. Все соединения этого класса имеют незначительную растворимость в воде, при этом они отлично растворяются в полярных органических растворителях.

Особенности изомерии

Присутствие в молекулах соединений ряда этилена объясняет многообразие их структурных формул. Помимо изомеризации углеродного скелета, характерной для представителей всех классов органических соединений, у них есть межклассовые изомеры. В их качестве выступают циклопарафины. Например, для пропена межклассовым изомером является циклопропан.

Присутствие в молекулах данного класса двойной связи объясняет возможность геометрической цис- и транс- изомерии. Такие структуры возможны только у симметрических непредельных углеводородов, имеющих в составе двойную связь.

Существование данного варианта изомерии определяется невозможностью свободного вращения углеродных атомов по двойной связи.

Специфика химических свойств

Механизм гидратации алкена имеет определенные особенности. Данная реакция относится к электрофильному присоединению.

Как протекает реакция гидратации алкена? Чтобы ответить на данный вопрос, рассмотрим правило Марковникова. Суть его состоит в том, что гидратация алкенов несимметричного строения осуществляется определенным образом. Атом водорода будет присоединяться к тому углероду, который более гидрогенизирован. Гидроксильная группа присоединяется к углеродному атому, у которого меньше Н. Гидратация алкенов приводит к образованию вторичных одноатомных спиртов.

Для того чтобы реакция протекала в полном объеме, в качестве катализаторов используют минеральные кислоты. Они гарантируют ввод в реакционную смесь необходимого количества катионов водорода.

Гидратацией алкенов нельзя получить первичные одноатомные спирты, поскольку не будет соблюдаться правило Марковникова. Данная особенность используется в органическом синтезе вторичных спиртов. Любая гидратация алкенов осуществляется без использования жестких условий, поэтому процесс нашел свое практическое использование.

Если в качестве исходного представителя класса СпН2п берут этилен, правило Марковникова не работает. Какие спирты нельзя получить гидратацией алкенов? Невозможно получить в результате такого химического процесса первичные спирты из несимметричных алкенов. Как используется гидратация алкенов? Получение спиртов вторичного вида осуществляется именно таким способом. Если в качестве углеводорода выбирается представитель ряда ацетилена (алкины), гидратация приводит к получению кетонов и альдегидов.

По правилу Марковникова осуществляется гидратация алкенов. Реакция имеет механизм электрофильного присоединения, суть которого хорошо изучена.

Приведем несколько конкретных примеров подобных превращений. К чему приводит гидратация алкенов? Примеры, предлагаемые в школьном курсе химии, свидетельствуют о том, что из пропена можно получить при взаимодействии с водой пропанол-2, а из бутена-1 получают бутанол-2.

В промышленных объемах используется гидратация алкенов. Спирты вторичного состава получают именно таким способом.

Галогенирование

Качественной реакцией на двойную связь считается взаимодействие непредельных углеводородов с молекулами галогенов. Мы уже проанализировали, как происходит гидратация алкенов. Механизм галогенирования аналогичен.

Молекулы галогенов имеют ковалентную неполярную химическую связь. При проявлении временных флуктуаций у каждой молекулы возникает электрофильность. В результате вырастает вероятность протекания присоединения, сопровождающегося разрушением двойной связи в молекулах ненасыщенных углеводородов. После завершения процесса продуктом реакции является дигалогенпроизводное алкана. Бромирование считают качественной реакцией на непредельные углеводороды, поскольку происходит постепенное исчезновение бурой окраски галогена.

Гидрогалогенирование

Мы уже рассмотрели, какова формула гидратации алкенов. Аналогичный вариант имеют и реакции взаимодействия с бромоводородом. В данном неорганическом соединении ковалентная полярная химическая связь, поэтому происходит смещение электронной плотности к более электроотрицательному атому брома. Водород приобретает частичный положительный заряд, отдавая галогену электрон, атакует молекулу алкена.

Если непредельный углеводород имеет несимметричное строение, при его взаимодействии с галогеноводородом происходит образование двух продуктов. Так, из пропена при гидрогалогенировании получают 1-бромпроан и 2-бромпропан.

Для предварительной оценки вариантов взаимодействия учитывают электроотрицательность выбираемого заместителя.

Окисление

Двойная связь, присущая молекулам непредельных углеводородов, подвергается воздействию сильных окислителей. Они также имеют электрофильный характер, применяются в химической промышленности. Особый интерес представляет окисление алкенов водным (либо слабощелочным) раствором перманганата калия. Ее называют реакцией гидроксилирования, так как в итоге получают двухатомные спирты.

Например, при окислении молекул этилена водным раствором перманганата калия получают этиндиол-1,2 (этиленгликоль). Это взаимодействие считают качественной реакцией на двойную связь, так как в ходе взаимодействия наблюдается обесцвечивание раствора перманганата калия.

В кислой среде (при жестких условиях) среди продуктов реакции можно отметить альдегид.

При взаимодействии с кислородом воздуха наблюдается окисление соответствующего алкена до углекислого газа, водяного пара. Процесс сопровождается выделением тепловой энергии, поэтому в промышленности его используют для получения тепла.

Наличие двойной связи в молекуле алкена свидетельствует о возможности протекания у данного класса реакций гидрирования. Взаимодействие СпН2п с молекулами водорода происходит при термическом использовании в качестве катализаторов платины, никеля.

Многие представители класса алкенов склонны к озонированию. При невысоких температурах представители данного класса реагируют с озоном. Процесс сопровождается разрывом двойной связи, образованием циклических перекисных соединений, именуемых озонидами. В их молекулах присутствуют связи О-О, поэтому вещества являются взрывоопасными веществами. Озониды не синтезируют в чистом виде, их разлагают, используя процесс гидролиза, затем восстанавливают с помощью цинка. Продуктами такой реакции выступают карбонильные соединения, выделяемые и идентифицируемые исследователями.

Полимеризация

Данная реакция предполагает последовательное объединение нескольких молекул алкена (мономеров) в крупную макромолекулу (полимер). Из исходного этена получают полиэтилен, имеющий промышленное применение. Полимером называют вещество, которое имеет высокую молекулярную массу.

Внутри макромолекулы располагается определенное количество повторяющихся фрагментов, называемых структурными звеньями. Для полимеризации этилена в качестве структурного звена рассматривается группа - СН2—СН2-. Степень полимеризации показывает количество звеньев, повторяющихся в структуре полимера.

Степень полимеризации определяет свойства полимерных соединений. Например, полиэтилен с короткими цепями представляет собой жидкость, имеющую смазочные свойства. Для макромолекулы с длинными цепями свойственно твердое состояние. Гибкость и пластичность материала применяют в изготовлении труб, бутылок, пленок. Полиэтилен, в котором степень полимеризации составляет пять-шесть тысяч, обладает повышенной прочностью, поэтому применяется при производстве прочных нитей, жестких труб, литых изделий.

Среди продуктов, получаемых путем полимеризации алкенов, имеющих практическое значение, выделим поливинилхлорид. Данное соединение получают путем полимеризации винилхлорида. Получаемый продукт имеет ценные эксплуатационные характеристики. Он отличается повышенной стойкостью к воздействию агрессивных химических веществ, негорюч, легко поддается окрашиванию. Что можно изготовить из поливинилхлорида? Портфели, плащи, клеенку, искусственную кожу, кабели, изоляцию электрических проводов.

Тефлон является продуктом полимеризации тетрафторэтилена. Данное органическое инертное соединение устойчиво к резким перепадам температур.

Полистирол представляет собой упругое прозрачное вещество, образуемое путем полимеризации исходного стирола. Он незаменим при изготовлении диэлектриков в радио- и электротехнике. Кроме того, полистирол в большом количестве применяется для производства кислотоупорных труб, игрушек, расчесок, пористых пластмасс.

Особенности получения алкенов

Представители данного класса востребованы в современной химической промышленности, поэтому были разработаны разнообразные способы их промышленного и лабораторного получения. В природе этилен и его гомологи не существуют.

Многие лабораторные варианты получения представителей данного класса углеводородов связаны с реакциями, обратными присоединению, именуемые отщеплением (элиминированием). Например, при дегидрировании парафинов (предельных углеводородов) получают соответствующие алкены.

При взаимодействии галогенпроизводных алканов с металлическим магнием также можно получить соединения с общей формулой СпН2п. Элиминирование осуществляется по правилу Зайцева, обратному правилу Марковникова.

В промышленных объемах непредельные углеводороды ряда этилена получают путем крекинга нефти. В газах крекинга и пиролиза нефти и газа содержится от десяти до двадцати процентов непредельных углеводородов. В смеси продуктов реакции находятся и парафины, и алкены, которые отделяют друг от друга путем фракционной перегонки.

Некоторые области применения

Алкены являются важным классом органических соединений. Возможность их применения объясняется отличной реакционной способностью, простотой получения, приемлемой стоимостью. Среди многочисленных промышленных отраслей, использующих алкены, выделим полимерную промышленность. Огромное количество этилена, пропилена, их производных уходит на изготовление полимерных соединений.

Именно поэтому так актуальны вопросы, касающиеся поиска новых путей производства алкеновых углеводородов.

Поливинилхлорид считается одним из важнейших по применению продуктов, получаемых из алкенов. Для него характерна химическая и термическая устойчивость, незначительная горючесть. Поскольку данное вещество не растворяется в минеральных, но растворимо в органических растворителях, его можно использовать в разных промышленных отраслях.

Его молекулярная масса составляет несколько сотен тысяч. При повышении температуры вещество способно к разложению, сопровождаемому выделением хлороводорода.

Особый интерес представляют его диэлектрические свойства, используемые в современной электротехнике. Среди отраслей промышленности, в которых применяют поливинилхлорид, выделим изготовление искусственной кожи. Получаемый материал по эксплуатационным характеристикам ничуть не уступает натуральному материалу, при этом имеет гораздо меньшую стоимость. Одежда из такого материала становится все более популярной у модельеров, создающих яркие и красочные коллекции молодежной одежды из поливинилхлорида разного цвета.

В больших количествах поливинилхлорид применяют в качестве уплотнителя в холодильниках. Благодаря эластичности, упругости это химическое соединение востребовано при изготовлении пленок и современных натяжных потолков. Моющиеся обои дополнительно покрывают тонкой пленкой ПВХ. Это позволяет добавить им механическую прочность. Такие отделочные материалы станут идеальным вариантом для проведения косметического ремонта в офисных помещениях.

Кроме того, гидратация алкенов приводит к образованию первичных и вторичных одноатомных спиртов, которые являются отличными органическими растворителями.

НЕПРЕДЕЛЬНЫЕ, ИЛИ НЕНАСЫЩЕННЫЕ, УГЛЕВОДОРОДЫ РЯДА ЭТИЛЕНА (АЛКЕНЫ, ИЛИ ОЛЕФИНЫ)

Алкены , или олефины (от лат. olefiant - масло — старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, — жидкое маслянист вещество.) — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены образуют гомологический ряд с общей формулой CnH2n

1. Гомологический ряд алкенов

Гомологи:

С H 2 = CH 2 этен

С H 2 = CH - CH 3 пропен

С H2=CH-CH2-CH3 бутен -1

С H2=CH-CH2-CH2- СН 3 пентен -1

2. Физические свойства

Этилен (этен) - бесцветный газ с очень слабым сладковатым запахом, немного легче воздуха, малорастворим в воде.

С2 - С4 (газы)

С5 - С17 (жидкости)

С18 - (твёрдые)

· Алкены не растворяются в воде, растворимы в органических растворителях (бензин, бензол и др.)

· Легче воды

· С увеличением Mr температуры плавления и кипения увеличиваются

3. Простейшим алкеном является этилен - C2H4

Структурная и электронная формулы этилена имеют вид:

В молекуле этилена подвергаются гибридизации одна s - и две p -орбитали атомов C (sp 2-гибридизация).

Таким образом, каждый атом C имеет по три гибридных орбитали и по одной негибридной p -орбитали. Две из гибридных орбиталей атомов C взаимно перекрываются и образуют между атомами C

σ - связь. Остальные четыре гибридных орбитали атомов C перекрываются в той же плоскости с четырьмя s -орбиталями атомов H и также образуют четыре σ - связь. Две негибридные p -орбитали атомов C взаимно перекрываются в плоскости, которая расположена перпендикулярно плоскости σ - связь, т.е. образуется одна П - связь.

По своей природе П - связь резко отличается от σ - связь; П - связь менее прочная вследствие перекрывания электронных облаков вне плоскости молекулы. Под действием реагентов П - связь легко разрывается.

Молекула этилена симметрична; ядра всех атомов расположены в одной плоскости и валентные углы близки к 120°; расстояние между центрами атомов C равно 0,134 нм.

Если атомы соединены двойной связью, то их вращение невозможно без того, чтобы электронные облака П - связь не разомкнулись.

4. Изомерия алкенов

Наряду со структурной изомерией углеродного скелета для алкенов характерны, во-первых, другие разновидности структурной изомерии - изомерия положения кратной связи и межклассовая изомерия .

Во-вторых, в ряду алкенов проявляется пространственная изомерия , связанная с различным положением заместителей относительно двойной связи, вокруг которой невозможно внутримолекулярное вращение.

Структурная изомерия алкенов

1. Изомерия углеродного скелета (начиная с С4Н8):

2. Изомерия положения двойной связи (начиная с С4Н8):

3. Межклассовая изомерия с циклоалканами, начиная с С3Н6:

Пространственная изомерия алкенов

Вращение атомов вокруг двойной связи невозможно без ее разрыва. Это обусловлено особенностями строения p-связи (p-электронное облако сосредоточено над и под плоскостью молекулы). Вследствие жесткой закрепленности атомов поворотная изомерия относительно двойной связи не проявляется. Но становится возможной цис -транс -изомерия.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух пространственных изомеров, отличающихся расположением заместителей относительно плоскости p-связи. Так, в молекуле бутена-2СН3-СН=СН-СН3 группы СН3 могут находиться либо по одну сторону от двойной связи вцис -изомере, либо по разные стороны в транс -изомере.

ВНИМАНИЕ! цис-транс - Изомерия не проявляется, если хотя бы один из атомов С при двойной связи имеет 2 одинаковых заместителя.

Например,

бутен-1 СН2=СН-СН2-СН3 не имеет цис - и транс -изомеров, т.к. 1-й атом С связан с двумя одинаковыми атомами Н.

Изомеры цис - и транс - отличаются не только физическими

,

но и химическими свойствами, т.к. сближение или удаление частей молекулы друг от друга в пространстве способствует или препятствует химическому взаимодействию.

Иногда цис-транс -изомерию не совсем точно называют геометрической изомерией . Неточность состоит в том, что все пространственные изомеры различаются своей геометрией, а не только цис - и транс -.

5. Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан — этилен, пропан — пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:

Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

(Н2С=СН—) винил или этенил

(Н2С=CН—СН2) аллил