Случайный дрейф генов. Дрейф генов: основные закономерности данного процесса

«дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях - в одних фиксируется один набор аллелей, в других - другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны - к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.

В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором . Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен.

Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования.

Поскольку дрейф генов - ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллельА , а в другой а , то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.

Рис. 3. N - число особей в популяции. Видно, что при 25 особях после 40-го поколения один аллель исчезает, при 250 - соотношение аллелей меняется, а при 2500 - остается близким к исходному.

Эффект бутылочного горлышка сыграл, по-видимому, очень значительную роль в эволюции популяций человека. Предки современных людей в течение десятков тысяч лет расселялись по всему миру. На этом пути, множество популяций полностью вымирало. Даже те, которые уцелели, часто оказывались на грани вымирания. Их численность падала до критического уровня. Во время прохождения через «бутылочное горлышко» численности частоты аллелей менялись по-разному в разных популяциях. Определенные аллели утрачивались полностью в одних популяциях и фиксировались в других. После восстановления численности популяций их измененная генетическая структура воспроизводилась из поколения в поколение. Эти процессы, по-видимому, и обусловили, то мозаичное распределение некоторых аллелей, которое мы сегодня наблюдаем в локальных популяциях человека. Ниже представлено распределение аллеляВ по системе групп крови АВ0 у людей. Значительные отличия современных популяций друг от друга могут отражать последствия дрейфа генов, который происходил в доисторические времена в моменты прохождения предковых популяций через «бутылочное горлышко» численности.


Генетико-автоматические процессы, или дрейф генов, приводят к сглаживанию изменчивости внутри группы и появлению случайных, не связанных с отбором различий между изолятами. Именно это выявили наблюдения за особенностями фенотипов малочисленных групп населения в условиях, например, географической изоляции. Так, среди жителей Памира резус-отрицательные индивидуумы встречаются в 2—3 раза реже, чем в Европе. В большинстве кишлаков такие люди составляют 3—5% популяции. В некоторых изолированных селениях, однако, их насчитывается до 15%, т.е. примерно как в европейской популяции.

В крови человека имеются гаптоглобины , которые связывают свободный гемоглобин после разрушения эритроцитов, чем предотвращают его выведение из организма. Синтез гаптоглобина Нр1-1 контролируется геном Нр1. Частота этого гена у представителей двух соседних племен на Севере Южной Америки составляет 0,205 и 0,895, отличаясь более чем в 4 раза.

Примером действия дрейфа генов в человеческих популяциях служит эффект родоначальника. Он возникает, когда несколько семей порывают с родительской популяцией и создают новую на другой территории. Такая популяция обычно поддерживает высокий уровень брачной изоляции. Это способствует случайному закреплению в ее генофонде одних аллелей и утрате других. В результате частота очень редкогоаллеля может стать значительной.

Так, члены секты амишей в округе Ланкастер штата Пенсильвания, насчитывающей к середине девятнадцатого века примерно 8000 человек, почти все произошли от трех супружеских пар, иммигрировавших в Америку в 1770 г. В этом изоляте обнаружено 55 случаев особой формы карликовости с многопалостью, которая наследуется по аутосомно-рецессивному типу. Эта аномалия не зарегистирирована среди амишей штатов Огайо и Индиана. В мировой медицинской литературе описано едва ли 50 таких случаев. Очевидно, среди членов первых трех семей, основавших популяцию, находился носитель соответствующего рецессивного мутантного аллеля — «родоначальник» соответствующего фенотипа.

В XVIII в. из Германии в США иммигрировало 27 семей, основавших в штате Пенсильвания секту дункеров. За 200-летний период существования в условиях сильной брачной изоляции генофонд популяции дункеров изменился в сравнении с генофондом населения Рейнской области Германии, из которой они произошли. При этом степень различий во времени увеличивалась. У лиц в возрасте 55 лет и выше частоты аллелей системы групп крови MN ближе к цифрам, типичным для населения Рейнской области, чем у лиц в возрасте 28—55 лет. В возрастной группе 3—27 лет сдвиг достигает еще больших значений (табл. 1).

Рост среди дункеров лиц с группой крови М и снижение — с группой крови N нельзя объяснить действием отбора, так как направление изменений не совпадает с таковым в целом для населения штата Пенсильвания. В пользу дрейфа генов говорит также то, что в генофонде американских дункеров увеличилась концентрация аллелей, контролирующих развитие заведомо биологически нейтральных признаков, например оволосения средней фаланги пальцев, способности отставлять большой палец кисти (рис. 4).

Таблица 1. Прогрессивное изменение концентрации аллелей системы групп крови MN в популяции дункеров

На протяжении большей части истории человечества дрейф генов оказывал влияние на генофонды популяций людей. Так, многие особенности узкоместных типов в пределах арктической, байкальской, центрально-азиатской, уральской групп населения Сибири являются, по-видимому, результатом генетико-автоматических процессов в условиях изоляции малочисленных коллективов. Эти процессы, однако, не имели решающего значения в эволюции человека.

Рис. 4. Распространение нейтральных признаков в изолятедункеров штата Пенсильвания: а— рост волос на средней фаланге пальцев кисти, б— способность отставлять большой палец кисти

Последствия дрейфа генов, представляющие интерес для медицины, заключаются в неравномерном распределении по группам населения Земного шара некоторых наследственных заболеваний. Так, изоляцией и дрейфом генов объясняется, по-видимому, относительно высокая частота церебромакулярной дегенерации 1 в Квебеке и Ньюфаундленде, детского цестиноза во Франции , алкаптонурии в Чехии, одного из типов порфирии среди европеоидного населения в Южной Америке, адреногенитального синдрома у эскимосов. Эти же факторы могли быть причиной низкой частоты фенилкетонурии у финнов и евреев-ашкенази.

Изменение генетического состава популяции вследствие генетико-автоматических процессов приводит к гомозиготизации индивидуумов . При этом чаще фенотипические последствия оказываются неблагоприятными. Гомозиготизация - это перевод гетерозигот в гомозиготы при близкородствснном скрещивании. Ч. Дарвин описывает явление, которое вполне можно объяснить дрейфом генов. «Кролики, одичавшие на острове Порто-Санто, близ о. Мадейры», заслуживают более полного описания*. Вместе с тем следует помнить, что возможно образование и благоприятных комбинаций аллелей. В качестве примера рассмотрим родословные Тутанхамона (рис.5) и Клеопатры VII (рис. 6), в которых близкородственные браки были правилом на протяжении многих поколений.

Тутанхамон умер в возрасте 18 лет. Анализ его изображения в детском возрасте и подписи к этому изображению позволяют предположить, что он страдал генетическим заболеванием — целиакией , которая проявляется в изменении слизистой оболочки кишечника, исключающем всасывание клейковины.

________________________________________________________

1 церебромакулярная дегенерация, болезнь Тея - Сакса. Относится к группе наследственных липидных болезней мозга. На основании возраста начала болезни, клинических проявлений, картины глазного дна и данных биохимического исследования выделяют 5 форм амавротическойидиотии: врожденную, раннюю детскую, позднюю детскую, ювенильную и позднюю. Некоторые из этих форм отличаются и по характеру наследования.Характерный признак заболевания - диффузная дегенерация ганглиозных клеток во всех отделах нервной системы. Процесс распада ганглиозных клеток и превращения многих из них в зернистую массу - шафферовская дегенерация - является патогномоничным признаком амавротическойидиотии. Отмечаются также распад миелиновых волокон, особенно в зрительных и пирамидных путях, дегенеративные изменения глии.Врожденная форма - редкое заболевание. У ребенка уже при рождении отмечается микро- или гидроцефалия, параличи, судороги. Быстро наступает смерть. В мозговой ткани увеличено содержание ганглиозида Gm3.

Тутанхамон родился от брака Аменофиса III и Синтамоне, которая была дочерью Аменофиса III. Таким образом, мать фараона была его сводной сестрой. В могильном склепе Тутанхамона обнаружены мумии двух, по всей видимости мертворожденных, детей от брака с Анкесенамон, его племянницей.

Первая жена фараона была или его сестрой, или дочерью. Брат Тутанхамона Аменофис IV предположительно страдал болезнью Фрелиха и умер в 25—26 лет. Его дети от браков с Нефертити и Анкесенамон (его дочерью) были бесплодны. С другой стороны, известная своим умом и красотой Клеопатра VII была рождена в браке сына Птоломея Х и его родной сестры, которому предшествовали кровнородственные браки на протяжении по крайней мере шести поколений.

________________________________________________________________

*Это интересно

В 1418 или 1419 г. у ГонзалесаЗарко на корабле случайно оказалась беременная крольчиха, которая родила во время путешествия. Все детеныши были выпущены на остров. Кролики уменьшились почти на три дюйма в длину и почти вдвое в весе тела. По окраске кролик с Порто-Санто значительно отличается от обыкновенного. Они необычайно дики и проворны. По своим привычкам они более ночные животные. Производят от 4 до 6 детенышей в помете. Не удалось спарить с самками других пород". Примером воздействия дрейфа генов могут быть кошки о. Вознесения. Более 100 лет назад на острове появились крысы. Они расплодились в таком количестве, что английский комендант решил избавиться от них с помощью кошек. По его просьбе привезли кошек. Но они сбежали в отдаленные уголки острова и стали уничтожать не крыс, а домашнюю птицу и диких цесарок.

Другой комендант, чтобы избавиться от кошек, завез собак. Собаки не прижились — они ранили лапы об острые кромки шлака. Кошки со временем стали свирепыми и кровожадными. За столетие они отрастили себе почти собачьи клыки и стали сторожить дома островитян, ходить по пятам за хозяином и бросаться на посторонних.

Рис. 5. Родословная фараона XVIII династии Тутанхамона

Рис. 6. Родословная Клеопатры VII

Заключение и выводы:

Традиционно волны численности (жизни, популяционные) — присущие всем видам периодические и апериодические изменения численности особей в результате влияния абиотических и биотических факторов, воздействующих на популяцию, считаются "поставщиком" элементарного эволюционного материала.

Наилучшим доказательством значения дрейфа генов в микроэволюции

служит характер случайной локальной дифференциации в серии перманентноили периодически изолированных маленьких колоний. Дифференциация подобного типа многократно обнаруживалась в различных группах животных ирастений, популяции которых представляют собой систему колоний. Этадифференциация, если и не доказывает, то по крайней мере сильно склоняет кмнению о том, что дрейф генов играет важную роль в популяционных системах такого типа.

Использованная литература:

1. Гинтер Е.К Медицинская генетика: Учебник. - М.: Медицина, 2003. - 448 с.: ил

2. Грин Н., Стаут У., Тейлор Д «Биология» в 3 томах Москва «Мир» 2000г

3. Гуттман Б., Гриффитс Э., Сузуки Д., Кулис Т. Генетика. М.: ФАИР - ПРЕСС, 2004., 448 с

4. Жимулев И.Ф Генетика. Издательство Сибирского университета., 2007. - 480 с.:ил.

5. Курчанов, Н.А. Генетика человека с основами общей генетики. / Н.А. Курчанов. - СПб.: СпецЛит, 2006. - 174 с.

6. Мамонтов С.Г. Биология - М., 2004

7. Шевченко В.А., Топорнина Н.А., Стволинская Н.С. Генетика человека: Учеб.для студ. Высш. учеб. заведений. - М.: ВЛАДОС, 2002. - 240 с.9.

8. Ярыгин В.Н, В.И. Васильева, И.Н. Волков, В.В. Синелыцикова Биология. В 2 кн.: Учеб.для медиц. спец. Вузов М.: Высш. шк., 2003.— 432с.: ил.

Генетический дрейф

Случайным генетическим дрейфом, или просто, дрейфом генов называется изменение частот аллелей в ряду поколений, обусловленное случайными причинами. Интенсивность этих изменений зависит в первую очередь от численности популяции, точнее, от числа участвующих в размножении особей.

Чтобы "прочувствовать" механизм дрейфа генов, следует мысленно обратиться к процессу подбрасывания монетки. Сколько раз выпадает "орел" при 100 подбрасываниях монеты?

Большинство даст правильный ответ - приблизительно 50. Но далеко не все понимают, что вероятность выпадения ровно 50-ти "орлов" довольно мала - около 7,9%. Хотя с вероятностью, превышающей 95%, их число будет попадать в интервал от 40 до 60.

Таким образом, доля "орлов" при 100 подбрасываниях, скорее всего, будет заметно отличаться от 1/2, и окажется равной 0,43 или, скажем, 0,56. Теперь представим себе, что монетка подбрасывается 1000 раз. В этом случае вероятность выпадения 430 или 560 "орлов" очень мала. Их доля будет гораздо ближе к 1/2, чем 100 при подбрасываниях.

Суть этого примера заключается в том, что, чем больше выборка, тем ближе соответствие между теоретически ожидаемой (1/2) и реально наблюдаемой частотой. В популяциях мы сталкиваемся с тем же явлением: при небольших численностях теоретически ожидаемая частота (то есть частота аллеля в родительском поколении) может существенно отличаться от реально наблюдаемой (то есть от частоты аллеля у потомства).

Однако между бросанием монеты и дрейфом гена имеется важное

Рис 7.3. Динамика случайных изменений частоты гена за счет дрейфа
при различной численности популяций (25, 100 и 2500 особей).
Начальная частота гена во всех экспериментах равна 0,5


различие. При бросании монетки вероятность выпадения "орла" остается равной 1/2 на протяжении всей серии подбрасываний. Для популяций эта вероятность изменяется в каждом поколении: частота аллеля в данном поколении представляет собой вероятность появления этого аллеля в следующем поколении. Если, например, частота аллеля изменилась от 0,5 до 0,6, то вероятность того, что этот аллель появится в следующем поколении равна 0,6. Таким образом, изменения частот аллелей за счет дрейфа накапливаются в поколениях. Ясно, что рано или поздно это приведет к тому, что частота аллеля достигнет значения, равного нулю (аллель исчезнет) или единице (исчезнет альтернативный аллель). В последнем случае говорят о фиксации аллеля. На этом процесс завершается, так как дальнейшие изменения частоты аллеля невозможны.

Случайный дрейф гена легко имитировать с помощью компьютера, (рис. 7.3). На нем показаны три случайные реализации дрейфа гена при различных численностях популяции. Из рисунка видно, что при очень малой численности (25 особей) уже через 40 поколений аллель элиминируется из популяции по случайным причинам. В другой случайной реализации с вероятностью 1/2 можно наблюдать противоположную картину: частота аллеля возрастает до единицы. Если численность популяции довести до 100 особей, то для фиксации аллеля понадобится уже 115 поколений. В популяции большой численности (2500 особей) частота аллеля существенно не изменяется на протяжении 150 поколений. Но это не означает, что в

этом случае полиморфизм будет поддерживаться сколь угодно долго. Фиксация аллеля с вероятностью единица происходит в любых конечных популяциях при отсутствии источников новых аллелей (мутации и миграции). Однако для это понадобится число поколений, сравнимое по величине с численностью популяции.

Влияние генетического дрейфа можно наблюдать и в изолированных малочисленных популяциях человека. При обследовании членов закрытой секты баптистов в штате Пенсильвания (США), основанной в XVIII в. выходцами из Германии, обнаружено, что частоты генов групп крови АВО у членов секты отличаются от таковых у американцев немецкого происхождения. Особенно разительны эти различия по частоте гена I B: 2,5% у членов секты и 12% у американцев немецкого происхождения.

В заключение перечислим основные черты генетического дрейфа.

1. Дрейф приводит к случайным колебаниям частот аллелей, которые особенно заметны в малых популяциях.

2. Дрейф неуклонно снижает генетическую изменчивость популяций, увеличивая частоту гомозигот. Окончательным итогом действия генетического дрейфа является элиминация либо фиксация аллеля.

3. Число поколений, необходимых для элиминации (или фиксации) аллеля за счет дрейфа, сопоставимо по величине с численностью популяции.


Кроме естественного отбора, существует еще один фактор, который может способствовать повышению концентрации мутантного гена в популяции и даже полностью вытеснить его нормальный аллеломорф.

Дрейф генов (генетический дрейф) - изменения генофонда популяции от поколения к поколению. Считается, что эти изменения определяются не естественным отбором, а иными механизмами. Среди исследователей растёт тревога по поводу того, что в генофонде ряда, если не всех наций, быстрыми темпами увеличивается доля аномальных генов, определяющих развитие наследственной патологии и предрасполагающих в развитию многих других заболеваний. Генетический дрейф является также одним из самых существенных факторов патоморфоза различных, в том числе психиатрических заболеваний. Этот патоморфоз осуществляется столь стремительными темпами, что некоторые психические расстройства становятся неузнаваемыми (по их описаниям в классической литературе), существенно меняется и структура психиатрической заболеваемости, в частности, вымываются некоторые ранее часто встречавшиеся формы шизофрении и появляются такие, которым с трудом находится место в современных классификаторах.

Биолог С. Райт исследовал этот случайный процесс (генетический дрейф) при помощи математических моделей и применил этот принцип к изучению проблем эволюции. При постоянных условиях генетический дрейф имеет решающее значение в очень маленьких популяциях, следовательно, популяция становится гомозиготной по многим генам и генетическая изменчивость уменьшается. Также он полагал, что вследствие дрейфа в популяции могут возникнуть признаки вредные наследственные признаки, в результате чего такая популяция может погибнуть и не внести свой вклад в эволюцию вида. С другой стороны, в очень больших популяциях решающим фактором является отбор, поэтому генетическая изменчивость в популяции снова будет незначительна. Популяция постепенно хорошо приспосабливается к условиям окружающей среды, но дальнейшие эволюционные изменения зависят от появления новых благоприятных мутаций. Такие мутации происходят медленно, поэтому эволюция в больших популяциях идет медленно. В популяциях промежуточной величины генетическая изменчивость повышена, новые выгодные комбинации генов образуются случайно, и эволюция идет быстрее, чем двух других описанных выше случаях популяциях.

Также следует помнить, что, когда один аллель теряется из популяции, он может вновь появиться только благодаря определенной мутации. Но в случае, если вид разделен на ряд популяций, в одних из которых потерян один аллель, а в других другой, то утерянный из данной популяции ген может появиться в ней благодаря миграции из другой популяции, где есть данный ген. Вот таким образом сохранится генетическая изменчивость. Исходя из этого Райт, предположил, что наиболее быстрые эволюционные изменения будут происходить у видов, подразделенных на многочисленные популяции различной величины, причем между популяциями возможна некоторая миграция.

Райт соглашался с тем, что естественный отбор – один из важнейших факторов эволюции, однако генетический дрейф, по его мнению, также является существенным фактором, определяющим длительные эволюционные изменения внутри вида, и что многие признаки, отличающие один вид от другого, возникли путем дрейфа генов и были безразличны или даже вредны по своему влиянию на жизнеспособность организмов.

По поводу теории генетического дрейфа разгорались споры между учеными – биологами. Например, Т. Добжанский считал, что не имеет смысла ставить вопрос, какой фактор играет большую роль – генетический дрейф или естественный отбор. Эти факторы взаимодействуют между собой.

Возможны две ситуации:

1) Если в эволюции каких-либо видов главенствующее положение занимает отбор, то в этом случае будет наблюдаться или направленное изменение частот генов, или стабильное состояние, определяемое условиями окружающей среды.

2) Когда же на протяжении длительного периода времени более важен дрейф, то тогда направленные эволюционные изменения не будут связаны с природными условиями и даже возникшие незначительные неблагоприятные признаки могут широко распространиться в популяции.

В целом же генетический дрейф исследован еще недостаточно хорошо и определенного, единого мнения об этом факторе еще в науке не сложилось.

Дрейф генов как фактор эволюции

Мы можем рассматривать дрейф генов как один из факторов эволюции популяций. Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Поэтому результаты дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны - к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.
В ходе эволюции популяций дрейф генов взаимодействует с другими факторами эволюции, прежде всего с естественным отбором. Соотношение вкладов этих двух факторов зависит как от интенсивности отбора, так и от численности популяций. При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен.

Как мы уже знаем, наиболее частым последствием дрейфа генов является обеднение генетического разнообразия внутри популяций за счет фиксации одних аллелей и утраты других. Мутационный процесс, напротив, приводит к обогащению генетического разнообразия внутри популяций. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования.

Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.

Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции.

Каждый аллель из тех, что мы наблюдаем в популяциях, когда-то возник в результате мутации. Мутации происходят со средней частотой 10-5 на ген на гамету на поколение. Следовательно, чем меньше популяция, тем меньше вероятность, что в каждом поколении хотя бы одна особь в этой популяции окажется носителем новой мутации. В популяции, состоящей из 100000 особей, в каждом новом поколении с вероятностью близкой к единице найдется новый мутантный аллель, но частота его в популяции (1 на 200000 аллелей) и, следовательно, вероятность его фиксации будет очень низкой. Вероятность того, что эта же мутация в том же поколении возникнет у хотя бы одной особи в популяции, состоящей из 10 особей, ничтожно мала, но если такая мутация все же произойдет в этой популяции, то частота мутантного аллеля (1 на 20 аллелей) и шансы на его фиксацию будут относительно высокими.

Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют, а малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций.

Поскольку частоты возникновения нейтральных мутаций примерно одинаковы у разных видов, то и скорость фиксации этих мутаций должна быть примерно одинаковой. Отсюда следует, что число мутаций, накопленных в одном и том же гене, должно быть пропорционально времени независимой эволюции этих видов. Иными словами, чем больше времени прошло с момента выделения двух видов из общего передкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» - определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга.

Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути. В дальнейшем эта закономерность была подтверждена на огромном экспериментальном материале, включающем десятки разных генов и сотни видов животных, растений и микроорганизмов. Оказалось, что молекулярные часы идут, как и следует из теории дрейфа генов, с постоянной скоростью. Калибровка молекулярных часов производится для каждого гена в отдельности, поскольку разные гены могут различаться по частоте возникновения нейтральных мутаций. Для этого оценивают количество замен накопленных в определенном гене у представителей таксонов, время дивергенции которых надежно установлено по палеонтологическим данным. После того, как молекулярные часы откалиброваны, их можно использовать для того, чтобы измерять время дивергенции между разными таксонами, даже в том случае, когда их общий предок пока не обнаружен в палеонтологической летописи.



В теоретической биологии считается, что передача и распределение генов от родителей к детям всегда будет оставаться постоянной и неизменной из поколения в поколение (закон Харди-Вайнберга). Однако на практике все происходит далеко не так как в теории. Порой случается так, что по причине неких случайных (а то и закономерных) событий частота распределения генов из поколения в поколения может нарушаться, даже отклоняться, это явление и называется дрейфом генов.

Примеры дрейфа генов

Возьмем такой пример: есть группа растения в некой изолированной горной долине. Популяция растений составляет 100 экземпляров и только 2% из них обладают особенным вариантом гена, скажем отвечающего за окраску цветов. Иными словами обладателями уникального гена являются только два растения. И если в результате какого-нибудь случайного происшествия, допустим урагана, наводнения или сошествия лавины эти два растения погибнут, то и особенный ген (говоря академическим языком алель) будет утрачен из популяции. Вследствие этого изменятся и будущие поколения этих растений, в целом произойдет дрейф генов в популяции или как еще это называют ученые «эффект бутылочного горлышка».

Причины дрейфа генов

Обычно причинами могут быть различные катастрофические природные последствия, стихийные бедствия, бури, ураганы, извержения вулканов, приведшие к массовой гибели живых существ, но в последнее время частой причиной подобного явления становится разрушительная деятельность человека. Например, причиной дрейфа генов у Африки стал их массовый отстрел в XX веке, и белыми охотниками (ради забавы) и браконьерами (стоимость слоновой кости всегда была высокой на черном рынке).

Дрейф генов в эволюции

Если же смотреть на дрейф генов с точки зрения теории эволюции, то можно заявить, что результатом эволюции и является дрейф генов, так как в ее процессе некоторые гены все равно будут утрачены. Более того, согласно мнению некоторых ученых, через дрейф генов прошел даже человек. Если это так, то это произошло примерно 100 000 лет назад, и именно «эффект бутылочного горлышка» то есть дрейф генов объясняет генетическую схожесть современных людей между собой. Для сравнения, у горилл, живущих в африканских джунглях генетическое разнообразие в разы богаче, нежели у всех людей, живущих на Земле.

Кроме естественного отбора, существует еще один фактор, который может способствовать повышению концентрации мутантного гена в популяции и даже полностью вытеснить его нормальный алллеломорф.

Биолог С. Райт исследовал этот случайный процесс (генетический дрейф) при помощи математических моделей и применил этот принцип к изучению проблем эволюции. При постоянных условиях генетический дрейф имеет решающее значение в очень маленьких популяциях, следовательно, популяция становится гомозиготной по многим генам и генетическая изменчивость уменьшается. Также он полагал, что вследствие дрейфа в популяции могут возникнуть признаки вредные наследственные признаки, в результате чего такая популяция может погибнуть и не внести свой вклад в эволюцию вида. С другой стороны, в очень больших популяциях решающим фактором является отбор, поэтому генетическая изменчивость в популяции снова будет незначительна. Популяция постепенно хорошо приспосабливается к условиям окружающей среды, но дальнейшие эволюционные изменения зависят от появления новых благоприятных мутаций. Такие мутации происходят медленно, поэтому эволюция в больших популяциях идет медленно. В популяциях промежуточной величины генетическая изменчивость повышена, новые выгодные комбинации генов образуются случайно, и эволюция идет быстрее, чем двух других описанных выше случаях популяциях.

Также следует помнить, что, когда один аллель теряется из популяции, он может вновь появиться только благодаря определенной мутации. Но в случае, если вид разделен на ряд популяций, в одних из которых потерян один аллель, а в других другой, то утерянный из данной популяции ген может появиться в ней благодаря миграции из другой популяции, где есть данный ген. Вот таким образом сохранится генетическая изменчивость. Исходя из этого Райт, предположил, что наиболее быстрые эволюционные изменения будут происходить у видов, подразделенных на многочисленные популяции различной величины, причем между популяциями возможна некоторая миграция.

Райт соглашался с тем, что естественный отбор – один из важнейших факторов эволюции, однако генетический дрейф, по его мнению, также является существенным фактором, определяющим длительные эволюционные изменения внутри вида, и что многие признаки, отличающие один вид от другого, возникли путем дрейфа генов и были безразличны или даже вредны по своему влиянию на жизнеспособность организмов.

По поводу теории генетического дрейфа разгорались споры между учеными – биологами. Например, Т. Добжанский считал, что не имеет смысла ставить вопрос, какой фактор играет большую роль – генетический дрейф или естественный отбор. Эти факторы взаимодействуют между собой. Возможны две ситуации:

1) Если в эволюции каких-либо видов главенствующее положение занимает отбор, то в этом случае будет наблюдаться или направленное изменение частот генов, или стабильное состояние, определяемое условиями окружающей среды.

2) Когда же на протяжении длительного периода времени более важен дрейф, то тогда направленные эволюционные изменения не будут связаны с природными условиями и даже возникшие незначительные неблагоприятные признаки могут широко распространиться в популяции.

В целом же генетический дрейф исследован еще недостаточно хорошо и определенного, единого мнения об этом факторе еще в науке не сложилось.