Ресурсы в триз - история. Теория решения изобретательских задач

Долгое время единственным инструментом решения творческих задач - задач, не имеющих эффективных механизмов решения, - был "метод проб и ошибок". В начале века резко возросла потребность в регулярном решении таких творческих задач, что привело к появлению многочисленных модификаций "метода проб и ошибок".

Наиболее известные из них - различные варианты таких методов, как "мозговой штурм", "синектика", "морфологический анализ", "метод контрольных вопросов", "метод каталога". Суть всех этих методов - повышение интенсивности генерации идей и перебора вариантов. Но существует и противоречие - можно сэкономить время на генерацию идей, но затратить его еще больше на анализ полученных вариантов и выбор наилучшего. Как показывают прошедшие годы и проведенные в разных странах исследования количество полученных этими методами идей никак не связанно с качеством решения проблемы.

Еще в сороковых годах Г.С. Альтшуллер поставил задачу иначе: "Как без многочисленного перебора вариантов решения проблемы выходить сразу на сильные решения?".

Справиться с этой задачей позволяют три принципа, лежащие в основе ТРИЗ .

1. Принцип объективности законов развития систем - строение, функционирование и смена поколений систем подчиняются объективным законам.

Отсюда: сильные решения - это решения, соответствующие объективным законам, закономерностям, явлениям, эффектам.

2. Принцип противоречия - под воздействием внешних и внутренних факторов возникают, обостряются и разрешаются противоречия. Проблема трудна потому, что существует система противоречий - скрытых или явных. Системы эволюционируют, преодолевая противоречия на основе объективных законов, закономерностей, явлений и эффектов.

Отсюда: сильные решения - это решения, преодолевающие противоречия.

3. Принцип конкретности - каждый класс систем, как и отдельные представители внутри этого класса, имеет особенности, облегчающие или затрудняющие изменение конкретной системы. Эти особенности определяются ресурсами: внутренними - теми, на которых строится система, и внешними - той средой и ситуацией, в которых находится система.

Отсюда: сильные решения - это решения, учитывающие особенности конкретных проблемных ситуаций.

Методология решения проблем строится на основе изучаемых ТРИЗ общих законов эволюции, общих принципов разрешения противоречий и механизмов приложения этих общих положений к решению конкретных проблем.

— законов, которые определяют начало жизни технических систем.

Любая техническая система возникает в результате синтеза в единое целое отдельных частей. Не всякое объединение частей дает жизнеспособную систему. Существуют по крайней мере три закона, выполнение которых необходимо для того, чтобы система оказалась жизнеспособной.

Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления. Смысл закона 1 заключается в том, что для синтеза технической системы необходимо наличие этих четырех частей и их минимальная пригодность к выполнению функций системы, ибо сама по себе работоспособная часть системы может оказаться неработоспособной в составе той или иной технической системы. Например, двигатель внутреннего сгорания, сам по себе работоспособный, оказывается неработоспособным, если его использовать в качестве подводного двигателя подводной лодки.

Закон 1 можно пояснить так: техническая система жизнеспособна в том случае, если все ее части не имеют «двоек», причем «оценки» ставятся по качеству работы данной части в составе системы. Если хотя бы одна из частей оценена «двойкой», система нежизнеспособна даже при наличии «пятерок» у других частей. Аналогичный закон применительно к биологическим системам был сформулирован Либихом еще в середине прошлого века («закон минимума»).

Из закона 1 вытекает очень важное для практики следствие.

Чтобы техническая система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой.

«Быть управляемой» — значит менять свойства так, как это надо тому, кто управляет.

Знание этого следствия позволяет лучше понимать суть многих задач и правильнее оценивать полученные решения. Возьмем, например, задачу 37 (запайка ампул). Дана система из двух неуправляемых частей: ампулы вообще неуправляемы — их характеристики нельзя (невыгодно) менять, а горелки плохо управляемы по условиям задачи. Ясно, что решение задачи будет состоять во введении в систему еще одной части (вепольный анализ сразу подсказывает: это вещество, а не поле, как, например, в задаче 34 об окраске цилиндров). Какое вещество (газ, жидкость, твердое тело) не пустит огонь туда, куда он не должен пройти, и при этом не будет мешать установке ампул? Газ и твердое тело отпадают, остается жидкость, вода. Поставим ампулы в воду так, чтобы над водой поднимались только кончики капилляров (а.с. № 264 619). Система приобретает управляемость: можно менять уровень воды — это обеспечит изменение границы между горячей и холодной зонами. Можно менять температуру воды — это гарантирует устойчивость системы в процессе работы.

Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу.

Передача энергии от одной части системы к другой может быть вещественной (например, вал, шестерни, рычаги и т.д.), полевой (например, магнитное поле) и вещественно-полевой (например, передача энергии потоком заряженных частиц). Многие изобретательские задачи сводятся к подбору того или иного вида передачи, наиболее эффективного в заданных условиях. Такова задача 53 о нагреве вещества внутри вращающейся центрифуги. Вне центрифуги энергия есть. Имеется и «потребитель», он находится внутри центрифуги. Суть задачи — в создании «энергетического моста». Такого рода «мосты» могут быть однородными и неоднородными. Если вид энергии меняется при переходе от одной части системы к другой — это неоднородный «мост». В изобретательских задачах чаще всего приходится иметь дело именно с такими мостами. Так, в задаче 53 о нагреве вещества в центрифуге выгодно иметь электромагнитную энергию (ее передача не мешает вращению центрифуги), а внутри центрифуги нужна энергия тепловая. Особое значение имеют эффекты и явления, позволяющие управлять энергией на выходе из одной части системы или на входе в другую ее часть. В задаче 53 нагрев может быть обеспечен, если центрифуга находится в магнитном поле, а внутри центрифуги размещен, например, диск из ферромагнетика. Однако по условиям задачи требуется не просто нагревать вещество внутри центрифуги, а поддерживать постоянную температуру около 2500 С. Как бы ни менялся отбор энергии, температура диска должна быть постоянной. Это обеспечивается подачей «избыточного» поля, из которого диск отбирает энергию, достаточную для нагрева до 2500 С, после чего вещество диска «самоотключается» (переход через точку Кюри). При понижении температуры происходит «самовключение» диска.

Важное значение имеет следствие из закона 2..

Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.

В задачах на измерение и обнаружение можно говорить об информационной проводимости, но она часто сводится к энергетической, только слабой. Примером может служить решение задачи 8 об измерении диаметра шлифовального круга, работающего внутри цилиндра. Решение задачи облегчается, если рассматривать не информационную, а энергетическую проводимость. Тогда для решения задачи нужно прежде всего ответить на два вопроса: в каком виде проще всего подвести энергию к кругу и в каком виде проще всего вывести энергию сквозь стенки круга (или по валу)? Ответ очевиден: в виде электрического тока. Это еще не окончательное решение, но уже сделан шаг к правильному ответу.

Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Примеры к этому закону приведены в гл.1..

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система — это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система — это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т.д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15–20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к.п.д. двигателя и т.д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т.д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности — это надежный критерий для корректировки задачи и оценки полученного ответа.

Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и, следовательно, изобретательских задач. Например, когда начался быстрый рост тоннажа грузовых судов, мощность двигателей быстро увеличилась, а средства торможения остались без изменения. В результате возникла задача: как тормозить, скажем, танкер водоизмещением 200 тыс. тонн. Задача эта до сих пор не имеет эффективного решения: от начала торможения до полной остановки крупные корабли успевают пройти несколько миль…

Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы.
Об этом законе мы уже говорили.

Она включает законы, отражающие развитие современных технических систем под действием конкретных технических и физических факторов. Законы «статики» и «кинематики» универсальны — они справедливы во все времена и не только применительно к техническим системам, но и к любым системам вообще (биологическим и т.д.). «Динамика» отражает главные тенденции развития технических систем именно в наше время.

Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

В большинстве современных технических систем рабочими органами являются «железки», например винты самолета, колеса автомобиля, резцы токарного станка, ковш экскаватора и т.д. Возможно развитие таких рабочих органов в пределах макроуровня: «железки» остаются «железками», но становятся более совершенными. Однако неизбежно наступает момент, когда дальнейшее развитие на макроуровне оказывается невозможным. Система, сохраняя свою функцию, принципиально перестраивается: ее рабочий орган начинает действовать на микроуровне. Вместо «железок» работа осуществляется молекулами, атомами, ионами, электронами и т.д.

Переход с макро- на микроуровень — одна из главных (если не самая главная) тенденций развития современных технических систем. Поэтому при обучении решению изобретательских задач особое внимание приходится обращать на рассмотрение перехода «макро-микро» и физических эффектов, реализующих этот переход.

Развитие технических систем идет в направлении увеличения степени вепольности.

Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы.

Многочисленные примеры, иллюстрирующие этот закон, уже встречались при решении задач.

Одной из предпосылок ТРИЗ является то, что существуют объективные законы развития и функционирования систем, опираясь на которые можно строить изобретательские решения. Другими словами, многие технические, производственные, экономические и социальные системы развиваются по одним и тем же правилам и принципам. Г. С. Альтшуллер обнаружил их, изучив патентный фонд и проанализировав пути развития и усовершенствования техники в течение долгого времени. Результаты, опубликованные в книгах ««Линии жизни» технических систем» и «О законах развития технических систем», позже объединенные в работе «Творчество как точная наука», стали базисом для Теории развития технических систем (ТРТС).

В данном уроке мы предлагаем вам познакомиться с этими законами, подкрепленными примерами. В программе обучения ТРИЗ они занимают главное место, поскольку раскрываются и детализируются в правилах их применения, в стандартах, принципах разрешения противоречий, вепольном анализе и АРИЗе.

Терминология и краткое введение

Закон развития технической системы (ЗРТС) - это существенное, устойчивое, повторяющееся отношение между элементами внутри системы и с внешней средой в процессе прогрессивного развития, перехода системы от одного состояния к другому с целью увеличения ее полезной функциональности.

Г. С. Альтшуллер открытые законы разделил на три раздела «Статику», «Кинематику», «Динамику». Названия эти условны и не имеют прямого отношения к физике. Но можно проследить связь этих групп с моделью «начала жизни-развития-смерти» в соответствии с законом S-образного развития технических систем, который автор предложил для полной картины эволюции процессов в технике. Она изображается логистической кривой, которая показывает меняющиеся со временем темпы развития. Этапов три:

1. «Детство». Конкретно в технике это длительный процесс проектирования системы, ее доработки, изготовления опытного образца, подготовки к серийному выпуску. В глобальном понимании этап связан с законами «Статики» - группой, объединенной критериями жизнеспособности возникающих технических систем (ТС). Говоря простым языком, благодаря этим законам можно дать ответы на два вопроса: Будет ли жить и функционировать создаваемая система? Что нужно сделать для того, чтобы она жила и функционировала?

2. «Расцвет». Этап бурного совершенствования системы, ее становления в качестве мощной и производительной единицы. Он связан со следующей группой законов - «Кинематикой», которая описывает направления развития технических систем вне зависимости от конкретных технических и физических механизмов. В буквальном понимании это означает те изменения, которые должны произойти в системе, чтобы она отвечала возрастающим к ней требованиям.

3. «Старость». С какого-то момента развитие системы замедляется, а позже прекращается вовсе. Это обусловлено законами «Динамики», характеризующими развитие ТС в условиях действия конкретных технических и физических факторов. «Динамика» противоположна «Кинематике» - законы этой группы определяют лишь возможные изменения, которые могут быть совершены в данных условиях. Когда возможности совершенствования исчерпаны, на смену старой системе приходит новая, и весь цикл повторяется.

Законы первых двух групп - «Статики» и «Кинематики» - универсальны по своему характеру. Они действуют в любую эпоху и применимы не только к техническим системам, но и к биологическим, социальным и т. д. «Динамика» же, по словам Альтшуллера, говорит об основных тенденциях функционирования систем именно в наше время.

Как пример действия комплекса этих законов в технике можно вспомнить развитие такой технической системы, как весельный флот. Она прошла становление от маленьких лодок с парой весел до крупных боевых кораблей, где сотни весел располагались в несколько рядов, уступив в результате место парусникам. В социальном и историческом плане примером S-образной системы может служить зарождение, процветание и упадок афинской демократии.

Статика

Законы «Статики» в ТРИЗ определяют начальную стадию функционирования технической системы, начало ее «жизни», определяя необходимые для этого условия. Сама категория «система» говорит нам о целом, составленном из частей. Техническая система, как и любая другая, начинает свою жизнь в результате синтеза отдельных компонентов. Но не всякое такое объединение дает жизнеспособную ТС. Законы группы «Статика» как раз и показывают, какие обязательные условия должны выполняться для успешной работоспособности системы.

Закон 1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Основных частей четыре: двигатель, трансмиссия, рабочий орган и орган управления. Для обеспечения жизнеспособности системы нужны не только эти части, но и их пригодность к выполнению функций ТС. Другими словами, эти составляющие должны быть работоспособными не только по отдельности, но и в системе. Классический пример - двигатель внутреннего сгорания, который работает сам по себе, функционирует в такой ТС как легковой автомобиль, но не пригоден для применения в подводной лодке.

Из закона полноты частей системы следует вывод: чтобы система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой. Управляемость означает способность менять свойства в зависимости от предполагаемых заданий. Это следствие хорошо иллюстрирует пример из книги Ю. П. Саламатова «Система законов развития техники»: воздушный шар, управлять которым можно с помощью клапана и балласта.

Похожий закон был сформулирован в 1840 г. Ю. фон Либихом и для биологических систем.

Закон 2. Закон «энергетической проводимости» системы. Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу. Если какая-то часть ТС не будет получать энергии, то и вся система не будет работать. Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.

Из закона «энергетической проводимости» следует вывод: чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления. Этот закон статики также является основой определения 3 правил энергопроводимости системы:

  1. Если элементы при взаимодействии друг с другом образуют систему, проводящую энергию с полезной функцией, то для повышения ее работоспособности в местах контакта должны быть вещества с близкими или одинаковыми уровнями развития.
  2. Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией, то для ее разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.
  3. Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией, то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

Закон 3. Закон согласования ритмики частей системы. Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Теоретик ТРИЗ А. В. Тригуб уверен, что для устранения вредных явлений или усиления полезных свойств технической системы, необходимо согласовать или рассогласовать частоты колебаний всех подсистем в технической системе и внешних системах. Попросту говоря, для жизнеспособности системы важно, чтобы отдельные части не только работали вместе, но и не мешали друг другу выполнять полезную функцию.

Этот закон прослеживается на примере истории создания установки для дробления камней в почках. Данный аппарат дробит камни целенаправленным лучом ультразвука, чтобы в дальнейшем они выводились натуральным путем. Но изначально для разрушения камня требовалась большая мощность ультразвука, что поражало не только их, но и окружающие ткани. Решение пришло после того, как была согласована частота ультразвука с частотой колебания камней. Это вызывало резонанс, который и разрушал камни, благодаря чему мощность луча удалось уменьшить.

Кинематика

Группа законов ТРИЗ «Кинематика» имеет дело с уже образованными системами, которые проходят этап своего становления. Условие, как было сказано выше, кроется в том, что эти законы определяют развитие ТС, независимо от конкретных технических и физических факторов, его обусловливающих.

Закон 4. Закон увеличения степени идеальности системы. Развитие всех систем идет в направлении увеличения степени идеальности.

В классическом понимании идеальная система - это система, вес, объем, площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря - это когда системы нет, а функция ее сохраняется и выполняется. Все ТС стремятся к идеальности, но идеальных очень мало. Образцом может служить сплав леса плотами, когда корабль для транспортировки не требуется, а функция доставки выполняется.

На практике можно найти множество примеров подтверждения данного закона. Предельный случай идеализации техники заключается в ее уменьшении (вплоть до исчезновения) при одновременном увеличении количества выполняемых ею функций. Например, первые поезда были больше чем сейчас, а пассажиров и грузов перевозили меньше. В дальнейшем габариты уменьшились, усилилась мощность, благодаря чему стала возможной перевозка больших объемов грузов и увеличение пассажиропотока, что привело и к снижению стоимости самой транспортировки.

Закон 5. Закон неравномерности развития частей системы. Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий, и, следовательно, изобретательских задач. Следствием данного закона является то, что рано или поздно изменение одной составляющей ТС спровоцирует цепную реакцию технических решений, которые приведут к изменению и оставшихся частей. Закон находит свое подтверждение в термодинамике. Так, в соответствии с принципом Онсагера: движущая сила любого процесса - это появление неоднородности в системе. Значительно раньше, чем в ТРИЗ, этот закон был описан в биологии: «В ходе прогрессивной эволюции возрастает взаимное приспособление органов, происходит координация изменений частей организма и идет аккумуляция корреляций общего значения».

Отличной иллюстрацией справедливости закона служит развитие автомобильной техники. Первые двигатели обеспечивали относительно небольшую по сегодняшним меркам скорость в 15-20 км/час. Установка двигателей большей мощности увеличила скорость, что со временем стало причиной замены колес на более широкие, изготовления кузова из более прочных материалов и т.д.

Закон 6. Закон опережающего развития рабочего органа. Желательно, чтобы рабочий орган опережал в своем развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Некоторые исследователи выделяют этот закон как отдельный, но многие труды выводят его в комплексе с законом неравномерности развития частей системы. Такой подход нам кажется более органичным, и мы выносим индивидуальный блок для данного закона лишь для большей структурированности и понятности.

Значение этого закона в том, что он указывает на распространенную ошибку, когда с целью увеличения полезности изобретения развивается не рабочий орган, а любой другой, например, управленческий (трансмиссия). Конкретный случай - чтобы создать многофункциональный игровой смартфон, нужно не просто сделать его удобным для держания в руке и оснастить большим дисплеем, а, в первую очередь, позаботиться о мощном процессоре.

Закон 7. Закон динамизации. Жесткие системы для повышения эффективности должны становиться динамичными, то есть переходить к более гибкой, быстро меняющейся структуре и к режиму работы, подстраивающемуся под изменения внешней среды.

Данный закон является универсальным и находит свое отображение во многих сферах. Степенью динамизации - способностью системы приспосабливаться к внешней среде - обладают не только технические системы. Когда-то такую адаптацию прошли биологические виды, вышедшие из воды на сушу. Изменяются и социальные системы: все больше компаний практикуют вместо офисной работы удаленную, а многие работники отдают предпочтение фрилансу.

Примеров из техники, подтверждающих данный закон, также множество. Свой облик за пару десятилетий поменяли мобильные телефоны. Причем изменения были не только количественными (уменьшение в размерах), но и качественными (увеличение функиональности, вплоть до перехода в надсистему - планшетофоны). Первые бритвенные станки «Gilette» имели неподвижную головку, которая позже стала более удобной движущейся. Еще один пример: в 30-е гг. в СССР выпускались быстрые танки БТ-5, которые по бездорожью двигались на гусеницах, а выехав на дорогу, сбрасывали их и шли на колесах.

Закон 8. Закон перехода в надсистему. Развитие системы, достигшей своего предела, может быть продолжено на уровне надсистемы.

Когда динамизация системы невозможна, другими словами, когда ТС полностью исчерпала свои возможности и дальнейших путей ее развития нет, система переходит в надсистему (НС). В ней она работает в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы. Переход происходит не всегда и ТС может оказаться мертвой, как, например, произошло с каменными орудиями труда первых людей. Система может не переходить в НС, а оставаться в состоянии, когда не может быть существенно усовершенствована, но сохранять жизнеспособность в силу необходимости этого людям. Примером такой технической системы служит велосипед.

Вариантом перехода системы в надсистему может быть создание би- и полисистем. Его еще называют законом перехода «моно - би - поли». Такие системы более надежны и функциональны, благодаря приобретаемым в результате синтеза качествам. После прохождения этапов би- и поли- наступает свертывание - либо ликвидация системы (каменный топор), поскольку она свое уже отслужила, либо переход ее в надсистему. Классический пример проявления: карандаш (моносистема) - карандаш с ластиком на конце (бисистема) - разноцветные карандаши (полисистема) - карандаш с циркулем или ручка (свертывание). Или бритва: с одним лезвием - с двумя - с тремя и более - бритва с вибрацией.

Этот закон является не только общим законом развития систем, схемой, по которой развивается все, но и законом природы, ведь симбиоз живых организмов с целью выживания известен с незапамятных времен. Как подтверждение: лишайники (симбиоз гриба и водорослей), членистоногие (рак-отшельник и актинии), люди (бактерии в желудке).

Динамика

«Динамика» объединяет законы развития ТС характерные для нашего времени и определяет возможные изменения в них в научно-технических условиях современности.

Закон 9. Закон перехода с макроуровня на микроуровень. Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

Суть заключается в том, что любая ТС для развития своего полезного функционала стремится перейти с макроуровня на микроуровень. Другими словами, в системах соблюдается тенденция перехода функции рабочего органа от колес, шестерней, валов и т. д. к молекулам, атомам, ионам, которые легко управляются полями. Это одна из главных тенденций развития всех современных технических систем.

Понятия «макроуровень» и «микроуровень» являются в данном отношении скорее условными и призваны показать уровни мышления человека, где первый уровень - что-то физически соизмеримое, а второй - понимаемое. В жизни любой ТС наступает момент, когда дальнейшее экстенсивное (увеличение полезной функции за счет изменений на макроуровне) развитие невозможно. Дальше систему можно развивать только интенсивно, за счет повышения организованности все более низких системных уровней вещества.

В технике переход между макро- и микроуровнями хорошо демонстрирует эволюция строительного материала - кирпича. Сначала это была просто организация формы глины для удобства. Но однажды человек забыл кирпич на пару часов на солнце, а когда вспомнил о нем - тот затвердел, что сделало его более надежным и практичным. Но со временем было замечено, что такой материал плохо держит тепло. Было совершено новое изобретение - теперь в кирпиче оставляли большое количество воздушных капилляров - микропустот, что существенно понизило его теплопроводность.

Закон 10. Закон повышения степени вепольности. Развитие технических систем идет в направлении увеличения степени вепольности.

Г. С. Альтшуллер писал: «Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы».

Веполь - (вещество+поле) - модель взаимодействия в минимальной технической системе. Это понятие абстрактное, применяемое в ТРИЗ для описания некоторого вида отношений. Под вепольностью стоит понимать управляемость. Дословно закон описывает вепольность как последовательность изменения структуры и элементов веполей с целью получения более управляемых технических систем, т.е. систем более идеальных. При этом в процессе изменения необходимо осуществлять согласование веществ, полей и структуры. Примером может служить диффузионная сварка и лазер для резки различных материалов.

В заключение отметим, что здесь собраны лишь описанные в литературе законы, в то время как теоретики ТРИЗ говорят о существовании и других, открыть и сформулировать которые еще предстоит.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ

(ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Кафедра: ИТС

Лабораторная работа

по дисциплине

Основы Теории Творческой Деятельности

«Теория Решения Изобретательских Задач»

Введение 3

Теория решения изобретательских задач (ТРИЗ) 4

ТРИЗ. Законы развития технических систем 6

ТРИЗ. Приемы устранения противоречий 6

ТРИЗ. Стандарты решения изобретательских задач 10

ТРИЗ: реальность и иллюзии 11

Выводы 13

Список литературы 13

Пример 14

Введение

Долгое время единственным инструментом решения творческих задач - задач, не имеющих эффективных механизмов решения, - был "метод проб и ошибок". В начале века резко возросла потребность в регулярном решении таких творческих задач, что привело к появлению многочисленных модификаций "метода проб и ошибок". Наиболее известные из них - различные варианты таких методов, как "мозговой штурм", "синектика", "морфологический анализ", "метод контрольных вопросов", "метод каталога". Суть всех этих методов - повышение интенсивности генерации идей и перебора вариантов. Но существует и противоречие - можно сэкономить время на генерацию идей, но затратить его еще больше на анализ полученных вариантов и выбор наилучшего. Как показывают прошедшие годы и проведенные в разных странах исследования количество полученных этими методами идей никак не связанно с качеством решения проблемы.

Еще в сороковых годах Г.С. Альтшуллер поставил задачу иначе: "Как без многочисленного перебора вариантов решения проблемы выходить сразу на сильные решения?". Справиться с этой задачей позволяют 3 принципа, лежащие в основе ТРИЗ.

    Принцип объективности законов развития систем - строение, функционирование и смена поколений систем подчиняются объективным законам. Отсюда: сильные решения - это решения, соответствующие объективным законам, закономерностям, явлениям, эффектам.

    Принцип противоречия - под воздействием внешних и внутренних факторов возникают, обостряются и разрешаются противоречия. Проблема трудна потому, что существует система противоречий - скрытых или явных. Системы эволюционируют, преодолевая противоречия на основе объективных законов, закономерностей, явлений и эффектов. Отсюда: сильные решения - это решения, преодолевающие противоречия.

    Принцип конкретности - каждый класс систем, как и отдельные представители внутри этого класса, имеет особенности, облегчающие или затрудняющие изменение конкретной системы. Эти особенности определяются ресурсами: внутренними - теми, на которых строится система, и внешними - той средой и ситуацией, в которых находится система. Отсюда: сильные решения - это решения, учитывающие особенности конкретных проблемных ситуаций.

Методология решения проблем строится на основе изучаемых ТРИЗ общих законов эволюции, общих принципов разрешения противоречий и механизмов приложения этих общих положений к решению конкретных проблем.

Современная Теория Решения Изобретательских Задач включает: механизмы планомерного преобразования размытой, проблемной ситуации в четкий образ будущего решения; механизмы подавления психологической инерции, препятствующей поиску решений; обширный информационный фонд - концентрированный опыт решения проблем.