Опыты с призмой. Цветовые опыты ньютона Опыт ньютона

Впервые опыт по разложению света в спектр был сделан Исааком Ньютоном в 1666 году. Он проделал маленькое отверстие в оконном ставне и в солнечный день получил узкий пучок света, на пути которого поставил треугольную стеклянную призму. Пучок преломился в ней, и на противоположной стене появилась цветная полоса, где расположились в определённом порядке все цвета радуги: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Эту цветную полосу Ньютон назвал спектром (от латинского «спектрум» — видимое).

Наименьшего отклонения от первоначального направления падения испытывают красные лучи, а наибольшего — фиолетовые.

После такого эксперимента Ньютон сделал первый вывод : разложение белого света в цветной спектр означает, что белый свет имеет сложную структуру, то есть является составным , то есть смесью всех цветов радуги.

Второй вывод Ньютона состоял в том, что свет разных цветов характеризуется разными показателями преломления в определённой среде . Это означает, что абсолютный показатель преломления для фиолетовых цветов больший, чем для красных.

Зависимость показателя преломления света от его цветов Ньютон назвал дисперсией (от латинского слова dispersio — «рассеивание»).

Однако Ньютон был сторонником корпускулярной теории и объяснить явление дисперсии не мог.

Дисперсия света

Согласно волновой теории цвета света определяются частотой электромагнитной волны , которой является свет. Наименьшую частоту имеет красный свет, наибольшую — фиолетовый. Исходя из опытов Ньютона и опираясь на волновую теорию света, следует вывод: показатель преломления света зависит от частоты световой волны.

Дисперсия света — это явление разложения света в спектр, обусловленное зависимостью абсолютного показателя преломления среды от частоты световой волны.

Что от чего зависит.?

Разным скоростям распространения волн соответствуют разные абсолютные показатели преломления среды
.

Значит, луч красного цвета преломляется меньше из-за того, что он имеет в веществе наибольшую скорость, а луч фиолетового цвета — наименьшую.

Частота и длина волны связаны между собой

Из формулы видно, что длина волны прямо пропорциональна скорости света и обратно пропорциональна частоте. Отсюда следует то, что длина волны больше в той среде, где скорость волны больше (при заданной частоте).

Из формул видно, что

Поэтому можно утверждать, что абсолютный показатель преломления уменьшается соответственно к увеличению длины световой волны и увеличивается соответсвенно к уменьшению длины световой волны.

Следовательно, во время перехода из одной среды в другую скорость распространения световой волны, а значит и длина волны, изменяется , а частота, а значит и цвет света, остаётся неизменной .

Как глаз различает цвета?

На сетчатке глаза расположены светочувствительные элементы – нервные окончания, которые называют «палочками» и «колбочками». Палочки отличают только светлое от тёмного. Колбочки есть трёх типов – их условно называют «красные», «зелёные» и «синие». Потому что «красные» колбочки наиболее чувствительны к красному цвету, «зелёные» — к зелёному, а «синие» — к синему. И всё многообразие видимых нами цветов обусловлено «сигналами», посылаемыми в мозг всего тремя типами колбочек.

Сложение цветов

Вычитание цветов

В 1704 г. выходит знаменитый труд Исаака Ньютона (1642- .1727) «Оптика», в котором впервые был описан экспериментальный метод исследования цветового зрения. Он называется методом аддитивного смешения цветов, и полученные этим методом результаты положили начало экспериментальной науке о цвете.


Опыты Ньютона описаны во многих руководствах, поэтому мы рассмотрим их только в связи с вопросом о природе цвета. Рис. 1.1 представляет собой схему установки Ньютона и иллюстрирует суть опытов.


Если в качестве экрана 1 взять плотный лист белого картона, то после прохождения солнечного луча через призму на экране отразится обычный линейный цветовой спектр. Для проверки гипотезы, где возникают цветные лучи - в свете или призме,- Ньютон убрал экран 1 и пропустил спектральные лучи на линзу, тсоторая снова собрала их в пучок на экране 2, и этот пучок был такой же бесцветный, как исходный свет.

Таким образом, Ньютон показал, что цвета образуются не призмой, а...! И вот здесь необходимо на минуту остановиться, потому что до сих пор были физические опыты со светом и только здесь начинаются опыты по смешению цветов. Итак, семь цветных лучей, смешанных вместе, дают белый луч, а значит, именно состав света был причиной появления цвета, но куда же они деваются после смешения? Почему, как ни разглядываешь белый свет, в нем нет никакого намека на цветные лучи, из которых он состоит?

Именно этот феномен, который даст возможность сформулировать один из законов смешения цветов, и привел Ньютона к разработке метода смешения цветов. Обратимся снова к рис. 1.1. Поставим вместо сплошного экрана 1 другой экран 1, в котором вырезаны отверстия так, чтобы только часть лучей (два, три или четыре из семи) проходила, а остальные загораживались светонепроницаемыми перегородками. И здесь начинаются чудеса. На экране 2 появляются цвета неизвестно откуда и неизвестно каким образом. Например, мы закрыли путь лучам фиолетовому, голубому, синему, желтому и оранжевому и пропустили зеленый и красный лучи. Однако, пройдя через линзу и дойдя до экрана 2, эти лучи исчезли, но вместо них появился желтый. Если посмотреть на экран 1, мы убеждаемся, что желтый луч задержан этим экраном и не может попасть на экран 2, но тем не менее на экране 2 точно такой же желтый цвет. Откуда он взялся?

Такие же чудеса происходят, если задержать все лучи, кроме голубого и оранжевого. Опять исчезнут исходные лучи, а появится белый свет, такой же, как если бы он состоял не из двух лучей, а из семи. Но самое удивительное явление возникает, если пропустить только крайние лучи спектра - фиолетовый и красный. На экране 2 появляется совершенно новый цвет, которого не было ни среди исходных семи цветов, ни среди их остальных комбинаций,- пурпурный.

Эти поразительные феномены заставили Ньютона внимательно рассмотреть лучи спектра и их разные смеси. Если и мы вглядимся в спектральный ряд, то увидим, что отдельные составляющие спектра не отделяются друг от друга резкой границей, а постепенно переходят друг в друга так, что соседние в спектре лучи кажутся более похожими друг на друга, чем дальние. И здесь Ньютон открыл еще один феномен.

Оказывается, для крайнего фиолетового луча спектра наиболее близкими по цвету являются не только синий, но и неспектральный пурпурный. И этот же пурпурный вместе с оранжевым составляет пару соседних цветов для крайнего красного луча спектра. То есть если расположить цвета спектра и смеси в соответствии с их воспринимаемым сходством, то они образуют не линию, как спектр, а замкнутый круг (рис. 1.2), так что наиболее разные по положению в спектре излучения, т. е. наиболее различающиеся физически лучи, окажутся очень близкими по цвету.


Это означало, что физическая структура спектра и цветовая структура ощущений совершенно разные явления. И это был главный вывод, который Ньютон сделал из своих опытов в «Оптике»

«Когда я говорю о свете и лучах как о цветных или вызывающих цвета, следует понимать, что я говорю не в философском смысле, а так, как говорят об этих понятиях простые люди. По-существу же лучи не являются цветными; в них нет ничего, кроме определенной способности и предрасположения вызывать ощущение того или иного цвета. Так же как звук... в любом звучащем теле есть не что иное, как движение, которое органами чувств воспринимается в виде звука, так и цвет предмета есть не что иное, как предрасположение отражать тот или иной вид лучей в большей степени, чем остальные, цвет лучей - это их предрасположение тем или иным способом воздействовать на органы чувств, а их ощущение принимает форму цветов» (Ньютон, 1704).

Рассматривая взаимоотношение между разными по физическому составу лучами света и вызываемыми ими цветовыми ощущениями, Ньютон первый понял, что цвет есть атрибут восприятия, для которого нужен наблюдатель, способный воспринять лучи света и интерпретировать их как цвета. Сам свет окрашен не больше, чем радиоволны или рентгеновские лучи.

Таким образом, Ньютон первый экспериментально доказал, что цвет - это свойство нашего восприятия, и природа его в устройстве органов чувств, способных интерпретировать определенным образом воздействие электромагнитных излучений.


Поскольку Ньютон был сторонником корпускулярной теории света, он полагал, что преобразование электромагнитных излучений в цвета осуществляется путем вибрации нервных волокон, так, что» определенное сочетание вибраций различных волокон вызывает в мозге определенное ощущение цвета.

Сейчас мы знаем, что Ньютон ошибся, предположив резонансный механизм генерации цвета (в отличие от слуха, где первый этап преобразования механических колебаний в звук осуществляется именно резонансным механизмом, цветовое зрение устроено принципиально иначе), на для нас более важно другое, то, что Ньютон впервые выделил специфическую триаду: физическое излучение - физиологический механизм - психический феномен, в которой цвет определяется взаимодействием физиологического и психологического уровней. Поэтому мы можем назвать точку зрения Ньютона идеей о психофизиологической природе цвета.

Сотни тысяч физических экспериментов было поставлено за тысячелетнюю историю науки. Непросто отобрать несколько «самых-самых»

Изменить размер текста: A A

Среди физиков США и Западной Европы был проведен опрос. Исследователи Роберт Криз и Стони Бук просили их назвать самые красивые за всю историю физические эксперименты. Об экспериментах, вошедших в первую десятку по результатам опроса Криза и Бука, рассказал научный сотрудник Лаборатории нейтринной астрофизики высоких энергий, кандидат физико-математических наук Игорь Сокальский. 1. Эксперимент Эратосфена Киренского Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан ) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии , находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами, сообщает сайт . 2. Эксперимент Галилео Галилея В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем , - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе. 3. Другой эксперимент Галилео Галилея Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики. 4. Эксперимент Генри Кавендиша После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ(mM/r2), оставалось определить значение гравитационной постоянной γ- Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли. 6. Эксперимент Исаака Ньютона В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного. Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам. 7. Эксперимент Томаса Юнга До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной. Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц. 9. Эксперимент Роберта Милликена Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц . В теорию был введен термин "электрон", обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны. Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х10-10 электростатических единиц. 10. Эксперимент Эрнста Резерфорда К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона : атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами. В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в "рыхлом" атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см. Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. А третьи вообще скоро будут проводить на других планетах. Кстати, а вы знаете,

Еще в 60-е гг. XVII в. Ньютон заинтересовался оптикой и сделал открытие, которое, как казалось сначала, говорило в пользу корпускулярной теории света. Этим открытием было явление дисперсии света и простых цветов.

Разложение белого света призмой в спектр было известно очень давно. Однако разобраться в этом явлении до Ньютона никто не смог. Ученых, занимающихся оптикой, интересовал вопрос о природе цвета. Наиболее распространенным было мнение о том, что белый свет является простым. Цветные же лучи получаются в результате тех или иных его изменений. Существовали различные теории по этому вопросу.

Изучая явление разложения белого света в спектр, Ньютон пришел к заключению, что белый свет является сложным светом. Он представляет собой сумму простых цветных лучей.

Ньютон работал с простой установкой. В ставне окна затемненной комнаты было проделано маленькое отверстие. Через это отверстие проходил узкий пучок солнечного света. На пути светового луча ставилась призма, а за призмой экран. На экране Ньютон наблюдал спектр, т.е. удлиненное изображение круглого отверстия, как бы составленного из многих цветных кружков. При этом наибольшее отклонение имели фиолетовые лучи - один конец спектра - и наименьшее отклонение - красные - другой конец спектра.

Но этот опыт еще не являлся убедительным доказательством сложности белого света и существования простых лучей. Он был хорошо известен, и из него можно было сделать заключение, что, проходя призму, белый свет не разлагается на простые лучи, а изменяется, как многие думали до Ньютона.

Для того чтобы подтвердить вывод о том, что белый свет состоит из простых цветных лучей и разлагается на них при прохождении через призму, Ньютон проводил другой опыт. В экране, на котором наблюдался спектр, делалось также малое отверстие. Через отверстие пропускали уже не белый свет, а свет, имеющий определенную окраску, говоря современным языком, монохроматический пучок света. На пути этого пучка Ньютон ставил новую призму, а за ней новый экран. Что будет наблюдаться на этом экране? Разложит он одноцветный пучок света в новый спектр или нет? Опыт показал, что этот пучок света отклоняется призмой как одно целое, под определенным углом. При этом свет не изменяет своей окраски. Поворачивая первую призму, Ньютон пропускал через отверстие экрана цветные лучи различных участков спектра. Во всех случаях они не разлагались второй призмой, а лишь отклонялись на определенный угол, разный для лучей различного цвета.

После этого Ньютон пришел к заключению, что белый свет разлагается на цветные лучи, которые являются простыми и призмой не разлагаются. Для каждого цвета показатель преломления имеет свое, определенное значение. Цветность этих лучей и их преломляемость не может измениться «ни преломлением, ни отражением от естественных тел, или какой-либо иной причиной», - писал Ньютон. Это открытие произвело большое впечатление. В 18 в. французский поэт Дювард писал: «Но что это? Тонкая сущность этих лучей не может изменяться по своей природе! Никакое искусство не в состоянии его разрушить, и красный или синий луч имеет свою окраску, побеждая все усилия» .

Основы спектрального анализа могут быть охарактеризованы так:

«Свет какого-нибудь источника может быть источника может быть разложен на ряд элементов, которые в отдельности создают впечатление цветов. Эти элементы нельзя разграничить резко, они постепенно переходят друг в друга. Простейшим способом свет можно разложить при помощи стеклянной призмы. Именно этим методом Ньютон произвел ряд опытов, которые привели его к основанию физической оптики и позволили сделать один из крупнейших вкладов в науку. Пучок солнечного света входит в темную комнату сквозь отверстие в ставне и падает на стеклянную призму. Выходящий из призмы свет образует окрашенную полосу, называемую спектром. Красный конец спектра образован лучами, наименее отклоняемыми при прохождении сквозь призму, фиолетовый - наиболее отклоняемыми. Остальные цвета располагаются между указанными пределами без каких-либо резких границ раздела…»

Эти исследования привели ученого к изобретению первого зеркального телескопа (1688). Ньютон исследовал также интерференцию света. Несмотря на то, что его опыты подтверждали волновую теории света, он решительно выступал против нее и отстаивал гипотезу, согласно которой источник выбрасывает малейшие материальные частицы - корпускулы. Эту теорию некоторое время полностью отрицали, но теперь она снова возрождается в измененной форме.

Еще более убеждает нас в силе науки то, как был взвешен… земной шар. Казалось бы, это исключено. Однако ученые нашли такую возможность. Был использован закон всемирного тяготения, открытый Исааком Ньютоном.

Вспомним еще раз: чем больше масса тела, тем с большей силой оно притягивает к себе другие тела. Кавендиш определил, с какой силой массивный свинцовый шар притягивал к себе маленькие шары, а затем сравнил эту силу с другой силой - притяжением маленьких шаров Землей, то есть их весом. Во сколько раз эта, вторая сила больше первой, во столько же раз масса Земли больше массы большого свинцового шара. Так была и взвешена Земля! Масса ее оказалась равной примерно 6 000 000 000 000 000 000 000 тонн. Зная вес и объем Земли, ученые легко вычислили ее среднюю плотность: она равняется 5,5 г/см3, другими словами, вещество, из которого состоит земной шар, в 5,5 раза тяжелее воды.

Темы кодификатора ЕГЭ: дисперсия света.

Пусть солнечный луч переходит из воздуха в прозрачную среду (например, воду или стекло). Если угол падения не равен нулю, то, как вы помните, угол преломления определяется из закона преломления:

Величина , называемая показателем преломления, характеризует среду и от угла падения не зависит.

Оказывается, однако, что среда по-разному реагирует на прохождение электромагнитных волн различных частот. Имеет место дисперсия - зависимость показателя преломления среды от частоты света.

Опыт Ньютона.

Классический опыт по наблюдению дисперсии был поставлен Ньютоном. Узкий луч солнечного света направлялся на треугольную стеклянную призму (рис. 1 ).

На экране за призмой появлялся спектр - радужная полоса. Один край спектра оказался красным, другой - фиолетовым, а цвета внутри спектра непрерывно переходили друг в друга.

Выделяя луч какого-либо цвета (например, красного или синего) и запуская его в другую призму, мы уже не увидим изменения цвета преломлённого луча. Стало быть, компоненты радуги являются простейшими цветами, не разложимыми далее. Их можно собрать обратно с помощью второй призмы, и тогда снова получится белый свет. Следовательно, белый свет является смесью световых пучков различных цветов, непрерывно заполняющих диапазон видимого света от красного до фиолетового.

Мы видим, таким образом, что стеклянная призма является простейшим спектральным прибором - она позволяет исследовать спектральный состав белого света. С действием более сложного спектрального прибора - дифракционной решётки - мы познакомились в предыдущей теме.

Как показывает опыт Ньютона, слабее всего преломляется красный свет, а сильнее всего - фиолетовый. В видимом диапазоне красный свет имеет наименьшую частоту, а фиолетовый - наибольшую. Коль скоро показатель преломления становится всё больше по мере движения от красного конца спектра к фиолетовому, мы делаем вывод, что показатель преломления стекла увеличивается с возрастанием частоты света.

Но показатель преломления есть отношение скорости света в воздухе к скорости света в среде: . Значит,чем больше частота света, тем с меньшей скоростью свет распространяется в стекле . Наибольшую скорость внутри стеклянной призмы имеет красный свет, наименьшую - фиолетовый.

Различие в скоростях света для разных частот проявляется только при наличии среды. В вакууме скорость распространения электромагнитных волн не зависит от частоты и равна .

Открытая и исследованная Ньютоном, дисперсия света больше двухсот лет ждала своего объяснения - нужны были соответствующие сведения о строении вещества. Классическая теория дисперсии была предложена Лоренцем лишь в конце XIX века. Более точная квантовая теория дисперсии появилась в первой половине прошлого столетия.

Хроматическая аберрация.

]Предположим, что на собирающую линзу параллельно главной оптической оси падает пучок белого света. Преломляясь в линзе, он, казалось бы, должен собраться в её фокусе. Однако вследствие дисперсии возникает хроматическая аберрация - некоторая расфокусировка пучка, вызванная различной преломляемостью разных компонент белого света.

Явление хроматической аберрации показано на рис. 2 .


Рис. 2. Хроматическая аберрация

Показатель преломления материала линзы принимает наименьшее значение для красного света, и потому красный свет преломляется слабее всего. Красные лучи собираются на главной оптической оси в наиболее удалённой от линзы точке. Жёлтые лучи собираются ближе к линзе, зелёные - ещё ближе, и, наконец, в ближайшей к линзе точке сойдутся фиолетовые лучи.

Хроматическая аберрация ухудшает качество изображений - снижает чёткость, даёт лишние цветные полосы. Но с хроматической аберрацией можно бороться. Для этого в оптической технике применяют так называемые ахроматические линзы, получаемые накладыванием на собирающую линзу дополнительной рассеивающей линзы. Догадайтесь - зачем нужна рассеивающая линза?