Определение прямой перпендикулярной плоскости признак перпендикулярности. Перпендикулярные прямая и плоскость, признак и условия перпендикулярности прямой и плоскости

Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?

Определение. Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна данной плоскости.
Доказательство. Пусть а – прямая перпендикулярная прямым b и с , принадлежащим плоскости a . А – точка пересечения прямых. В плоскости a через точку А проведем прямую d , не совпадающую с прямыми b и с . Теперь в плоскости a проведем прямую k , пересекающую прямые d и с и не проходящую через точку А. Точки пересечения соответственно D, В и С. Отложим на прямой а в разные стороны от точки А равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, т.к. высота АС является так же и медианой (признак 1), т.е. А 1 С=СА 2 . Подобно в треугольнике А 1 ВА 2 равны стороны А 1 В и ВА 2 . Следолвательно, треугольники А 1 ВС и А 2 ВС равны по третьему признаку Поэтому равны углы А 1 ВD и А 2 ВD. Значит, равны и треугольники А 1 ВD и А 2 ВD по первому признаку . Поэтому А 1 D и А 2 D. Отсюда треугольник А 1 DА 2 равнобедренный по определению. В равнобедренном треугольнике А 1 D А 2 D А – медиана (по построению), а значит и высота, то есть угол А 1 АD прямой, а значит прямая а перпендикулярна прямой d . Таким образом можно доказать, что прямая а перпендикулярна любой прямой проходящей через точку А и принадлежащей плоскости a . Из определения следует, что прямая а перпендикулярна плоскости a .

Построение прямой перпендикулярной данной плоскости из точки, взятой вне этой плоскости.
Пусть a - плоскость, А – точка, из которой надо опустить перпендикуляр. В плоскости проведем некоторую прямую а . Через точку А и прямую а проведем плоскость b (прямая и точка определяют плоскость, причем только одну). В плоскости b из точки А опустим на прямую а перпендикуляр АВ. Из точки В в плоскости a восстановим перпендикуляр и обозначим прямую, на которой лежит этот перпендикуляр за с . Через отрезок АВ и прямую с проведем плоскость g (две пересекающиеся прямые определяют плоскость, причем только одну). В плоскости g из точки А опустим на прямую с перпендикуляр АС. Докажем, что отрезок АС – перпендикуляр к плоскости b . Доказательство. Прямая а перпендикулярна прямым с и АВ (по построению), а значит она перпендикулярна и самой плоскости g , в которой лежат эти две пересекающиеся прямые (по признаку перпендикулярности прямой и плоскости). А раз она перпендикулярна этой плоскости, то она перпендикулярна и любой прямой в этой плоскости, значит прямая а перпендикулярна АС. Прямая АС перпендикулярна двум прямым, лежащим в плоскости α : с (по построению) и а (по доказанному), значит она перпендикулярна плоскости α (по признаку перпендикулярности прямой и плоскости)

Теорема 1 . Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны.
Доказательство. Пусть а и b - перпендикулярные прямые, а 1 и b 1 - параллельные им пересекающиеся прямые. Докажем, что прямые а 1 и b 1 перпендикулярны.
Если прямые а , b , а 1 и b 1 лежат в одной плоскости, то они обладают указанным в теореме свойством, как это известно из планиметрии.
Допустим теперь, что наши прямые не лежат в одной плоскости. Тогда прямые а и b лежат в некоторой плоскости α , а прямые а 1 и b 1 - в некоторой плоскости β . По признаку параллельности плоскостей плоскости α и β параллельны. Пусть С - точка пересечения прямых а и b , а С 1 - пересечения прямых а 1 и b 1 . Проведем в плоскости параллельных прямых а и а а и а 1 в точках А и А 1 . В плоскости параллельных прямых b и b 1 прямую, параллельную прямой СС 1 . Она пересечет прямые b и b 1 в точках B и B 1 .
Четырехугольники САА 1 С 1 и СВВ 1 С 1 - параллелограммы, так как у них противолежащие стороны параллельны. Четырехугольник АВВ 1 А 1 также параллелограмм. У него стороны АА 1 и ВВ 1 параллельны, потому что каждая из них параллельна прямой СС 1 .Таким образом четырехугольник лежит в плоскости, проходящей через параллельные прямые АА 1 и ВВ 1 . А она пересекает параллельные плоскости α и β по параллельным прямые АВ и А 1 В 1 .
Так как у параллелограмма противолежащие стороны равны, то АВ=А 1 В 1 , АС=А 1 С 1 , ВС=В 1 С 1 . По третьему признаку равенства треугольники АВС и А 1 В 1 С 1 равны. Итак, угол А 1 С 1 В 1 , равный углу АСВ, прямой, т.е. прямые а 1 и b 1 перпендикулярны. Ч.т.д.

Свойства перпендикулярных прямой и плоскости.
Теорема 2 . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство. Пусть а 1 и а 2 - две параллельные прямые и α - плоскость, перпендикулярна прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 .
Проведем через точку А 2 пересечения прямой а 2 с плоскостью α произвольную прямую с 2 в плоскости α . Проведем в плоскости α через точку А 1 пересечения прямой а 1 с плоскостью α прямую с 1 , параллельную прямой с 2 . Так как прямая а 1 перпендикулярна плоскости α , то прямые а 1 и с 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и с 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой с 2 в плоскости α . А это значит, что прямая а 2 перпендикулярна плоскости α . Теорема доказана.

Теорема 3 . Две прямые, перпендикулярные одной и той же плоскости, параллельны между собой.
Имеем плоскость α и две перпендикулярные ей прямые а и b . Докажем, что а || b .
Через точки пересечения прямыми плоскости проведем прямую с . По признаку получаем а ^ c и b ^ c . Через прямые а и b проведем плоскость (две параллельные прямые определяют плоскость и притом только одну). В этой плоскости мы имеем два параллельные прямые а и b и секущую с . Если сумма внутренних односторонних углов равна 180 о, то прямые параллельны. У нас как раз такой случай - два прямых угла. Поэтому а || b .

Статья раскрывает понятие о перпендикулярности прямой и плоскости, дается определение прямой, плоскости, графически иллюстрировано и показано обозначение перпендикулярных прямой и плоскости. Сформулируем признак перпендикулярности прямой с плоскостью. Рассмотрим условия, при которых прямая и плоскость будут перпендикулярны с заданными уравнениями в плоскости и трехмерном пространстве. Все будет показано на примерах.

Yandex.RTB R-A-339285-1 Определение 1

Прямая перпендикулярна к плоскости , когда она перпендикулярна к любой прямой, лежащей в этой плоскости.

Верно то, что и плоскость перпендикулярна к прямой, как и прямая к плоскости.

Перпендикулярность обозначается « ⊥ ». Если в условии задано, что прямая с перпендикулярна плоскости γ , тогда запись имеет вид с ⊥ γ .

Например, если прямая перпендикулярна к плоскости, тогда возможно провести только одну прямую, благодаря которой две смежных стены комнаты пересекутся. Прямая считается перпендикулярной к плоскости потолка. Канат, расположенный в спортзале рассматривается в качестве отрезка прямой, который перпендикулярен плоскости, в данном случае полу.

При наличии перпендикулярной прямой к плоскости, угол между прямой и плоскостью считается прямым, то есть равен 90 градусов.

Перпендикулярность прямой и плоскости – признак и условия перпендикулярности

Для нахождения выявления перпендикулярности необходимо использовать достаточное условие перпендикулярности прямой и плоскости. Оно гарантирует выполнение перпендикулярности прямой и плоскости. Данное условие считается достаточным и называют признаком перпендикулярности прямой и плоскости.

Теорема 1

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, которые лежат в этой плоскости.

Подробное доказательство приведено в учебнике геометрии 10 - 11 класса. Теорема применяется для решения задач, где необходимо установить перпендикулярность прямой и плоскости.

Теорема 2

При условии параллельности хоть одной из прямых плоскости, считается, что вторая прямая также перпендикулярна к данной плоскости.

Признак перпендикулярности прямой и плоскости рассматривается еще со школы, когда необходимо решить задачи по геометрии. Рассмотрим подробнее еще одно необходимое и достаточное условие, при котором прямая и плоскость будут перпендикулярны.

Теорема 3

Для того, чтобы прямая а была перпендикулярна плоскости γ , необходимым и достаточным условием является коллинеарность направляющего вектора прямой а и нормального вектора плоскости γ .

Доказательство

При a → = (a x , a y , a z) являющимся вектором прямой a , при n → = (n x , n y , n z) являющимся нормальным вектором плоскости γ для выполнения перпендикулярности нужно, чтобы прямая a и плоскость γ принадлежали выполняемости условия коллинеарности векторов a → = (a x , a y , a z) и n → = (n x , n y , n z) . Отсюда получаем, что a → = t · n → ⇔ a x = t · n x a y = t · n y a z = t · n z , t является действительным числом.

Данное доказательство основывается на необходимом и достаточном условии перпендикулярности прямой и плоскости, направляющего вектора прямой и нормального вектора плоскости.

Данное условие применимо для доказательства перпендикулярности прямой и плоскости, так как достаточно найти координаты направляющего вектора прямой и координаты нормального вектора в трехмерном пространстве, после чего производить вычисления. Используется для случаев, когда прямая определена уравнением прямой в пространстве, а плоскость уравнением плоскости некоторого вида.

Пример 1

Доказать перпендикулярность заданной прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 с плоскостью x + 2 2 + 1 y - (5 + 6 2) z .

Решение

Знаменатели канонических уравнений являются координатами направляющего вектора данной прямой. Отсюда имеем, что a → = (2 - 1 , 2 , 2 - 7) является направляющим вектором прямой x 2 - 1 = y - 1 2 = z + 2 2 - 7 .

В общем уравнении плоскости коэффициенты перед переменными x , y , z являются координатами нормального вектора данной плоскости. Отсюда следует, что n → = (1 , 2 (2 + 1) , - (5 + 6 2)) - это нормальный вектор плоскости x + 2 2 + 1 y - (5 + 6 2) z - 4 = 0

Необходимо произвести проверку выполнимости условия. Получаем, что

2 - 1 = t · 1 2 = t · 2 (2 + 1) 2 = t · (- (5 + 6 2)) ⇔ t = 2 - 1 , тогда векторы a → и n → связаны выражением a → = (2 - 1) · n → .

Это и есть коллинеарность векторов. отсюда следует, что прямая x 2 - 1 = y - 1 2 = z + 2 2 - 7 перпендикулярна плоскости x + 2 (2 + 1) y - (5 + 6 2) z - 4 = 0 .

Ответ: прямая и плоскость перпендикулярны.

Пример 2

Определить, перпендикулярны ли прямая y - 1 = 0 x + 4 z - 2 = 0 и плоскость x 1 2 + z - 1 2 = 1 .

Решение

Чтобы ответить на вопрос перпендикулярности, необходимо, чтобы было выполнено необходимое и достаточное условие, то есть для начала нужно найти вектор заданной прямой и нормальный вектор плоскости.

Из прямой y - 1 = 0 x + 4 z - 2 = 0 видно, что направляющий вектор a → - это произведение нормальных векторов плоскости y - 1 = 0 и x + 4 z - 2 = 0 .

Отсюда получаем, что a → = i → j → k → 0 1 0 1 0 4 = 4 · i → - k → .

Координаты вектора a → = (4 , 0 , - 1) .

Уравнение плоскости в отрезках x 1 2 + z - 1 2 = 1 является эквивалентным уравнению плоскости 2 x - 2 z - 1 = 0 , нормальный вектор которой равен n → = (2 , 0 , - 2) .

Следует произвести проверку на коллинеарность векторов a → = (4 , 0 , - 1) и n → = (2 , 0 , - 2) .

Для этого запишем:

4 = t · 2 0 = t · 0 - 1 = t · (- 2) ⇔ t = 2 t ∈ R ⇔ t ∈ ∅ t = 1 2

Отсюда делаем вывод о том, что направляющий вектор прямой не коллинеарен нормальному вектору плоскости. Значит, y - 1 = 0 x + 4 z - 2 = 0 - это прямая, не перпендикулярная к плоскости x 1 2 + z - 1 2 .

Ответ: прямая и плоскость не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter