Новый орбитальный телескоп. Испытания будущего телескопа "Джеймс Уэбб": решающий этап. Недавние проблемы и их решение

Космический телескоп "Джеймс Уэбб" (англ. James Webb Space Telescope, JWST) — орбитальная инфракрасная обсерватория , которая, предположительно, заменит космический телескоп "Хаббл" (Hubble Space Telescope). Запуск телескопа запланирован на 2014 год.

Идея создания "Космического телескопа нового поколения" (Next Generation Space Telescope, NGST) была впервые озвучена летом 1996 года на заседании специального комитета Национального управления по аэронавтике и исследованию космического пространства (НАСА), в который вошли ведущие американские астрономы и астрофизики. 10 сентября 2002 года директор НАСА Шон О’Киф заявил, что новый телескоп будет носить имя одного основателей американской лунной программы "Аполло" Джеймса Эдвина Уэбба (1906-1992), руководившего НАСА с февраля 1961 по октябрь 1968 года.

В конструкцию "Джеймса Уэбба" входят огромное зеркало диаметром 6,5 метров (диаметр зеркала Хаббла - 2,4 метра) и солнцезащитный щит размером с теннисный корт. Зеркало и щит из-за своих габаритов будут доставлены на ракету-носитель в сложенном виде, а затем раскроются после вывода телескопа в открытый космос.

Основное различие между "Хабблом" и "Джеймсом Уэббом" заключается в диапазонах работы: приборы "Хаббла" собирают информацию в инфракрасных лучах, в видимом свете и в ультрафиолете, а "Джеймс Уэбб" будет работать преимущественно в инфракрасном диапазоне. В связи с этим новый телескоп можно считать также преемником крупнейшей в мире инфракрасной обсерватории космического базирования "Спитцер", запущенной НАСА 25 августа 2003 года.

Телескоп будет находиться в космическом пространстве в точке Лагранжа L2 , отстоящей от нашей планеты на 1,5 млн км. В ней Земля почти полностью заслоняет солнечный свет, при этом не мешая наблюдениям, поскольку обращена к L2 неосвещенной стороной. Гравитационные силы Земли и Солнца обеспечат относительную неподвижность телескопа относительно этих двух небесных тел. Небольшие изменения местоположения "Джеймса Уэбба", предотвращающие его уход из зоны радиационной безопасности, будут выполняться с помощью коррекционных двигателей. Нахождение в земной тени позволит телескопу работать без искусственного охлаждения.

Первичными задачами "Джеймса Уэбба" являются: обнаружение первых звезд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звезд, планетных систем и происхождения жизни, а также связи Большого взрыва с нашей галактикой Млечный путь. Этим и обусловлен инфракрасный режим работы телескопа - самые отдаленные и древние объекты Вселенной невозможно обнаружить в оптическом диапазоне.

Телескоп располагает различными инструментами для проведения исследования космоса, в число которых входят: прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument, MIRI), камера ближнего инфракрасного диапазона (Near-Infrared Camera, NIRCam), спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph, NIRSpec), датчик точного наведения (на объект наблюдения) с настраиваемыми фильтрами (Fine Guidance Sensor/Tuneable Filter Imager, FGS/TFI).

Изначально предполагалось, что создание "Джеймса Уэбба" обойдется всего 0,5 млрд долларов, то есть втрое дешевле, нежели изготовление "Хаббла". Ныне проектная стоимость телескопа составляет 4-4,5 млрд долларов. Несмотря на то, что в период кризиса было урезано финансирование некоторых космических программ, проект "Джеймс Уэбб", по заявлению директора НАСА Майкла Гриффина, продолжает оставаться одним из основных приоритетов деятельности американского аэрокосмического управления.

Главное зеркало телескопа «Джеймс Уэбб»

NASA и ESA опубликовали список первых целей космического телескопа «Джеймс Уэбб», запуск которого назначен на 2018 год. Прибор станет крупнейшим космическим телескопом, работающим в оптическом, ближнем и среднем инфракрасном диапазонах - диаметр его главного зеркала почти в три раза больше такового у «Хаббла» - 6,5 метра. Среди целей - планеты и малые тела Солнечной системы, экзопланеты и протопланетные диски, галактики и скопления галактик, далекие квазары. Об этом сообщает пресс-релиз NASA, список опубликован на сайте телескопа.

Телескоп имени Джеймса Уэбба разрабатывается с 1996 года - он должен в некотором смысле сменить «Хаббл» и обеспечить гораздо большее разрешение и чувствительность, чем земные и космические инфракрасные телескопы. С работой телескопа связывают надежды на исследование ранних галактик (527-980 миллионов лет после Большого Взрыва). В тот момент в пространстве было много нейтрального водорода, поглощавшего ультрафиолетовое излучение звезд.

Приборное время телескопа распределяется по заявкам от научных групп. Приоритет в заявках и около 10 процентов времени выделены для научных групп, помогавших в разработке телескопа. Запросы именно от этих научных групп и были недавно опубликованы. Они сгруппированы тематически на: объекты Солнечной системы, экзопланеты, коричневые карлики, протозвезды, осколочные диски, звездные скопления и области звездообразования, галактики, скопления галактик и квазары, а также обзоры дальнего космоса.

Среди малых тел запланированы наблюдения Цереры, Паллады, астероида Рюгу (его через год достигнет «Хаябуса-2»), транснептуновых объектов и нескольких комет. Из экзопланет можно выделить HD189733b (обладательница ), HAT-P-26b (на ней ), TRAPPIST-1e (находится в обитаемой зоне недавно системы из семи экзопланет), HD131399 (это система из трех звезд, в которой ). Всего запланированы исследования нескольких десятков экзопланет, в том числе и их атмосфер. Среди других объектов известная система беты Живописца с обломочным диском, туманность Конская голова, остаток сверхновой SN 1987A и несколько квазаров, которые мы видим такими, какими они были через миллиард лет после Большого взрыва или меньше. Всего запланировано уже свыше 2100 наблюдений.

Сейчас «Уэбб» находится на стадии тестирования основных систем. Его главное зеркало было полностью в феврале 2016 года, оно состоит из 18 шестиугольных сегментов. Общая площадь составляет 25 квадратных метров, масса - 705 килограммов. Каждый сегмент массой 20,1 килограмма изготовлен из бериллия и покрыт слоем золота толщиной 100 нанометров.

Владимир Королёв

Правообладатель иллюстрации NASA Image caption С октября прошлого года научные приборы телескопа проходят испытания в вакуумной камере Центра Годдарда

Работа по подготовке к запуску преемника орбитального телескопа "Хаббл" - космической обсерватории "Джеймс Уэбб" - вступила в решающий этап.

Инженеры НАСА заканчивают сборку основного зеркала нового телескопа. Запуск нового телескопа планируется теперь на октябрь 2018 года.

Завершаются также криогенные испытания и калибровка четырех основных блоков научной аппаратуры телескопа.

Проект НАСА по запуску новой орбитальной обсерватории вступил таким образом в финальную стадию, и в ближайшие месяцы можно ожидать быстрого завершения остающихся этапов подготовки к старту.

Телескоп планируется запустить с помощью европейской ракеты-носителя "Ариан-5", что определило многие особенности конструкции телескопа, в частности, тот факт, что главное его зеркало состоит из сегментов.

Орбитальный телескоп "Джеймс Уэбб", названный так по имени второго руководителя NASA, финансируется американским аэрокосмическим агентством, Европейским космическим агентством и Канадским космическим агентством.

Правообладатель иллюстрации NASA Image caption Каждый изготовленный из бериллия сегмент зеркала приклеивается на место

Первичными задачами нового телескопа являются обнаружение света первых звёзд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также "Уэбб" сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало.

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 астрономических единиц (а. е.) от своих звёзд и удалённые от Земли на расстояние до 15 световых лет.

В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря новому телескопу ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет, что будет являться недостижимым показателем для любого наземного и орбитального телескопа вплоть до начала 2020-х годов, когда в строй будет введен Европейский чрезвычайно большой телескоп с диаметром зеркала в 39,3 м.

Правообладатель иллюстрации NASA Image caption Два последних сегмента главного зеркала ожидают установки

Срок работы телескопа составит не менее пяти лет.

В последние недели инженеры НАСА были заняты приклеиванием сегментов главного зеркала, изготовленных из бериллия, к несущей конструкции зеркала.

В ближайшие несколько дней последние два восьмиугольных сегмента будут установлены в нужное для закрепления положение.

Тем временем в соседнем помещении центра имени Годдарда в штате Мэриленд рядом с цехом сборки завершаются криогенно-вакуумные испытания научной аппаратуры будущего телескопа.

"Джеймс Уэбб" будет иметь следующие научные инструменты для проведения исследования космоса:

  • Камера ближнего инфракрасного диапазона (Near-Infrared Camera);
  • Прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument);
  • Спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph);
  • Датчик точного наведения c устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом (Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph).

Начиная с октября прошлого года, эти приборы находились в вакуумной камере, температура в которой была снижена до минус 233 градусов Цельсия.

Правообладатель иллюстрации NASA Image caption В Центре Джонсона уже проводятся макетные испытания

Уже получены данные калибровки приборов, которые будут иметь огромное значение для управления телескопом в глубоком космосе.

Эти испытания помогли выявить ряд дефектов и заменить ненадежное оборудование и детали. В телескопе имеется 250 тысяч крышек и затворов, часть которых имеют неприятный дефект "залипания" в вакууме под воздействием вибраций при запуске с Земли.

Вибрация ракеты-носителя была симулирована в ходе нынешних испытаний, и замененные детали доказали свою повышенную надежность.

Остается провести более общие оптические, вибрационные и акустические испытания всех систем телескопа.

Затем зеркало и научные приборы будут доставлены в Центр имени Джонсона для дальнейших криогенно-вакуумных испытаний в камере, которая была построена в 1960-е годы для испытаний ракетной техники проекта "Аполлон". Эти испытания начнутся примерно через год.

После их завершения к телескопу будет присоединен модуль систем управления, в котором будут установлены бортовые компьютеры и системы связи.

В последнюю очередь на телескоп будет установлен гигантский солнечный щит размером с теннисный корт, который защитит оптические системы от воздействия солнечных лучей.

До октября 2018 года осталось ждать не так уж долго.

Уэбб будет вглядываться в ближний и средний инфракрасный спектр, чему поспособствует его положение в точке L2 за луной и солнечные щиты, которые блокируют навязчивый свет Солнца, Земли и Луны, благоприятно влияя на охлаждение аппарата. Ученые надеются увидеть самые первые звезды Вселенной, образование и столкновение юных галактик, рождение звезд в протопланетарных системах - в которых, возможно, содержатся химические компоненты жизни.

Эти первые звезды могут хранить ключ к пониманию структуры Вселенной. Теоретически, где и как они формируются, напрямую связано с первыми моделями темной материи - невидимой таинственной субстации, которую обнаруживают по гравитационному воздействию - а их циклы жизни и смерти вызывают обратную связь, повлиявшую на формирование первых галактик. И поскольку сверхмассивные звезды с коротким периодом жизни примерно в 30-300 раз тяжелее нашего Солнца по массе (и в миллионы раз ярче), эти первые звезды могли бы взорваться в виде сверхновых, а после коллапсировать и образовать черные дыры, которые постепенно заняли центры большинства массивных галактик.

Видеть все это - безусловно, подвиг для инструментов, которые мы делали до сих пор. Благодаря новым инструментам, а также космическим аппаратам, мы сможем увидеть еще больше.

Экскурсия по космическому телескопу Джеймса Уэбба

Уэбб выглядит как ромбовидный плот, оснащенный толстой изогнутой мачтой и парусом - если бы его строили гигантские пчелы, питающиеся бериллием. Направленный нижней частью к Солнцу, снизу «плот» состоит из щита - слоев каптона, разделенных щелями. Каждый слой разделен вакуумной щелью для эффективного охлаждения, а вместе они защищают основной отражатель и инструменты.

Каптон - это очень тонкая (представьте человеческий волос) полимерная пленка производства DuPont, которая способна поддерживать стабильные механические свойства в условиях экстремального тепла и вибрации. Если вы захотите, вы сможете вскипятить воду на одной стороне щита и сохранить азот в жидком состоянии на другой. Складывается он тоже довольно хорошо, что важно для запуска.

Судовой «киль» состоит из структуры, которая хранит солнечный щит во время запуска и солнечные батареи для обеспечения питания аппарата. В центре находится короб, который содержит все важные функции поддержки, за счет которых работает Уэбб, включая электроэнергию, управление ориентацией, связь, командование, обработку данных и тепловой контроль. Антенна украшает внешний вид короба и помогает убедиться, что все ориентировано в нужном направлении. На одном из концов теплового щита, перпендикулярно к нему, находится триммер момента, который компенсирует давление, оказываемое фотонами на аппарат.

На космической стороне щита находится «парус», гигантское зеркало Уэбба, часть оптического оснащения и короб с оборудованием. 18 шестиугольных бериллиевых секций развернутся после запуска, чтобы стать одним большим главным зеркалом на 6,5 метра в поперечнике.

Напротив этого зеркала, удерживаемого на месте тремя опорами, находится вторичное зеркало, которое фокусирует свет от главного зеркала в кормовой оптической подсистеме, клиновидной коробке, выступающей из центра основного зеркала. Эта структура отклоняет рассеянный свет и направляет свет от вторичного зеркала к инструментам, размещенным в задней части «мачты», которая также поддерживает сегментированную структуру основного зеркала.

После того как аппарат завершит свой шестимесячный период ввода в эксплуатацию, он проработает 5-10 лет, а может, и больше, в зависимости от расхода топлива, однако его местоположение будет слишком далеко, чтобы его можно было починить. На самом деле, Хаббл и являются своего рода исключениями в этом плане. Но, как у Хаббла и других общих обсерваторий, миссией Уэбба будет работа с проектами ученых всего мира, отбираемых на конкурсной основе. Затем результаты будут находить свой путь в исследованиях и данных, доступных в Интернете.

Давайте внимательнее посмотрим на инструменты, которые делают все эти исследования возможными.

Инструменты: за пределами поля зрения


Хотя он и видит что-то в визуальном диапазоне (красного и золотого света), Уэбб является фундаментально большим инфракрасным телескопом.

Его основной тепловизор, камера ближнего инфракрасного спектра NIRCam, видит в диапазоне 0,6-5,0 микрон (ближний инфракрасный). Она сможет обнаружить инфракрасный свет рождения самых первых звезд и галактик, провести обследования близлежащих галактик и местных объектов, снующих через пояс Койпера - просторов ледяных тел, вращающихся за орбитой Нептуна, в которых также умещаются Плутон и другие карликовые планеты.

NIRCam также оснащена коронографом, который позволит камере наблюдать за тонким гало, окружающим яркие звезды, блокируя их ослепительный свет - необходимый инструмент для выявления экзопланет.

Ближний инфракрасный спектрограф работает в том же диапазоне длин волн, что и NIRCam. Как и другие спектрографы, он анализирует физические свойства объектов типа звезд, разделяя излучаемый ими свет на спектры, структура которого меняется в зависимости от температуры, массы и химического состава объекта.

NIRSpec будет изучать тысячи древних галактик с таким слабым излучением, что одному спектрографу понадобятся сотни часов на эту работу. Чтобы упростить эту сложнейшую задачу, спектрограф оснащается замечательным устройством: сеткой из 62 000 отдельных жалюзи, каждое из которых размером примерно 100 на 200 микрон (шириной в несколько человеческих волос) и каждое из которых можно открывать и закрывать, блокируя свет более ярких звезд. Благодаря этому массиву, NIRSpec станет первым космическим спектрографом, который сможет наблюдать за сотней разных объектов одновременно.

Fine Guidance Sensor и бесщелевой спектрограф (FGS-NIRISS) - это, по сути, два сенсора, упакованных вместе. NIRISS включает в себя четыре режима, каждый из которых связан с разной длиной волн. Они варьируются от бесщелевой спектроскопии, которая создает спектр с помощью призмы и решетки под названием «гризма», что в сумме создает интерференционные картины, позволяющие выявить экзопланетарный свет на фоне света звезды.

FGS - это чувствительная и немигающая камера, которая делает навигационные снимки и передает их на системы ориентации, которые удерживают телескоп в правильном направлении.

Последний инструмент Уэбба расширяет ассортимент от ближнего инфракрасного до среднего инфракрасного спектра, что удобно для наблюдения за объектами с красным смещением, а также планетами, кометами, астероидами, нагретой солнцем пыли и протопланетарными дисками. Будучи камерой и спектрографом одновременно, этот инструмент MIRI покрывает широчайший диапазон длин волн, в 5-28 микрон. Его широкополосная камера сможет делать больше видов снимков, за которые мы любим Хаббл.

Также инфракрасные наблюдения имеют важные значения для понимания Вселенной. Пыль и газ могут блокировать видимый свет звезд в звездных яслях, но инфракрасный - нет. Более того, по мере расширения Вселенной и разбегания галактик, их свет «вытягивается» и становится красным смещением, уходя в длинноволновой спектр электромагнитных волн вроде инфракрасного. Чем дальше галактика, тем быстрее она удаляется и тем большее значение приобретает ее красное смещение - вот в чем ценность телескопа Уэбба.

Инфракрасный спектр также может предоставить большой объем информации об атмосферах экзопланет и о том, содержат ли они молекулярные компоненты, связанные с жизнью. На Земле мы называем водяной пар, метан и диоксид углерода «парниковыми газами», потому что они поглощают тепло. Поскольку эта тенденция справедлива везде, ученые могут использовать Уэбб для обнаружения знакомых веществ в атмосферах далеких миров, наблюдая за моделями поглощения веществ с помощью спектрографов.