Назначение бактерий. Области использования микроорганизмов. Роль бактерий в жизни человека: производство лекарственных препаратов

Методы определения суммарной биохимической активности почвенной микрофлоры

Характеристика микробов клеточной организации

Роль микроорганизмов в природе и сельском хозяйстве

Широкое распространение микроорганизмов свидетельствует об их огромной роли в природе. При их участии происходит разложение различных органических веществ в почвах и водоемах, они обусловливают круговорот веществ и энергии в природе; от их деятельности зависит плодородие почв, формирование каменного угля, нефти, многих других полезных ископаемых. Микроорганизмы участвуют в выветривании горных пород и прочих природных процессах.

Многие микроорганизмы используют в промышленном и сельскохозяйственном производстве. Так, хлебопечение, изготовление кисломолочных продуктов, виноделие, получение витаминов, ферментов, пищевых и кормовых белков, органических кислот и многих веществ, применяемых в сельском хозяйстве, промышленности и медицине, основаны на деятельности разнообразных микроорганизмов. Особенно важно использование микроорганизмов в растениеводстве и животноводстве. От них зависит обогащение почвы азотом, борьба с вредителями сельскохозяйственных культур при помощи микробных препаратов, правильное приготовление и хранение кормов, создание кормового белка, антибиотиков и веществ микробного происхождения для кормления животных.

Микроорганизмы оказывают положительное влияние на процессы разложения веществ неприродного происхождения - ксенобиотиков, искусственно синтезированных, попадающих в почвы и водоемы и загрязняющих их.

Наряду с полезными микроорганизмами существует большая группа так называемых болезнетворных, или патогенных, микроорганизмов, вызывающих разнообразные болезни сельскохозяйственных животных, растений, насекомых и человека. В результате их жизнедеятельности возникают эпидемии заразных болезней человека и животных, что сказывается на развитии экономики и производительных сил общества.

Последние научные данные не только существенно расширили представления о почвенных микроорганизмах и процессах, вызываемых ими в окружающей среде, но и позволили создать новые отрасли в промышленности и сельскохозяйственном производстве. Например, открыты антибиотики, выделяемые почвенными микроорганизмами, и показана возможность их использования для лечения человека, животных и растений, а также при хранении сельскохозяйственных продуктов. Обнаружена способность почвенных микроорганизмов образовывать биологически активные вещества: витамины, аминокислоты, стимуляторы роста растений - ростовые вещества и т.д. Найдены пути использования белка микроорганизмов для кормления сельскохозяйственных животных. Выделены микробные препараты, усиливающие поступление в почву азота из воздуха.

Открытие новых методов получения наследственно измененных форм полезных микроорганизмов позволило шире применять микроорганизмы в сельскохозяйственном и промышленном производстве, а также в медицине. Особенно перспективно развитие генной, или генетической, инженерии. Ее достижения обеспечили развитие биотехнологии, появление высокопродуктивных микроорганизмов, синтезирующих белки, ферменты, витамины, антибиотики, ростовые вещества и другие, необходимые для животноводства и растениеводства продукты.

С микроорганизмами человечество соприкасалось всегда, тысячелетия даже не догадываясь об этом. С незапамятных времен люди наблюдали брожение теста, готовили спиртные напитки, сквашивали молоко, делали сыры, переносили различные заболевания, в том числе эпидемические. Свидетельством последнего в библейских книгах служит указание о повальной болезни (вероятно, чуме) с рекомендациями сжигать трупы и делать омовения.

В соответствии с принятой сейчас классификацией микроорганизмы по типу питания разделяют на ряд групп в зависимости от источников потребления энергии и углерода. Так, выделяют фототрофы, пользующиеся энергией солнечного света, и хемотрофы, энергетическим материалом для которых служат разнообразные органические и неорганические вещества.

В зависимости от того, в какой форме микроорганизмы получают из окружающей среды углерод, их подразделяют на две группы: автотрофные ("сами себя питающие"), использующие в качестве единственного источника углерода диоксид углерода, и гетеротрофные ("питающиеся за счет других"), получающие углерод в составе довольно сложных восстановленных органических соединений.

Таким образом, по способу получения энергии и углерода микроорганизмы можно подразделить на фотоавтотрофы, фотогетеротрофы, хемоавтотрофы и хемогетеротрофы. Внутри группы в зависимости от природы окисляемого субстрата, называемого донором электронов (Н-донором), в свою очередь, выделяют органотрофы, потребляющие энергию при разложении органических веществ, и литотрофы (от греч. lithos - камень), получающие энергию за счет окисления неорганических веществ. Поэтому в зависимости от используемого микроорганизмами источника энергии и донора электронов следует различать фотоорганотрофы, фотолитотрофы, хемоорганотрофы и хемолитотрофы. Таким образом, выделяют восемь возможных типов питания.

Каждой группе микроорганизмов присущ определенный тип питания. Ниже приведено описание наиболее распространенных типов питания и краткий перечень микроорганизмов, их осуществляющих.

При фототрофии источник энергии - солнечный свет. Фотолитоавтотрофия - тип питания, характерный для микроорганизмов, использующих энергию света для синтеза веществ клетки из С0 2 и неорганических соединений (Н 2 0, Н 2 S, S°), т.е. осуществляющих фотосинтез. К данной группе относят цианобактерий, пурпурных серных бактерий и зеленых серных бактерий.

Цианобактерий (порядок Суаnobасtеriа1еs), как и зеленые растения, восстанавливают С0 2 до органического вещества фотохимическим путем, используя водород воды:

С0 2 + Н 2 0 свет-› (СH 2 O) * + O 2

Пурпурные серные бактерии (семейство Chromatiaceae) содержат бактериохлорофиллы а и b, обусловливающие способность данных микроорганизмов к фотосинтезу, и различные каротиноидные пигменты.

Для восстановления С0 2 в органическое вещество бактерии данной группы используют водород, входящий в состав Н 2 5. При этом в цитоплазме накапливаются гранулы серы, которая затем окисляется до серной кислоты:

С0 2 + 2Н 2 S свет-› (СH 2 O) + Н 2 + 2S

3CO 2 + 2S + 5H 2 O свет-› 3 (СН 2 0) + 2Н 2 S0 4

Пурпурные серные бактерии обычно бывают облигатными анаэробами.

Зеленые серные бактерии (сем. Chlorobiaceae) содержат зеленые бактериохлорофиллы с, и, в небольшом количестве бактериохлорофилла, а также различные каротиноиды. Как и пурпурные серные бактерии, они строгие анаэробы и способны окислять в процессе фотосинтеза сероводород, сульфиды и сульфиты, накапливая серу, которая в большинстве случаев окисляется до 50^" 2 .

Фотоорганогетеротрофия - тип питания, характерный для микроорганизмов, которые для получения энергии помимо фотосинтеза могут использовать еще и простые органические соединения. К этой группе относятся пурпурные несерные бактерии.

Пурпурные несерные бактерии (семейство Rhjdospirillaceae) содержат бактериохлорофиллы а и b, а также различные каротиноиды. Они не способны окислять сероводород (Н 2 S), накапливать серу и выделять ее в окружающую среду.

При хемотрофии энергетический источник - неорганические и органические соединения. Хемолитоавтотрофия - тип питания, характерный для микроорганизмов, получающих энергию при окислении неорганических соединений, таких, как Н 2 , NH 4 + , N0 2 - , Fе 2+ , Н 2 S, S°, S0з 2 - , S 2 0з 2- , СО и др. Сам процесс окисления называют хемосинтезом. Углерод для построения всех компонентов клеток хемолитоавтотрофы получают из диоксида углерода.

Хемосинтез у микроорганизмов (железобактерий и нитрифицирующих бактерий) был открыт в 1887-1890 гг. известным русским микробиологом С.Н. Виноградским. Хемолитоавтотрофию осуществляют нитрифицирующие бактерии (окисляют аммиак или нитриты), серные бактерии (окисляют сероводород, элементарную серу и некоторые простые неорганические соединения серы), бактерии, окисляющие водород до воды, железобактерии, способные окислять соединения двухвалентного железа, и т.д.

Представление о количестве энергии, получаемой при процессах хемолитоавтотрофии, вызываемых указанными бактериями, дают следующие реакции:

NH3 + 11/2 0 2 - HN0 2 + Н 2 0 + 2,8 10 5 Дж

HN0 2 + 1/2 0 2 - HN0 3 + 0,7 105 Дж

Н 2 S + 1/2 0 2 - S + Н 2 0 + 1,7 10 5 Дж

S + 11/2 0 2 - Н 2 S0 4 + 5,0 10 5 Дж

Н 2 + 1/ 2 0 2 - Н 2 0 + 2,3 10 5 Дж

2FеС0 3 + 1/2 0 2 + ЗН 2 0 - 2Fе (ОН) 3 + 2С0 2 + 1,7 10 5 Дж

Хемоорганогетеротрофия - тип питания, характерный для микроорганизмов, получающих необходимую энергию и углерод из органических соединений. Среди данных микроорганизмов многие аэробные и анаэробные виды, обитающие в почвах и других субстратах.

Благодаря большому разнообразию синтезируемых ферментов микроорганизмы могут выполнять многие химические процессы более эффективно и экономично, чем если бы эти процессы проводились химическими методами. Изучение биохимической деятельности микроорганизмов позволило подобрать условия для максимальной активности их как продуцентов различных полезных ферментов - возбудителей нужных химических реакций и процессов. Микроорганизмы все шире применяются в различных отраслях химической и пищевой промышленности, сельском хозяйстве, медицине.

В нашей стране создана и успешно развивается новая отрасль промышленности - микробиологическая, все производства которой базируются на деятельности микроорганизмов.

Микроорганизмы, с помощью которых производят пищевые продукты, называют культурными. Их получают из чистых культур, которые выделяют из отдельных клеток. Последние хранят в музейных коллекциях и снабжают ими различные производства.

В результате осуществляемых культурными микроорганизмами химических реакций растительное или животное сырье превращается в пищевые продукты. С помощью микроорганизмов получают многие жизненно важные продукты питания, и хотя изготовление их знакомо человеку с древних времен, роль в нем микроорганизмов открыта сравнительно недавно.

Хлебопекарное производство.

Хлебопечение основано на деятельности дрожжей и молочнокислых бактерий, развивающихся в тесте. Совместное действие этих микроорганизмов приводит к сбраживанию сахаров муки. Дрожжи вызывают спиртовое брожение, молочнокислые бактерии - молочнокислое. Образующиеся при этом молочная и другие кислоты подкисляют тесто, поддерживая оптимальный для жизнедеятельности дрожжей уровень рН. Углекислый газ разрыхляет тесто и ускоряет его созревание.

Применение культурных микроорганизмов в виде прессованных хлебопекарных дрожжей, сушеных или жидких заквасок улучшает вкус и аромат хлеба.

Производство сыра.

Сыроделие основано на деятельности многих видов микроорганизмов: молочнокислые (термофильный стрептококк), пропионовокислые бактерии и др. Под действием молочнокислых бактерий происходит накопление молочной кислоты и сквашивание молока, под действием других полезных микроорганизмов созревает сыр. Участвуют в этом процессе также некоторые плесневые грибы. Сычужный фермент и молочнокислые бактерии производят глубокое расщепление белков, сахара и жира. Различные бактерии вызывают накопление в острых сырах летучих кислот, придающих им специфический аромат.

Получение кисломолочных продуктов.

Творог, сметану, масло, ацидофилин, простоквашу приготовляют на чистых Культурах с применением различных заквасок. Молоко предварительно пастеризуют. Для производства творога и сметаны применяют мезофильные молочнокислые бактерии; ряженки, варенца и подобных продуктов - термофильные стрептококки и болгарскую палочку; ацидофилина - кислотовыносливые молочнокислые бактерии; кефира - многокомпонентные закваски, состоящие из дрожжей, молочнокислых и часто уксуснокислых бактерий. Для изготовления кислосливочного масла в пастеризованные сливки вносят закваску молочнокислых бактерий и выдерживают до требуемой кислотности.

Пивоваренное, спиртовое, ликеро-водочное и винодельческое производства.

Вино, пиво, квас, водку и другие напитки приготовляют с применением дрожжей, вызывающих спиртовое брожение сахарсодержащих жидкостей. В результате брожения жидкости (сусла, бражки, сока и т. п.) образуется алкоголь, СО 2 и незначительные количества побочных продуктов. Подсобную роль выполняют молочнокислые бактерии: они подкисляют среду и облегчают деятельность дрожжей (например, при производстве кваса). В производстве спирта и пива для осахаривания заторов применяют также ферментные препараты грибного и бактериального происхождения.

Квашение и соление.

Сущность этого способа консервирования состоит в создании условий для преимущественного развития одних микроорганизмов - молочнокислых бактерий и подавления развития других - гнилостных бактерий. Заквашивают капусту, огурцы, помидоры, яблоки, арбузы. Применяют этот способ также при закладывании на длительное хранение корма для скота - заквашивается зеленая масса из трав, растительных остатков и др. Этот процесс носит название силосования кормов.

Получение органических кислот.

Уксусную, молочную и лимонную кислоты производят также с помощью микроорганизмов. Молочную кислоту получают способом брожения из сахарсодержащего сырья - патоки, крахмала, молочной сыворотки и др.

Молочнокислые бактерии выращивают на средах, содержащих до 15 % сахара. Выход молочной кислоты достигает 60-70 % массы содержащегося в заторе сахара.

Промышленное получение уксуса для пищевых целей основано на уксуснокислом брожении. Уксуснокислые бактерии в специальных чанах на буковых стружках окисляют поступающую питательную среду - уксусно-спиртовой раствор - до уксусной кислоты.

Лимонную кислоту раньше получали из плодов цитрусовых. В настоящее время ее также получают путем брожения. Возбудителем брожения является гриб Аспергиллус нигер, основное сырье - черная патока. Брожение происходит в растворе с содержанием 15 % сахара в аэробных условиях при температуре около 30 °С. Лимонная кислота используется в кондитерской промышленности, производстве безалкогольных напитков, сиропов, кулинарии и медицине.


Современная биотехнология опирается на многие науки: генетику, микробиологию, биохимию, естествознание. Основным объектом их изучения являются бактерии и микроорганизмы. Многие проблемы в биотехнологиях решает именно применение бактерий. Сегодня область их использования в жизни человека настолько широка и разнообразна, что вносит неоценимый вклад в развитие таких отраслей, как:

  • медицина и здравоохранение;
  • животноводство;
  • растениеводство;
  • рыбная отрасль;
  • пищевая промышленность;
  • добыча полезных ископаемых и энергетика;
  • тяжелая и легкая промышленности;
  • септик;
  • экология.

Здравоохранение и фармакология

Область применения бактерий в фармакологии и медицине настолько широка и значима, что их роль в лечении у человека многих заболеваний просто неоценима. В нашей жизни они необходимы при создании кровезаменителей, антибиотиков, аминокислот, ферментов, противовирусных и противораковых препаратов, пробы ДНК для диагностики, гормональных препаратов.

Неоценимый вклад в медицину сделали ученые, выявив ген, отвечающий за гормон инсулина. Вживив его в бактерию коли, получили выработку инсулина, спасая жизни многим больным. Японские ученые обнаружили бактерии, выделяющие вещество, уничтожающее зубной налет, тем самым предотвращая появление кариеса у человека.

Из бактерий-термофилов выводят ген, кодирующий ферменты, имеющие ценность в научных исследованиях, так как они нечувствительны к высоким температурам. При производстве витаминов в медицине используют микроорганизм Clostridium, получая при этом рибофлавин, выполняющий важную роль в здоровье человека.

Свойство бактерий вырабатывать антибактериальные вещества было применено при создании антибиотиков, решив проблему лечения многих инфекционных заболеваний, тем самым спасло жизнь не одному человеку.

Добыча и переработка полезных ископаемых

Применение биотехнологий в добывающей промышленности позволяет существенно сократить расходы и энергетические затраты. Так, применение литотрофных бактерий (Thiobacillus ferrooxidous), с их способностью окислять железо, используется в гидрометаллургии. За счет бактериального выщелачивания из низкосодержащих пород добывают драгоценные металлы. Для увеличения добычи нефти применяют метансодержащие бактерии. При добыче нефти обычным способом из недр извлекается не более половины природных запасов, а с помощью микроорганизмов происходит более эффективное освобождение запасов.

Легкая и тяжелая индустрия

Микробиологическое выщелачивание используют в старых шахтах для получения цинка, никеля, меди, кобальта. В горнодобывающей промышленности для восстановительных реакций в старых шахтах применяют сульфаты бактерий, так как остатки серной кислоты несут разрушающие воздействия на опоры, материалы и окружающую среду. Анаэробные микроорганизмы способствуют основательному разложению органических веществ. Это свойство применяется для очистки воды в металлургической промышленности.

Человек использует бактерии при производстве шерсти, искусственной кожи, текстильного сырья, в парфюмерно-косметических целях.

Очистка стоков и водоемов

Бактерии, участвующие в разложении, применяют для очистки септиков. Основа этого метода заключается в том, что питаются микроорганизмы сточными водами. Этим способом обеспечивается удаление запаха и обеззараживание стоков. Микроорганизмы, применяемые в септиках, выращиваются в лабораториях. Результат их действия обуславливается распадом органики на простейшие вещества, безвредные для экологии. В зависимости от вида септика подбираются анаэробные либо аэробные микроорганизмы. Аэробные микроорганизмы, помимо септиков, применяют в биофильтрах.

Для поддержания качества воды в водоемах и стоках, очистки загрязненной поверхности морей и океанов от нефтепродуктов также необходимы микроорганизмы.

С развитием биотехнологий в нашей жизни человечество шагнуло вперед практически во всех отраслях своей деятельности.

Статья на конкурс «био/мол/текст»: Существуют ли лекарственные средства, не вызывающие побочных эффектов и осложнений, высокоэффективные и безопасные? Ближе всего к этим идеальным характеристикам подобрались пробиотические препараты (из живых микроорганизмов - симбионтов человека) и бактериофаги (вирусы бактерий). При введении в организм человека они вступают в борьбу за существование с возбудителями инфекционных заболеваний или, в случае бактериофагов, по-партизански разлагают их изнутри. Пробиотики и фаги с разной специфичностью влияют на патогенные бактерии, все процессы развиваются в пределах микробиоценоза определенной области человеческого тела и направлены на сохранение среды обитания, иначе говоря, на подержание гомеостаза. Пробиотики и фаги обычно применяют по отдельности, но перспективным может оказаться их совместное использование.

Обратите внимание!

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Клин клином выбивают.

Народная мудрость

Биотехнология - медицине

В современной медицинской практике используется большое количество средств, получаемых благодаря жизнедеятельности микроорганизмов. Сюда относятся витамины, ферменты, генно-инженерные гормоны и интерфероны, заменители крови и, конечно же, антибиотики. Собственно, даже медицинский спирт - этот универсальный антисептик, народный анальгетик и антидепрессант - является продуктом бродильного метаболизма дрожжевых грибков. Традиционные и новые высокоэффективные, различные по структуре и механизму действия природные и химически модифицированные лекарственные препараты, в создании которых участвовали микроорганизмы, применяются для лечения различных заболеваний.

Когда лекарство опаснее болезни

В практике применения лекарственных средств врачу приходится встречаться с так называемыми побочными явлениями, которые могут развиваться наряду с основным действием лекарства и ограничивать возможности его применения. Побочные реакции особенно часто возникают в случаях применения лекарств, обладающих многосторонним фармакологическим эффектом (вспомним тот же этиловый спирт), тогда как цель лечения достигается благодаря использованию лишь некоторых сторон фармакодинамики данного лекарства.

Особенного внимания заслуживают в этом смысле антибиотики, поскольку они являются препаратами выбора при лечении большинства инфекционных заболеваний, а назначению антибиотиков далеко не всегда предшествует проведение необходимых микробиологических исследований. Нередки случаи нерационального применения антибиотиков широкого спектра действия, нарушения пациентами схем приема препаратов, а то и вовсе бесконтрольного самолечения. И даже при правильном использовании антибактериальное действие антибиотиков распространяется не только на патогенную, но и на нормальную микробную флору организма. Под действием антибиотиков гибнут бифидобактерии , лактобациллы , симбиотические штаммы кишечной палочки и другие полезные микробы. Освободившиеся экологические ниши тут же заселяют условно-патогенные бактерии и грибки (как правило, обладающие резистентностью к антибиотикам), которые до этого присутствовали на коже и в нестерильных полостях организма в незначительном количестве - их размножение сдерживалось нормальной микрофлорой. Антибиотикотерапия, например, может способствовать превращению мирных сапрофитных дрожжеподобных грибков Candida albicans (рис. 1), обитающих на слизистых оболочках полости рта, трахеи и кишечника, в бурно размножающиеся микроорганизмы, вызывающие ряд местных и общих поражений.

Рисунок 1. Дрожжеподобные грибки Candida albicans и последствия их активного размножения. а - Клетки Candida albicans под электронным микроскопом. б - Проявления кандидоза. Рисунки с сайтов velvet.by и www.medical-enc.ru .

В основе других побочных эффектов могут лежать индивидуальные особенности взаимодействия организма с антибиотиком: непереносимость препарата может иметь аллергическую или псевдоаллергическую природу, быть следствием ферментопатий или попадать в загадочную категорию идиосинкразий (до выяснения механизма непереносимости).

Пробиотики вместо антибиотиков?

В настоящее время перед медицинской наукой и органами охраны здоровья всего мира стоит ответственная задача - создание эффективных антибактериальных препаратов, вызывающих как можно менее выраженные побочные реакции.

Одним из возможных решений проблемы является разработка и широкое фармакотерапевтическое использование препаратов на основе живых культур представителей нормальной микрофлоры (пробиотиков ) для коррекции микробиоценозов человека и для лечения патологических состояний. Применение бактериальных препаратов основано на понимании роли нормальной микрофлоры организма в процессах, обеспечивающих неспецифическую резистентность к инфекциям, в формировании иммунного ответа, а также на установлении антагонистической роли нормофлоры и ее участия в регуляции метаболических процессов .

Основоположником теории пробиотиков считают И.И. Мечникова . Он полагал, что сохранение здоровья человека и продление молодости во многом зависит от обитающих в кишечнике молочнокислых бактерий, способных подавлять процессы гниения и образования токсичных продуктов. Еще в 1903 году Мечников предложил практическое использование микробных культур-антагонистов для борьбы с болезнетворными бактериями.

По некоторым данным, термин «пробиотики» был введен Вернером Коллатом в 1953 году, затем его неоднократно и по-разному толковали как ученые, так и регулирующие организации. Коллат назвал пробиотиками вещества, необходимые для развития здорового организма, своего рода «промоторы жизни» - в противоположность антибиотикам. С концовкой этого утверждения соглашались также Лилли и Стилвелл, которым часто приписывают изобретение термина, однако они уточняли, что пробиотики представляют собой вещества, вырабатываемые одними микроорганизмами и стимулирующие рост других. Подавляющее же большинство определений вращалось вокруг принятия жизнеспособных микробов с целью модуляции кишечной микрофлоры. Согласно консенсусной трактовке экспертного совета ВОЗ и ФАО , пробиотики представляют собой живые микроорганизмы, которые при принятии в достаточном количестве приносят пользу здоровью . Существенный вклад в развитие современной концепции пробиотиков внес известный биохимик, специалист по питанию животных Марсель Ванбелле . Т.П. Лайонс и Р.Дж. Фэллон в 1992 году назвали наше время «наступающей эпохой пробиотиков» (и не ошиблись, судя по невероятному росту их продаж - Ред. ) .

По сравнению с традиционными антибактериальными препаратами пробиотики имеют ряд преимуществ: безвредность (однако не при всех диагнозах и не для всех пациентов - Ред. ), отсутствие побочных реакций, аллергизации и отрицательного воздействия на нормальную микрофлору. В то же время авторы ряда исследований связывают прием этих биопрепаратов с выраженным клиническим эффектом при лечении (долечивании) острых кишечных инфекций. Важной особенностью пробиотиков, по некоторым данным, является их способность модулировать иммунные реакции, оказывать в ряде случаев противоаллергическое действие, регулировать пищеварение.

В настоящее время в медицине широко используют ряд подобных бактериальных препаратов. Одни из них содержат бактерии, постоянно обитающие в организме человека («Лактобактерин », «Бифидумбактерин », «Колибактерин », «Бификол »), другие состоят из микроорганизмов, не являющихся «резидентами» человеческого тела, но способных на определенное время колонизировать слизистые оболочки или раневые поверхности, создавая на них защитную биопленку (рис. 2) и вырабатывая вещества, губительные для патогенных бактерий. К таким препаратам относятся, в частности, «Биоспорин » на основе сапрофитной бактерии Bacillus subtilis и «А-бактерин», состоящий из живых клеток зеленящего аэрококка - Aerococcus viridans .

Полезный микроб - аэрококк

Некоторых аэрококков (рис. 3) относят к условно-патогенным микробам, поскольку они способны вызывать заболевания у животных (например, гаффкемию у омаров) и людей с иммунодефицитами. Аэрококки часто обнаруживаются в воздухе больничных палат и на предметах медицинского назначения, выделяются от больных со стрептококковыми и стафилококковыми инфекциями и к тому же имеют определенное морфологическое сходство с этими опасными бактериями.

Рисунок 3. Клетки и колонии аэрококков. а - Бактерии под обычным световым микроскопом. б - Бактерии под электронным микроскопом. Видны округлые клетки, расположенные парами и тетрадами. в - Колонии аэрококков на питательной среде с добавлением крови. Зеленое окрашивание вокруг колоний - результат частичного разрушения гемоглобина. Фото (а) с сайта codeofconduc.com , (б) и (в) - сделаны авторами статьи.

Рисунок 4. Подавление аэрококками роста патогенных бактерий. Зоны значительной задержки роста зарегистрированы при культивировании вибрионов, стафилококков, дифтерийной палочки, провиденции. Синегнойная палочка (Pseudomonas aeruginosa ) к антагонистическому действию аэрококков устойчива. Фото авторов статьи.

Но коллективу кафедры микробиологии Днепропетровской медицинской академии удалось выявить среди аэрококков штамм не просто безвредный для человека, но и проявляющий выраженную антагонистическую активность в отношении широкого спектра возбудителей инфекционных болезней. Так был разработан и внедрен препарат, не имеющий аналогов в мировой практике, - пробиотик «А-бактерин » для наружного и перорального применения, который не уступает по своему воздействию на микрофлору человека дорогостоящим препаратам антибиотического направления (рис. 4).

Антагонистические свойства аэрококков связаны с продукцией перекиси водорода (вещества, широко применяемого в медицине в качестве антисептика) - стабильным признаком производственного штамма А. viridans , из которого готовится «А-бактерин». Другим бактерицидным веществом, продуктом метаболизма аэрококков, является супероксидный радикал (рис. 5), образуемый этими бактериями при окислении молочной кислоты. Причем способность аэрококков окислять молочную кислоту очень важна в случае применения препарата в стоматологии, так как одной из причин кариеса является молочная кислота, образуемая стрептококками.

Рисунок 5. Бактерицидные вещества, образуемые аэрококками: перекись водорода (а ) и супероксидный радикал (б ) . Рисунок с сайта tofeelwell.ru .

В культуральной жидкости аэрококков был выявлен низкомолекулярный кислотоустойчивый и термостабильный пептид виридоцин , обладающий широким спектром антагонистической активности в отношении тех микроорганизмов, которые чаще всего вызывают госпитальные инфекции и участвуют в формировании физиологического и патологического микробиоценоза кишечника человека . Кроме того, А. viridans продуцирует во внешнюю среду пептид аэроцин *, способный убивать дрожжеподобные грибки. Использование «А-бактерина» с йодидом калия и этонием эффективно при урогенитальных кандидозах, так как обеспечивает направленное повреждение мембран кандид . Тот же эффект достигается в случае применения препарата как средства профилактики кандидозов, возникающих, например, вследствие угнетения иммунитета при ВИЧ-инфекции .

* - Наряду с продукцией перекиси водорода (за счет НАД-независимой лактатдегидрогеназы), а в присутствии иодида калия и образованием гипойодида (за счет глутатионпероксидазы) с более выраженным, чем у пероксида водорода, бактерицидным действием, аэрококки располагают и неоксидными компонентами антагонистической активности. Они образуют низкомолекулярный термостабильный пептид аэроцин, относящийся к классу микроцинов, активный в отношении протеев, стафилококков, эшерихий и сальмонелл. Аэроцин был выделен из культуральной жидкости методами высаливания, электродиализа и бумажной хроматографии, после чего был установлен его аминокислотный состав и показана терапевтическая эффективность при экспериментальной сальмонеллезной инфекции у мышей . Аэрококкам также свойственна адгезия к эпителиальным и некоторым другим клеткам, то есть противодействие патогенным бактериям идет в том числе на уровне биопленок и колонизационной резистентности.

Кроме способности подавлять размножение патогенных бактерий, «А-бактерин» способствует регенерации поврежденной ткани, проявляет адъювантное действие, стимулирует фагоцитоз и может быть рекомендован больным, сенсибилизированным к антибиотикам и химиотерапевтическим средствам. Сегодня «А-бактерин» успешно применяется для лечения ожоговых и хирургических ран, для профилактики и лечения диареи, а также в стоматологической, урологической и гинекологической практике. Перорально «А-бактерин» используется для коррекции микрофлоры кишечника, профилактики и лечения кишечных инфекций, коррекции отдельных биохимических показателей (холестеринового профиля и уровня молочной кислоты) и активации иммунитета . Другие пробиотики тоже широко применяются для лечения и профилактики кишечных инфекций, особенно у детей раннего возраста, находящихся на искусственном вскармливании . Пользуются популярностью и пищевые продукты, содержащие живые пробиотические культуры.

Лечебные вирусы

При лечении инфекций важно создать высокую концентрацию антимикробного препарата именно в месте локализации возбудителя. Применяя антибиотики в виде таблеток или инъекций, добиться этого довольно трудно. Но в случае фаготерапии достаточно, если в инфекционный очаг доберутся хотя бы одиночные бактериофаги. Обнаружив патогенные бактерии и проникнув в них, фаги начинают очень быстро размножаться. С каждым циклом размножения, который длится около получаса, количество фагов возрастает в десятки, а то и сотни раз. После разрушения всех клеток возбудителя фаги более не способны размножаться и, благодаря своим мелким размерам, беспрепятственно выводятся из организма вместе с другими продуктами распада.

Пробиотики и фаги вместе

Бактериофаги хорошо зарекомендовали себя в профилактике и лечении кишечных инфекций и гнойно-воспалительных процессов. Возбудители этих заболеваний часто приобретают устойчивость к антибиотикам, но остаются чувствительными к фагам . В последнее время ученых заинтересовала перспектива совместного использования бактериофагов и пробиотиков. Предполагается, что при назначении такого комплексного препарата сначала фаг уничтожает патогенные бактерии, а потом освободившуюся экологическую нишу заселяют полезные микроорганизмы, формируя стабильный микробиоценоз с высокими защитными свойствами. Такой подход уже был опробован на сельскохозяйственных животных . Вероятно, он войдет и в медицинскую практику.

Возможно и более тесное взаимодействие в системе «бактериофаг + пробиотик». Известно, что бактерии - представители нормальной микрофлоры человека - способны адсорбировать на своей поверхности различные вирусы, не позволяя им проникнуть в клетки человека . Оказалось, что таким же образом могут адсорбироваться и бактериофаги: они не способны внедриться в клетку устойчивой к ним бактерии, но используют ее как «транспортное средство» для перемещения в организме человека. Такое явление получило название транслокации бактериофагов .

Внутренняя среда организма, его ткани и кровь считаются стерильными. На самом деле через микроскопические повреждения слизистых оболочек бактерии-симбионты периодически проникают в кровяное русло (рис. 7), хотя и быстро там уничтожаются клетками иммунной системы и бактерицидными веществами . При наличии инфекционного очага барьерные свойства окружающих тканей часто нарушены, их проницаемость возрастает. Это повышает вероятность проникновения туда циркулирующих пробиотических бактерий вместе с прикрепившимися к ним фагами . В частности, у людей с инфекциями мочевыводящих путей, принимающих «А-бактерин» перорально, аэрококки обнаруживались в моче, причем их количество было стабильно низким, что говорило именно о переносе аэрококков, а не об их размножении в этих органах . Аэрококки и наиболее распространенные возбудители урологических инфекций относятся к совершенно разным группам бактерий, а значит, чувствительны к разным бактериофагам. Это открывает интересные перспективы для создания комплексного препарата, например, на основе А. viridans и фагов, поражающих кишечные бактерии . Такие разработки ведутся на кафедре микробиологии Днепропетровской медицинской академии, однако они пока не вышли за стадию лабораторного исследования.

Статья написана при участии Юргель Л.Г. и Кременчуцкого Г.Н.

От редакции

Редакция «Биомолекулы» обращает внимание читателей на то, что авторы статей из номинации «Своя работа» делятся важными и интересными деталями своих исследований, приводят собственный взгляд на ситуацию в своей отрасли. Коллектив же «Биомолекулы» не считает, что вопрос о целесообразности применения пробиотиков уже решен.

Результаты исследований подобных веществ, какими бы потрясающими они ни были, должны подтверждаться соответствующим образом: препарат должен пройти необходимые фазы клинических испытаний , чтобы медицинское сообщество могло признать его безопасным и эффективным лекарственным средством , и лишь после этого рекомендовать пациентам. Естественно, речь идет об испытаниях по международным нормам, а не так, как это иногда у нас бывает - на 12 пациентах сельского лазарета, заявивших, что им ну-просто-жуть-как-помогло. Неплохим ориентиром для врачей и пациентов было бы одобрение каких-либо пробиотических препаратов, например, американским FDA , но увы...

Пока же принимаемые внутрь пробиотики следует рассматривать не как лекарства, а как пищевые добавки . Причем заявленные производителем свойства препарата нельзя переносить на другие пробиотики: критичны штамм (не род и даже не вид) и количество колониеобразующих единиц . А еще нужно иметь в виду, что на такую продукцию влияет множество факторов, связанных с производством, условиями и сроками хранения, употреблением и пищеварением.

Крупнейшие контролирующие питание и лечение организации мира считают : пока не достаточно доказательств для утверждения, что пробиотики положительно влияют на здоровье (тем более всех поголовно, вне зависимости от исходного состояния этого самого здоровья). И не то чтобы контролеры были убеждены в неэффективности этих препаратов - просто, как правило, в проведенных медисследованиях они не усматривают достоверной причинно-следственной связи приема пробиотиков с позитивными изменениями. А еще стоит помнить о тех исследованиях, где какой-то пробиотик оказывался неэффективным или даже влиял отрицательно.

Так или иначе, потенциал у пробиотического направления есть - как минимум в профилактике и лечении разных энтеритов (если речь идет о пероральном приеме). Просто не всё так просто. Не так просто, как хотелось бы производителю, врачу и пациенту. Наверное, пробиотики на полках наших магазинов и аптек просто «родились немного недоношенными». Так что ждем от ученых-разработчиков и производителей убойных доказательств. А авторам статьи пожелаем успехов на этом нелегком поприще и, конечно, в поиске новых интересных свойств микроорганизмов.

Литература

  1. Кременчуцкий Г.Н., Рыженко С.А., Волянский А.Ю., Молчанов Р.Н., Чуйко В.И. А-бактерин в лечении и профилактике гнойно-воспалительных процессов. Днепропетровск: Пороги, 2000. - 150 с.;
  2. Vanbelle M., Teller E., Focant M. (1990). Probiotics in animal nutrition: a review . Arch. Tierernahr. 40 (7), 543–567;
  3. Риженко С.А., Кременчуцький Г.М., Бредихіна М.О. (2008). Вплив рідкого пробіотику «А-бактерину» на мікробіоту кишечника . Медичні перспективи . 2 , 47–50;
  4. Акилов О.А. (2000). Современные методы лечения кандидоза . Сайт «Русский Медицинский Сервер» .;
  5. Edwards J.E. Jr., Bodey G.P., Bowden R.A., Büchner T., de Pauw B.E., Filler S.G. et al. (1997). International conference for development of consensus on the management and prevention of severe candidal infections . Clin. lnfect. Dis. 25 , 43–59;
  6. Antoniskis D., Larsen R.A., Akil B., Rarick M.U., Leedom J.M. (1990). Seronegative disseminated Coccidioidomycosis in patients with HIV infection . AIDS . 4 , 691–693;
  7. Jones J.L., Fleming P.L., Ciesielski C.A., Hu D.J., Kaplan J.E., Ward J.W. (1995). Coccidioidomycosis among persons with AIDS in the United States . J. Infect. Dis. 171 , 961–966;
  8. Степанский Д.А., Рыженко С.А., Кременчуцкий Г.Н., Шарун О.В., Юргель Л.Г., Крушинская Т.Ю., Кошевая И.П. (2012). Неоксидные компоненты антагонистической активности аэрококков (НКА) . Аннали Мечниковського інституту . 4 , 9–10;
  9. Ардатская М.Д. (2011). Пре- и пробиотики в коррекции микроэкологических нарушений кишечника . Фарматека . 12 , 62–68;
  10. Бехтерева М.К., Иванова В.В. (2014). Место бактериофагов в терапии инфекционных заболеваний желудочно-кишечного тракта . Педиатрия . 2 , 24–29;
  11. Григорьева Г.И., Гордеева И.В., Кульчицкая М.А., Аникина Т.А. (2006). Эффективное применение биологических препаратов (пробиотики и бактериофаги) при лечении коров с острым течением эндометрита . Ветеринарная патология . 1 , 52–56;
  12. Бондаренко В.М. (2013). Механизмы транслокации бактериальной аутофлоры в развитии эндогенной инфекции . Бюллетень оренбургского научного центра УРО РАН (электронный журнал) . 3 ;
  13. Кременчуцкий Г.Н., Рыженко С.А., Юргель Л.Г. (2008). Явление транслокации E.coli (Hem + , Str r) . Труды XVI Международной конференции «Новые информационные технологии в медицине, биологии, фармакологии, экологии» . 250–251;
  14. Кутовий А.Б., Василишин Р.Й., Мешалов В.Д., Кременчуцкий Г.Н. (2002). Ентерально органа транслокація бактерій і генералізація інфекційного процесу в експерименті. Вісник наукових досліджень . 2 , 121–123;
  15. Шарун А.В., Нікуліна О.О., Кременчуцький Г.М. (2005). Порівняльний аналіз біологічних властивостей аерококів, виділених із різних екологічних ніш організму людини . Медичні перспективи . 3 , 72–78;
  16. Зимин А.А., Васильева Е.А., Васильева Е.Л., Фишман К.С., Скобликов Н.Э., Кременчуцкий Г.Н., Мурашев А.Н. (2009). Биобезопасность в фаговой и пробиотической терапии: проблемы и решения . Вестник новых медицинских технологий . 1 , 200–202..

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10 тысяч изученных видов (предполагается что их около миллиона), многие из них являются патогенными и могут возбуждать различные заболевания у человека, животных и растений.

Для их размножения необходимо достаточное количество кислорода и оптимальная влажность. Размеры бактерий варьируются от десятых долей микрона до нескольких микронов, по форме они делятся на шаровидные (кокки), палочковидные, нитеобразные (спириллы), в виде изогнутых палочек (вибрионы).

Первые организмы, появившиеся миллиарды лет назад

(Бактерии и микробы под микроскопом )

Бактерии играют очень важную роль на нашей планете, являясь важным участником любого биологического круговорота веществ, основы существования всего живого на Земле. Большая часть как органических, так и неорганических соединений под влиянием бактерий существенно изменяются. Бактерии, появившиеся на нашей планете более 3,5 миллиарда лет назад, стояли у первоисточников основания живой оболочки планеты и до сих пор активно перерабатывают неживую и живую органику и вовлекают результаты обменного процесса в биологический круговорот.

(Строение бактерии )

Сапрофитные почвенные бактерии играют огромную роль в почвообразовательном процессе, именно они перерабатывают остатки растительных и животных организмов и помогают в образовании гумуса и перегноя, повышающих её плодородие. Наиболее важную роль в процессе повышения плодородия почвы играют азотофиксирующие клубеньковые бактерии-симбионты, «живущие» на корнях бобовые растений, благодаря им почва обогащается ценными азотными соединениями, необходимым для роста растений. Они улавливают азот из воздуха, связывают его и создают соединения в форме, доступной для растений.

Значение бактерий в круговороте веществ в природе

Бактерии обладают отличными санитарными качествами, они удаляют грязь в сточных водах, расщепляют органические вещества, превращая их в безвредную неорганику. Уникальные цианобактерии, зародившиеся в первозданных морях и океанах 2 миллиарда лет назад, были способны к процессу фотосинтеза, они поставляли в окружающую среду молекулярный кислород, и таким образом сформировали атмосферу Земли и создали озоновый слой, защищающий нашу планету от пагубного влияния ультрафиолетовых лучей. Многие полезные ископаемые создавались на протяжении многих тысяч лет под воздействием воздуха, температуры, воды и бактерий на биомассу.

Бактерии наиболее распространенные организмы на Земле, они определяют верхнюю и нижнюю границу биосферы, проникают повсюду и отличаются большой выносливостью. Если бы бактерий не было, умершие животные и растения не перерабатывались бы дальше, а просто накапливались в огромных количествах, без них биологический круговорот станет невозможным, и вещества не смогут вновь возвращаться в природу.

Бактерии - важное звено в трофических цепях питания, они выступают в роли редуцентов, раскладывая остатки умерших животных и растений, тем самым очищая Землю. Многие бактерии играют в организме млекопитающих роль симбионтов и помогают им разложить клетчатку, которую те не в состоянии переварить. Процесс жизнедеятельности бактерий — источник витамина К и витаминов группы В, играющих важную роль в процессе нормального функционирования их организмов.

Полезные и вредные бактерии

Большое количество болезнетворных бактерий могут приносить здоровью человека, домашних животных и культурных растений огромный вред, а именно вызывать такие инфекционные заболевания как дизентерию, туберкулез, холеру, бронхит, бруцеллез и сибирскую язву (животные), бактериоз (растения).

Существуют бактерии, приносящие человеку и его хозяйственной деятельности пользу. Люди научились использовать бактерии на промышленных производствах, изготовляя ацетон, этиловый и бутиловый спирт, уксусную кислоту, ферменты, гормоны, витамины, антибиотики, белково-витаминные препараты. Очищающая способность бактерий применяется на водочистных сооружениях, для очистки сточных вод и превращения органики в безвредные неорганические вещества. Современные достижения генных инженеров позволили получать такие лекарственные препараты как инсулин, интерферон из бактерии кишечной палочки, кормовой и пищевой белок из некоторых бактерий. В сельском хозяйстве используют специальные бактериальные удобрения, также с помощью бактерий фермеры борются с различными сорняками и вредными насекомыми.

(Бактерии любимое блюдо инфузории туфельки )

Бактерии участвуют в процессе дубления кожи, сушки табачных листьев, с их помощью изготовляют шелк, каучук, какао, кофе, замачивают коноплю, лен, выщелачивают металлы. Они участвуют в процессе изготовления лекарств, таких сильнейших антибиотиков как тетрациклин и стрептомицин. Без молочнокислых бактерий, вызывающих процесс брожения, невозможен процесс приготовления таких молочных продуктов как простокваша, ряженка, ацидофилин, сметана, масло, кефир, йогурт, творог. Также молочнокислые бактерии участвуют в процессе засолки огурцов, квашении капусты, силосовании кормов.