Найти доверительный интервал для оценки математического ожидания. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии. Классификация доверительных интервалов

Вы можете использовать данную форму поиска, чтобы найти нужную задачу. Вводите слово, фразу из задачи или ее номер, если он вам известен.


Искать только в данном разделе


Доверительные интервалы: список решений задач

Доверительные интервалы: теория и задачи

Общие сведения о доверительных интервалах

Введем кратко понятие доверительного интервала, который
1) оценивает некоторый параметр числовой выборки непосредственно по данным самой выборки,
2) накрывает значение этого параметра с вероятностью γ.

Доверительным интервалом для параметра X (при вероятности γ) называется интервал вида , такой что , а значения вычисляются некоторым образом по выборке .

Обычно в прикладных задачах доверительную вероятность берут равной γ = 0,9; 0,95; 0,99.

Рассмотрим некоторую выборку объема n, сделанную из генеральной совокупности, распределенной предположительно по нормальному закону распределения . Покажем, по каким формулам находятся доверительные интервалы для параметров распределения - математического ожидания и дисперсии (среднего квадратического отклонения).

Доверительный интервал для математического ожидания

Случай 1. Дисперсия распределения известна и равна . Тогда доверительный интервал для параметра a имеет вид:
t определяется из таблицы распределения Лапласа по соотношению

Случай 2. Дисперсия распределения неизвестна, по выборке вычислена точечная оценка дисперсии . Тогда доверительный интервал для параметра a имеет вид:
, где - выборочное среднее, вычисленное по выборке, параметр t определяется из таблицы распределения Стьюдента

Пример. По данным 7 измерений некоторой величины найдены средняя результатов измерений, равная 30 и выборочная дисперсия, равная 36. Найдите границы, в которых с надежностью 0,99 заключено истинное значение измеряемой величины.

Решение. Найдем . Тогда доверительные границы для интервала, заключающего истинное значение измеряемой величины можно найти по формуле:
, где - выборочное среднее, - выборочная дисперсия. Подставляем все величины и получаем:

Доверительный интервал для дисперсии

Считаем, что вообще говоря, математическое ожидание неизвестно, а известна только точечная несмещенная оценка дисперсии . Тогда доверительный интервал имеет вид:
, где - квантили распределения , определяемые из таблиц.

Пример. По данным 7 испытаний найдено значение оценки для среднеквадратического отклонения s=12 . Найти с вероятностью 0,9 ширину доверительного интервала, построенного для оценки дисперсии.

Решение. Доверительный интервал для неизвестной дисперсии генеральной совокупности можно найти по формуле:

Подставляем и получаем:


Тогда ширина доверительного интервала равна 465,589-71,708=393,881.

Доверительный интервал для вероятности (доли)

Случай 1. Пусть в задаче известен объем выборки и выборочная доля (относительная частота) . Тогда доверительный интервал для генеральной доли (истинной вероятности) имеет вид:
, где параметр t определяется из таблицы распределения Лапласа по соотношению .

Случай 2. Если в задаче дополнительно известен общий объем совокупности , из которой была сделана выборка, доверительный интервал для генеральной доли (истинной вероятности) можно найти по скорректированной формуле:
.

Пример. Известно, что Найти границы, в которых с вероятностью заключена генеральная доля.

Решение. Используем формулу:

Найдем параметр из условия , получим Подставляем в формулу:


Другие примеры задач по математической статистике вы найдете на странице

ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ ДЛЯ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ

1. Пусть известно, что сл. величина x подчиняется нормальному закону с неизвестным средним μ и известной σ 2: X~N(μ,σ 2 ), σ 2 задано, μ не известно. Задано β. По выборке x 1, x 2, … , x n надо построить I β (θ) (сейчас θ=μ), удовлетворяющий (13)

Выборочное среднее (говорят также выборочная средняя) подчиняется нормальному закону с тем же центром μ, но меньшей дисперсией X~N (μ , D ), где дисперсией D =σ 2 =σ 2 /n.

Нам понадобится число К β , определяемое для ξ~N(0,1) условием

Словами: между точками -К β и К β оси абсцисс лежит площадь под кривой плотности стандартного нормального закона, равная β

Например, К 0,90 =1,645 квантиль уровня 0,95 величины ξ

K 0,95 = 1,96. ; К 0,997 =3 .

В частности, отложив от центра любого нормального закона 1,96 стандартных отклонений вправо и столько же влево, мы захватим площадь под кривой плотности, равную 0.95, в силу чего К 0 95 является квантилью уровня 0,95 + 1/2*0,005 = 0,975 для этого за­кона.

Искомый доверительный интервал для генерального среднего μ есть I А (μ) = (х-σ, х+σ),

где δ = (15)

Дадим обоснование:

По сказанному, сл. величина в интервал J=μ±σ попадает с вероятностью β (рис.9). В этом случае величина отклоняется от центра μ меньше, чем на δ , и случайный интервал ± δ (со случайным центром и такой же как у J ширины) накроет точку μ. То есть Є J <=> μ Є I β , а потому Р{μЄІ β } = Р{ Є J }=β.

Итак, постоянный по выборке интервал I β содержит среднее μ с вероятностью β.

Ясно, чем больше n, тем меньше σ и уже интервал, а чем больше мы берем гарантию β, тем доверительный интервал шире.

Пример 21.

По выборке с n=16 для нормальной величины с известной дисперсией σ 2 =64 найдено х=200. Построить доверительный интервал для генерального среднего (иначе говоря, для математического ожидания) μ, приняв β=0,95.

Решение. I β (μ)= ± δ, где δ = К β σ/ -> К β σ/ =1.96*8/ = 4

I 0.95 (μ)=200 4=(196;204).

Делая вывод, что с гарантией β=0,95 истинное среднее принадлежат интервалу (196,204), мы понимаем, что возможна ошибка.

Из 100 доверительных интервалов I 0. 95 (μ) в среднем 5 не содержат μ.

Пример 22.

Каким в условиях предыдущего примера 21 следует взять n, чтобы вдвое сузить доверительный интервал? Чтобы иметь 2δ=4, надо взять

На практике часто пользуются односторонними доверительными интервалами. Так, если полезны или не страшны высокие значения μ, но не.приятны низкие, как в случае с прочностью или надежностью, то резонно строить односторонний интервал. Для этого следует максимально поднять его верхнюю границу. Если мы построим, как в примере 21, двусторонний доверительный интервал для заданного β, а затем максимально расширим его за счет одной из границ, то получим односторонний интервал с большей гарантией β" = β + (1-β) / 2 = (1+β)/2, например, если β = 0,90, то β = 0,90 + 0,10/2 = 0,95.

Например, будем считать, что речь идет о прочности изделия и поднимем верхнюю границу интервала до . Тогда для μ в примере 21 получим односторонний доверительный интервал (196,°°) с нижней границей 196 и доверительной вероятностью β"=0,95+0,05/2=0,975.

Практическим недостатком формулы (15)_является то, что она выведена в предположении, что дисперсия = σ 2 (отсюда и = σ 2 /n) известна; а это бывает в жизни редко. Исключение составляет случай, когда объем выборки велик, скажем, n измеряется сотнями или тысячами и тогда за σ 2 можно практически принять ее оценку s 2 или .

Пример 23.

Положим, в некотором большом городе в результате выборочного обследования жилищных условий жителей получена следу­ющая таблица данных (пример из работы ).

Таблица 8

Исходные данные к примеру

Естественно допустить, что сл. величина X - общая (полезная) площадь (в м 2), приходящаяся на одного человека подчиняется нор­мальному закону. Среднее μ и дисперсия σ 2 не известны. Для μ тре­буется построить 95%-ный доверительный интервал. Чтобы по группи­рованным данным найти выборочные средние и дисперсию, составим следующую таблицу выкладок (табл.9).

Таблица 9

Вычисления X и 5 по сгруппированным данным

N группы з Общая площадь в расчете на 1 человека, м 2 Число жителей в группе г j Середина интервала x j r j x j rjxj 2
До 5.0 2.5 20.0 50.0
5.0-10.0 7.5 712.5 5343.75
10.0-15.0 12.5 2550.0 31875.0
15.0-20.0 17.5 4725.0 82687.5
20.0-25.0 22.5 4725.0 106312.5
25.0-30.0 27.5 3575.0 98312.5
более 30.0 32.5 * 2697.5 87668.75
- 19005.0 412250.0

В этой вспомогательной таблице по формуле (2) подсчитаны первый и второй начальные статистические моменты а 1 и а 2

Хотя дисперсия σ 2 здесь неизвестна, из-за большого объема выборки можно практически применить формулу (15), положив в ней σ= =7.16.

Тогда δ=k 0.95 σ/ =1.96*7.16/ =0.46.

Доверительный интервал для генерального среднего при β=0,95 равен I 0.95 (μ) = ± δ = 19 ± 0.46 = (18.54; 19.46).

Следовательно, среднее значение площади на одного человека в данном городе с гарантией 0.95 лежит в промежутке (18.54; 19.46).



2. Доверительный интервал для математического ожидания μ в случае неизвестной дисперсии σ 2 нормальной величины. Этот интервал для заданной гарантии β строится по формуле ,где ν = n-1 ,

(16)

Коэффициент t β,ν имеет тот же смысл для t – распределения с ν степенями свободы, что к β для распределения N(0,1), а именно:

.

Другими словами, сл. Величина tν попадает в интервал (-t β,ν ; +t β,ν) с вероятностью β. Значения t β,ν даны в табл.10 для β=0.95 и β=0.99.

Таблица 10.

Значения t β,ν

Возвращаясь к примеру 23, видим, что в нем доверительный интервал был построен по формуле (16) с коэффициентом t β,υ =k 0..95 =1.96, т. к. n=1000.

Пусть случайная величина (можно говорить о генеральной совокупности) распределена по нормальному закону, для которого известна дисперсия D = 2 (> 0). Из генеральной совокупности (на множестве объектов которой определена случайная величина) делается выборка объема n. Выборка x 1 , x 2 ,..., x n рассматривается как совокупность n независимых случайных величин, распределенных так же как (подход, которому дано объяснение выше по тексту).

Ранее также обсуждались и доказаны следующие равенства:

Mx 1 = Mx 2 = ... = Mx n = M;

Dx 1 = Dx 2 = ... = Dx n = D;

Достаточно просто доказать (мы доказательство опускаем), что случайная величина в данном случае также распределена по нормальному закону.

Обозначим неизвестную величину M через a и подберем по заданной надежности число d > 0 так, чтобы выполнялось условие:

P(- a < d) = (1)

Так как случайная величина распределена по нормальному закону с математическим ожиданием M = M = a и дисперсией D = D /n = 2 /n, получаем:

P(- a < d) =P(a - d < < a + d) =

Осталось подобрать d таким, чтобы выполнялось равенство

Для любого можно по таблице найти такое число t, что(t)= / 2. Это число t иногда называют квантилем .

Теперь из равенства

определим значение d:

Окончательный результат получим, представив формулу (1) в виде:

Смысл последней формулы состоит в следующем: с надежностью доверительный интервал

покрывает неизвестный параметр a = M генеральной совокупности. Можно сказать иначе: точечная оценка определяет значение параметра M с точностью d= t / и надежностью.

Задача. Пусть имеется генеральная совокупность с некоторой характеристикой, распределенной по нормальному закону с дисперсией, равной 6,25. Произведена выборка объема n = 27 и получено средневыборочное значение характеристики = 12. Найти доверительный интервал, покрывающий неизвестное математическое ожидание исследуемой характеристики генеральной совокупности с надежностью =0,99.

Решение. Сначала по таблице для функции Лапласа найдем значение t из равенства (t) = / 2 = 0,495. По полученному значению t = 2,58 определим точность оценки (или половину длины доверительного интервала) d: d = 2,52,58 / 1,24. Отсюда получаем искомый доверительный интервал: (10,76; 13,24).

статистический гипотеза генеральный вариационный

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии

Пусть - случайная величина, распределенная по нормальному закону с неизвестным математическим ожиданием M, которое обозначим буквой a . Произведем выборку объема n. Определим среднюю выборочную и исправленную выборочную дисперсию s 2 по известным формулам.

Случайная величина

распределена по закону Стьюдента с n - 1 степенями свободы.

Задача заключается в том, чтобы по заданной надежности и по числу степеней свободы n - 1 найти такое число t , чтобы выполнялось равенство

или эквивалентное равенство

Здесь в скобках написано условие того, что значение неизвестного параметра a принадлежит некоторому промежутку, который и является доверительным интервалом. Его границы зависят от надежности, а также от параметров выборки и s.

Чтобы определить значение t по величине, равенство (2) преобразуем к виду:

Теперь по таблице для случайной величины t, распределенной по закону Стьюдента, по вероятности 1 - и числу степеней свободы n - 1 находим t. Формула (3) дает ответ поставленной задачи.

Задача. На контрольных испытаниях 20-ти электроламп средняя продолжительность их работы оказалась равной 2000 часов при среднем квадратическом отклонении (рассчитанном как корень квадратный из исправленной выборочной дисперсии), равном 11-ти часам. Известно, что продолжительность работы лампы является нормально распределенной случайной величиной. Определить с надежностью 0,95 доверительный интервал для математического ожидания этой случайной величины.

Решение. Величина 1 - в данном случае равна 0,05. По таблице распределения Стьюдента, при числе степеней свободы, равном 19, находим: t = 2,093. Вычислим теперь точность оценки: 2,093121/ = 56,6. Отсюда получаем искомый доверительный интервал: (1943,4; 2056,6).

Пусть случайая величина Х генеральной совокупности распределена нормально, учитывая, что дисперсия и среднее квадратическое отклонение s этого распределения известны. Требуется оценить неизвестное математическое ожидание по выборочной средней. В данном случае задача сводится к нахождению доверительного интервала для математического ожидания с надёжностью b. Если задаться значением доверительной вероятности (надёжности) b, то можно найти вероятность попадания в интервал для неизвестного математического ожидания, используя формулу (6.9а):

где Ф(t ) – функция Лапласа (5.17а).

В результате можно сформулировать алгоритм отыскания границ доверительного интервала для математического ожидания, если известна дисперсия D = s 2:

  1. Задать значение надёжности – b .
  2. Из (6.14) выразить Ф(t) = 0,5× b. Выбрать значение t из таблицы для функции Лапласа по значению Ф(t) (см. Приложение 1).
  3. Вычислить отклонение e по формуле (6.10).
  4. Записать доверительный интервал по формуле (6.12) такой, что с вероятностью b выполняется неравенство:

.

Пример 5 .

Случайная величина Х имеет нормальное распределение. Найти доверительные интервалы для оценки с надежностью b = 0,96 неизвестного математического ожидания а, если даны:

1) генеральное среднее квадратическое отклонение s = 5;

2) выборочная средняя ;

3) объём выборки n = 49.

В формуле (6.15) интервальной оценки математического ожидания а с надёжностью b все величины, кроме t, известны. Значение t можно найти, используя (6.14): b = 2Ф(t) = 0,96. Ф(t) = 0,48.

По таблице Приложения 1 для функции Лапласа Ф(t) = 0,48 находят соответствующее значение t = 2,06. Следовательно, . Подставив в формулу (6.12) вычисленное значение e, можно получить доверительный интервал: 30-1,47 < a < 30+1,47.

Искомый доверительный интервал для оценки с надёжностью b = 0,96 неизвестного математического ожидания равен: 28,53 < a < 31,47.

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения X N(m ; ). Это основное предположение математической статистики основано на центральной предельной теореме. Пусть известно генеральное среднее квадратическое отклонение , но неизвестно математическое ожидание теоретического распределения m (среднее значение ).

В таком случае среднее выборочное , полученное в ходе эксперимента (п.3.4.2), также будет являться случайной величинойm ;
). Тогда «нормализованное» отклонение
N(0;1) – является стандартной нормальной случайной величиной.

Задача состоит в поиске интервальной оценки для m . Построим двусторонний доверительный интервал для m так, чтобы истинное математическое ожидание принадлежало ему с заданной вероятностью (надежностью) .

Установить такой интервал для величины
– это значит найти максимальное значение этой величины
и минимальное
, которые являются границам критической области:
.

Т.к. такая вероятность равна
, то корень этого уравнения
можно найти с помощью таблиц функции Лапласа (Таблица 3, приложение 1).

Тогда с вероятностью можно утверждать, что случайная величина
, то есть искомое генеральное среднее принадлежит интервалу
. (3.13)

Величину
(3.14)

называют точностью оценки.

Число
квантиль нормального распределения – можно найти как аргумент функции Лапласа (Таблица 3, приложение 1), учитывая соотношение 2Ф(u )= , т.е. Ф(u )=
.

Обратно, по заданному значению отклонения можно найти, с какой вероятностью, неизвестное генеральное среднее принадлежит интервалу
. Для этого нужно вычислить

. (3.15)

Пусть из генеральной совокупности извлечена случайная выборка методом повторного отбора. Из уравнения
можно найти минимальный объем повторной выборки n , необходимый для того, чтобы доверительный интервал с заданной надежностью не превышал наперед заданного значения. Оценку требуемого объема выборки производят по формуле:

. (3.16)

Исследуем точность оценки
:

1) При возрастании объема выборки n величина уменьшается , и значит, точность оценки увеличивается .

2) С увеличением надежности оценки увеличивается значение аргументаu (т.к. Ф (u ) монотонно возрастает) и значит увеличивается . В таком случае увеличение надежности уменьшает точность ее оценки .

Оценку
(3.17)

называют классической (где t - некий параметр, зависящий от и n ), т.к. она характеризует наиболее часто встречающиеся законы распределения.

3.5.3 Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении 

Пусть известно, что генеральная совокупность подчинена закону нормального распределения X N(m ;), где величина среднего квадратического отклонения неизвестна.

Для построения доверительного интервала оценки генерального среднего в этом случае используется статистика
, имеющая распределение Стъюдента с k = n –1 степенями свободы. Это следует из того, что N(0;1) (см. п.3.5.2), а
(см. п.3.5.3) и из определения распределения Стъюдента (ч.1.п.2.11.2).

Найдем точность классической оценки распределения Стъюдента: т.е. найдем t из формулы (3.17). Пусть вероятность выполнения неравенства
задана надежностью :

. (3.18)

Поскольку T St(n -1), очевидно, что t зависит от и n , поэтому обычно пишут
.

(3.19)

где
– функция распределения Стъюдента сn -1 степенями свободы.

Решая это уравнение относительно m , получим интервал
который с надежностью  покрывает неизвестный параметр m .

Величина t , n -1 , служащая для определения доверительного интервала случайной величины T (n -1), распределенной по Стъюденту с n -1 степенями свободы, называется коэффициентом Стъюдента . Его следует находить по заданным значениям n и  из таблиц «Критические точки распределения Стьюдента». (Таблица 6, приложение 1), которые и представляют собой решения уравнения (3.19).

В итоге получаем следующее выражение точности  доверительного интервала для оценки математического ожидания (генерального среднего), если неизвестна дисперсия:

(3.20)

Т.о., существует общая формула построения доверительных интервалов для математического ожидания генеральной совокупности:

где точность доверительного интервала в зависимости от известной или неизвестной дисперсии находится по формулам соответственно 3.16. и 3.20.

Задача 10. Проведены некоторые испытания, результаты которых занесены в таблицу:

x i

Известно, что они подчиняются закону нормального распределения с
. Найти оценкуm * для математического ожидания m , построить для него 90% доверительный интервал.

Решение:

Итак, m (2.53;5.47).

Задача 11. Глубина моря измеряется прибором, систематическая ошибка которого равна 0, а случайные ошибки распределяются по нормальному закону, со средним квадратическим отклонением =15м. Сколько надо сделать независимых измерений, чтобы определить глубину с ошибками не более 5м при доверительной вероятности 90%?

Решение:

По условию задачи имеем X N(m ; ), где =15м, =5м, =0.9. Найдем объем n .

1) С заданной надежностью = 0.9 найдем по таблицам 3 (Приложение 1) аргумент функции Лапласа u = 1.65.

2) Зная заданную точность оценки =u =5, найдем
. Имеем

. Поэтому число испытаний n 25.

Задача 12. Выборка температуры t за первые 6 дней января представлена в таблице:

Найти доверительный интервал для математического ожидания m генеральной совокупности с доверительной вероятностью
и оценить генеральное стандартное отклонение s .

Решение:


и
.

2) Несмещённую оценку найдем по формуле
:

=-175

=234.84

;
;

=-192

=116


.

3) Поскольку генеральная дисперсия неизвестна, но известна ее оценка, то для оценки математического ожидания m используем распределение Стъюдента (Таблица 6, приложение 1) и формулу (3.20).

Т.к. n 1 =n 2 =6, то ,
, s 1 =6.85 имеем:
, отсюда -29.2-4.1<m 1 < -29.2+4.1.

Поэтому -33.3<m 1 <-25.1.

Аналогично имеем,
, s 2 = 4.8, , поэтому

–34.9< m 2 < -29.1. Тогда доверительные интервалы примут вид: m 1 (-33.3;-25.1) и m 2 (-34.9;-29.1).

В прикладных науках, например, в строительных дисциплинах, для оценки точности объектов используются таблицы доверительных интервалов, которые приведены в соответствующей справочной литературе.