Магнитное поле линии магнитного поля сила ампера. Магнитное поле. Сила Лоренца. Магнитная индукция. Сила Ампера

МАГНИТНОЕ ПОЛЕ

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В - физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция - векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции . В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

СИЛА ЛОРЕНЦА

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера F А = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a - угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила м, постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м:

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

МАГНИТНЫЙ ПОТОК

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S - величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

Ф=BScos

В СИ единица магнитного потока 1 Вебер (Вб) - магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция -явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции ε i .

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Ф = L*I .

Индуктивность контура L - коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция - явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция - частный случай электромагнитной индукции.

Индуктивность - величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I - начальное значение тока, t - промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = I cp t . Так как I cp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1 . Следовательно,

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Вы сейчас здесь: Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Магнитное поле. Сила Лоренца. Магнитная индукция. Сила Ампера

    Согласно классической теории электромагнетизма заряженная частица так возмущает окружающее пространство, что любая другая заряженная частица, помещенная в эту область испытывает действие силы . Говорят, что на частицу действует электромагнитное поле . Электрическая составляющая такого поля связана с самим фактом присутствия заряженной частицы (источника поля) в рассматриваемой области пространства, магнитная ¾ с ее движением.

    Источником макроскопического магнитного поля являются проводники с током, намагниченные тела и движущиеся электрически заряженные тела. Однако, природа магнитного поля едина, оно возникает в результате движения заряженных микрочастиц.

    Переменное магнитное поле появляется также при изменении во времени электрического поля , и наоборот, при изменении во времени магнитного поля возникает электрическое поле (см. теорию Дж. Максвелла).

    Количественной характеристикой силового действия электрического поля на заряженные объекты служит векторная величина ¾напряженность электрического поля . Магнитное поле характеризуется вектором индукции который определяет силу, действующую в данной точке поля на движущийся электрический заряд . Эту силу называют силой Лоренца (X. Лоренц ¾нидерландский физик-теоретик). Экспериментально для модуля этой силы установлена следующая зависимость (в СИ):

    F л = В |q |v sina, (8.1)

    где |q | ¾ модуль заряда, который двигается в магнитном поле со скоростью v под углом a к направлению магнитного поля.

    Таким образом, магнитная индукция численно равна силе F л действующей на единичный заряд, движущийся с единичной скоростью в направлении, перпендикулярном полю .

    Сила Лоренца перпендикулярна векторам (направление поля) и при этом направление этой силы совпадает с направлением, которое определяется по правилу левой руки . Согласно этому правилу, если левую руку расположить так, что четыре вытянутых пальца совпадают по направлению с вектором скорости положительного заряда (если q <0, то пальцы левой руки направляют в противоположную сторону или пользуются правой рукой), а составляющая вектора магнитной индукции перпендикулярная скорости заряда, входит в ладонь перпендикулярно к ней, то отогнутый на 90° большой палец покажет направление силы Лоренца, рис. 8.1.

    Рис. 8.1

    В целом, выражение для вектора силы Лоренца записывается через векторное произведение векторов и :

    При движении заряженной частицы перпендикулярно к направлению магнитного поля сила Лоренца играет роль центростремительной силы, при этом траекторией движения частицы является окружность.

    Если векторы и направлены одинаково, то В общем случае, когда 0

    При наличии электромагнитного поля формула Лоренца имеет вид

    (8.3)

    Если магнитное поле создают несколько источников (n ), то его магнитная индукция согласно принципу суперпозиции рассчитывается как

    Если в магнитное поле поместить проводник с током, то на каждый носитель тока, движущийся по проводнику со скоростью будет действовать сила Лоренца. Действие этой силы от отдельных носителей передается всему проводнику. В результате, на каждый прямолинейный участок проводника длиной Dl (малый элемент длиной Dl ), по которому течет ток I , в магнитном поле будет действовать так называемая сила Ампера (закон Ампера , в честь известного французского ученого, открывшего этот закон, Андре Ампера):

    (8.5)

    где ¾вектор, направление которого совпадает с направлением тока в проводнике, а модуль этого вектора равен длине участка Dl .

    Направление этой силы определяется по правилу левой руки : если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции входила в ладонь перпендикулярно к ней, а направление средних пальцев совпадало с направлением тока, то отогнутый на 90° большой палец покажет направление действующей на проводник силы Ампера рис. 8.2.

    Рис. 8.2

    Таким образом, величина магнитной индукции магнитного поля определяется как

    где a ¾ угол между направлением тока и вектора магнитной индукции (магнитного поля).

    Однородным постоянным магнитным полем называется магнитное поле, вектор у которого одинаков во всех точках пространства и не меняется со временем.

    В соответствии с законом Ампера (8.6) магнитная индукция ¾это величина, численно равная силе, действующей на прямолинейный проводник единичной длины, по которому течет ток единичной силы и который расположен перпендикулярно направлению магнитного поля . Единица магнитной индукции получила название тесла (Тл): (в честь сербского ученого Никола Тесла). Индукция магнитного поля Земли около ее поверхности составляет примерно 5 ×10 - 5 Тл.

    Следствием существования силы Ампера является появление момента сил , действующего на рамку с током, помещенную в однородное магнитное поле, и приводящего к ее возможному вращению.

    В данном случае модуль вектора магнитной индукции равен отношению максимального момента сил М m ах, действующего со стороны магнитного поля на контур с током, к произведению силы тока I в контуре на его площадь S :

    При этом, величина, модуль которой P m = I × S , называется магнитным моментом контура .

    Ампер экспериментально обнаружил, что два параллельных проводника взаимодействуют друг с другом. При этом, если токи в проводниках направлены в одну сторону, то взаимодействие имеет характер притяжения, если в противоположные ¾ отталкивания (рис. 8.3).

    Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю

    Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником .

    Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

    Направление силы Ампера определяется по правилу левой руки.

    Правило левой руки : если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90 ° большой палец, укажет направление силы Ампера.

    Напряженность магнитного поля можно определить с помощью силы, которая действует на помещенный в поле пробный магнит. Так как магнитные полюсы не существуют по отдельности, на северный и южный полюсы пробного магнита действуют противоположно направленные силы, и возникает момент пары сил. Этот момент характеризует величину напряженности поля в данном месте.

    Магнитное поле характеризуется напряженностью. Напряженность H магнитного поля аналогична механической силе. Она является векторной величиной, т. е. имеет величину и направление.

    Магнитное поле, т. е. пространство вокруг магнита, можно представить заполненным магнитными линиями, которые принято считать выходящими из северного полюса магнита и входящими в южный (рис. 1). Касательные к магнитной линии показывают направление напряженности магнитного поля.

    Напряженность магнитного поля больше там, где магнитные линии гуще (на полюсах магнита или внутри катушки с током).

    Магнитное поле около проводника (или внутри катушки) тем больше, чем больше ток I и число витков ω катушки.

    Напряженность магнитного поля H в любой точке пространства тем больше, чем больше произведение I∙ω и чем меньше длина магнитной линии:

    Из уравнения следует, что единицей измерения напряженности магнитного поля является ампер на метр (А/м).

    Для каждой магнитной линии в данном однородном поле произведения H1∙l1=H2∙l2=...=H∙l=I∙ω равны

    21. Напряженность магнитного поля. Магнитное поле– это одна из форм проявления электромагнитного поля , особенностью которого является то, что это поле действует только на движущиеся частицы и тела , обладающие электрическим зарядом, а также на намагниченные тела . Магнитное поле создается проводниками с током, движущимися электрическими заряженными частицами и телами, а также переменными электрическими полями. Силовой характеристикой магнитного поля служит вектор магнитной индукции В поля созданного одним зарядом в вакууме: Еще одной характеристикой магнитного поля является напряженность .Напряженностью магнитного поля называют векторную величину Н , характеризующую магнитное поле и определяемую следующим образом : Напряженность магнитного поля заряда q , движущегося в вакууме равна: , в катушке:Н=In/L где n-число витков,L-длина катушки,вокруг прямолинейного проводника:H=I/2Pi*r, в центре витка с током:H=I/2r

    22.Закон Био-Савара-Лапласа и его применение: вектор индукции магнитного поля, созданного элементом проводника dL, по которому течет ток I, имеет вид: где r– радиус-вектор, проведенный от элемента dL до той точки, в которой определяется индукция поля; – магнитная постоянная.В скалярной форме где a– угол между векторами dL и r.Индукция магнитного поля в произвольной точке А, созданного отрезком проводника с током I конечной длины, где r 0 – расстояние от т. А до проводника; a – углы, образованные радиус-вектором, проведенном в т.А соответственно из начала и конца проводника, с направлением тока.Магнитная индукция поля в центре кругового тока радиусом R Индукция магнитного поля в произвольной т. А, созданного бесконечно длинным прямым проводником с током, Закон полного тока: циркуляция вектора B по замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром Принцип суперпозиции магнитных полей: магнитная индукция B в любой точке магнитного поля проводника с током равна векторной сумме магнитных индукций dB, созданных в этой точке всеми элементами dL проводника с током, т. е.

    23. Магнитная индукция -векторная физическая величина, характеризующая магнитное поле.Вектор магнитной индукции всегда направлен по касательной к магнитной линии (тесла)где F- сила, действующая со стороны магнитного поля на проводник с током (H);I - сила тока в проводнике (A);l - длина проводника (м).Контур, помещенный в однородное магнитное поле, пронизывается магнитным потоком (потоком векторов магнитной индукции). Ф - магнитный поток, пронизывающий площадь контура, зависит от величины вектора магнитной индукции, площади контура и его ориентации относительно линий индукции магнитного поля.Если вектор магнитной индукции перпендикулярен площади контура, то магнитный потокмаксимальный.

    Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.

    24.Поток вектора магнитной индукции.Потоком вектора магнитной индукции называется скалярная физическая величина где B n =Вcosα - проекция вектора В на направление нормали к площадке dS (α - угол между векторами n и В ), dS =dSn - вектор, у которого модуль равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosα (задается выбором положительного направления нормали n ). Поток вектора В обычно связывают с контуром, по которому течет ток. В этом случае положительное направление нормали к контуру нами задавалось: оно связывается с током правилом правого винта. Значит,магнитный поток, который создается контуром, через поверхность, ограниченную им самим, всегда положителен. Поток вектора магнитной индукции Ф B через произвольную заданную поверхность S равен Для однородного поля и плоской поверхности, которая расположена перпендикулярно вектору В , B n =B=const и (вебер Вб)
    Теорема Гаусса для поля В : поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:
    Эта теорема является отражением факта, что магнитные заряды отсутствуют , вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

    25.Сила Ампера. На проводник с током, находящийся в магнитном поле, действует сила, равнаяF = I·L·B·sina.I - сила тока в проводнике;B - модуль вектора индукции магнитного поля;L - длина проводника, находящегося в магнитном поле;a - угол между вектором магнитного поля инаправлением тока в проводнике.Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

    26.Работа сил Ампера. Работа при перемещении проводника с током в магнитном поле совершается за счет энергии источника тока. Если проводник, сила тока I в котором поддерживается постоянной, совершает конечное перемещение из положения 1 в положение 2, то работа сил при таком перемещении . Работа сил для замкнутого контура где Ф-магнитный поток.

    27.Сила Лоренца. Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.F л = q·V·B·sina,где q - величина движущегося заряда;V - модуль его скорости; B - модуль вектора индукции магнитного поля;a - угол между вектором скорости заряда и вектором магнитной индукции. Сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно

    Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца F л.

    Сила Лоренца зависит от модулей скорости частицы и индукции магнитного поля. Эта сила перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы. Частица равномерно движется по окружности радиуса r.

    28.Электоромагнитная индукция Явление электромагнитной индукции было открыто Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока , пронизывающего контур.Ф=В*S*cosa

    Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

    29.Законы Фарадея и Ленца.Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.Электромагнитная индукция была открыта Фарадеем. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура в магнитном поле.Электрический ток, вызванный этой ЭДС, называется индукционным током.З.Фарадея: ЭДС индукции равна скорости изменения магнитного потока, взятой с обратным знаком : E=-∆Ф/∆t. Знак «минус» в формуле отражает правило Ленца :Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

    30.Самоиндукция. При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке. Явление возникновения ЭДС индукции в электрической цепи в результате изменения силы тока в этой цепи называется самоиндукцией. В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи. ЭДС самоиндукции , возникающая в катушке с индуктивностью L , по закону электромагнитной индукции равна ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

    31.Индуктивность - коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность , краем которой является этот контур:Ф=L*I где Ф-магнитный поток, I-сила тока в контуре, L- индуктивность.Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции (в вольтах), возникающей в контуре при изменении силы тока на 1 А за1 с.При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током

    31диамагнетизм (англ. diamagnetism) - (от греч. "диа " - расхождение) - свойство тел намагничиваться в направлении, противоположном действующему на них внешнему магнитному полю.

    Описание

    Внешнее магнитное поле индуцирует в веществе круговые токи, создающие орбитальные магнитные моменты, которые, согласно правилу Ленца, направ лены навстречу полю. В отсутствие внешнего магнитного поля диамагнетики немагнитны, т. е. магнитные моменты взаимно скомпенсированы. В создании диамагнитного момента участвуют все электроны атомов, а также свободные носители заряда в металлах и полупроводниках.

    Диамагнетизм присущ многим веществам, однако в большинстве случаев вклад диамагнитного отклика сравнительно мал по отношению к парамагнитному иферромагнитному и составляет лишь небольшую часть суммарной намагниченности вещества. К диамагнетикам относятся: инертные газы; Cu; Ag; Au; Zn; Cd; Ge; Si; Sb; P и другие простые вещества; многие неорганические соединения, например, H 2 O, MgO, NaCl, ZnSO 4 , насыщенные углеводороды, жирные кислоты, циклические и другие органические соедиения.

    Диамагнетизм неотъемлемо присущ также сверхпроводящему состоянию вещества, т. е. все сверхпроводящие вещества при температуре и внешнем магнитном поле ниже критических значений являются идеальными диамагнетиками с наибольшими по абсолютной величине значениями диамагнитной восприимчивости. При этом диамагнетизм сверхпроводников имеет особенное происхождение: в отличие от диамагнетизма перечисленных выше веществ, он обусловлен не внутриатомными свойствами (токами), а макроскопическими незатухающими токами по поверхности сверхпроводника (эффект Мейснера), сила и конфигурация которых автоматически обеспечивают полную компенсацию внешнего магнитного поля во всем объеме сверхпроводника.

    32 парамагнетизм (англ. paramagnetism) - («пара» - от греч. «возле», «рядом») - свойство тел намагничиваться по направлению действующего на них внешнего магнитного поля. Парамагнетизм обусловлен, в основном, ориентацией собственных магнитных моментов частиц (молекул, атомов или ионов) вещества. Природа этих моментов может быть связана с орбитальным движением электронов, их спином, а также (в меньшей степени) со спином атомных ядер. Под действием внешнего магнитного поля отдельные моменты ориентируются по его направлению, создавая суммарный магнитный момент, пропорциональный напряженности поля.

    33ФЕРРОМАГНЕТИЗМ - магнитоупорядоченное состояние вещества, в к-ром большинство атомных магнитных моментов параллельны друг другу, так что вещество обладает самопроизвольной (спонтанной) намагниченностью. Ф . устанавливается при темп-ре Т ниже Кюри точки Т C в отсутствие внеш. магн. поля Н . В более широком смысле Ф. наз. совокупность физ. свойств вещества в указанном состоянии. Вещества, в к-рых возникает ферро-магн. упорядочение магн. моментов (рис. 1), наз. ферро магнетиками,к их числу относятся как твёрдые кри-сталлич. вещества (см., напр., Магнитные диэлектрики, Магнитные полупроводники, Редкоземельные магнетики) , так и нек-рыеаморфные магнетики и металлические стёкла, а также магнитные жидкости.Ответственным за Ф. является обменное взаимодействие в м а г н е т и з м е, стремящееся установить спины (а следовательно, и магн. моменты) соседних атомов или ионов параллельно друг другу; в этом случае обменный интеграл имеет положит. значение.

    34 ГИСТЕРЕЗИС -неоднозначная (необратимая) зависимостьнамагниченности M магнитоупорядоченного вещества (магнетика, напр. ферро или ферримагнетика) от внеш. магн. поля H при его циклич. изменении (увеличении и уменьшении). Общей причиной существования Г. м. является наличие в определ. интервале изменения Н среди состояний магнетика, отвечающих минимумутермодинамического потенциала, метастабильных состояний (наряду со стабильными) и необратимых переходов между ними. Г. м. можно также рассматривать как проявление магн. ориентационных фазовых переходов первого рода, для к-рых прямой и обратный переходы между фазами в зависимости от H происходят, в силу указанной метастабильности состояний, при разл. значениях H.

    Петли гистерезиса: 1 - максимальная, 2 - частного цикла, а - кривая намагничивания, b и с-кривые перемагничивания. M R - остаточная намагниченность, H C - коэрцитивная сила, M S - намагниченность насыщения.

    35Точка Кюри, или температура Кюри, - температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества (например, магнитной - в ферромагнетиках, электрической - всегнетоэлектриках, кристаллохимической - в упорядоченных сплавах). Названа по имени П. Кюри . При температуре ниже точки Кюри ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью и определённой магнитно-кристаллической симметрией. В точке Кюри () интенсивность теплового движения атомов ферромагнетика оказывается достаточной для разрушения его самопроизвольной намагниченности («магнитного порядка») и изменения симметрии, в результате ферромагнетик становится парамагнетиком. Аналогично уантиферромагнетиков при (в так называемой антиферромагнитной точке Кюри или точке Нееля) происходит разрушение характерной для них магнитной структуры (магнитных подрешёток), и антиферромагнетики становятся парамагнетиками.

    36 Вращение рамки в магнитном поле, переменный ток

    Явление электромагнитной индукции используется для преобразования механической энергии в энергию электрического тока.

    При вращении рамки в однородном магнитном поле в ней будет возникать переменная э.д.с. индукции:

    Вихревые токи Фуко:

    Индукционный ток, так же, возникает и в сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми.

    Вихревые токи токи вызывают торможение и нагревание проводников (пример с маятником между магнитными полюсами)

    Токи при размыкании и замыкании цепи:

    При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции.

    Размыкание:

    Пусть под действием внешней эдс в цепи c резистором, источником и катушкой индуктивности течет постоянный ток:

    Отключаем источник. Ток через катушку индуктивности L начнет уменьшаться, что приведет к возникновению эдс самоиндукции. , препятствующей уменьшению тока.

    В каждый момент времени сила тока будет определяться выражением:

    Где - это постоянная, называемая временем релаксации.

    Сила тока падает по экспоненте

    Замыкание:

    37 Реактивные сопротивления.

    При прохождении переменного тока через реактивные элементы возникаетреактивное сопротивление. Оно обусловлено в первую очередь ёмкостями и индуктивностями.

    Индуктивностью в цепи переменного тока обладает катушка индуктивности, причём в идеальном случае, активным сопротивлением её обмотки пренебрегают. Реактивное сопротивление катушки переменному току создаётся благодаря её ЭДС самоиндукции. Причем с ростом частоты тока, сопротивление также растёт.

    Реактивное сопротивление катушки зависит от частоты тока и индуктивности катушки

    Конденсатор обладает реактивным сопротивлением благодаря своей ёмкости. Его сопротивление с увеличением частоты тока уменьшается, что позволяет его активно использовать в электронике в качестве шунта переменной составляющей тока.

    38 Обобщенный закон Ома.

    Обобщенный закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока, содержащем резистор и идеальный источник ЭДС (рис.1.2):

    ;

    Формула справедлива для указанных на рис.1.2 положительных направлений падения напряжения на участке цепи (U ab), идеального источника ЭДС (Е) и положительного направления тока (I).

    39 Электромагнитные волны

    Если по проводу проходит переменный ток, то вокруг провода возникают переменные электрическое и магнитное поля, образующие вместе электромагнитное поле, представляющее собой колебания эфирной среды.

    Электромагнитное поле, движущееся в эфире, иначе называется электромагнитной волной. Радиоволны являются именно такими электромагнитными волнами.

    Раздельно друг от друга переменные электрическое и магнитное поля существовать не могут. Всякое изменение электрического поля вызывает появление переменного магнитного поля, и наоборот, всякое изменение магнитного поля вызывает появление переменного электрического поля. Нельзя называть электромагнитным полем постоянные электрическое и магнитное поля, существующие одновременно в каком-либо месте пространства. В этом случае оба поля самостоятельны и не имеют взаимодействия между собой, именно поэтому электрическое и магнитное поля не являются частным случаем электромагнитного поля, как утверждают релятивисты. Наоборот, электромагнитное поле является сочетанием равноправных переменных электрического и магнитного полей, взаимодействующих друг с другом в волновом процессе, распространяющемся в физической среде.

    Электромагнитное поле движется в эфире со скоростью, равной

    где (эпсилон) и (мю) - соответственно коэффициенты диэлектрической и магнитной проницаемостей среды, заполняющей данное пространство, а с - скорость распространения электромагнитного поля в безвоздушном пространстве, то есть в свободном от вещества эфире, составляющая 300 000 км/сек. Для воздуха можно считать (Эпсилон) = 1, (мю) - 1 и тогда v = с.

    40 Уравнения Максвелла система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное полеи его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, образуют полную систему уравнений классическойэлектродинамики, называемую иногда уравнениями Максвелла - Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее, влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности).


    41 Колебательный контур.

    Колебательный контур - электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном − параллельным.

    Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания.

    Резонансная частота контура определяется так называемой формулой Томсона:

    Принцип действия

    Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет

    При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС)самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

    Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

    Где - индуктивность катушки, - максимальное значение тока.


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2016-02-12

    Оп путем было устан, что движущиеся эл-кие заряды, т. е. токи создают магнитные поля. Магнитное поле проявляется под действием сил магнитного взаимодействия. Магнитное поле в отличие от эл-кого действует только на движ заряды, на покоящиеся заряды не действует. (монополь – магнитный заряд) Сп-сть магнитного поля вызывать мех силу в каждой точке поля, действ на элемент тока Id(в-р)l хар-тся магнитной индукцией (вектор) B. Эл-т тока Id(в-р)l есть произв силы тока I на беск малый отрезок проводника d(в-р)l, направл по току. dI(в-р)l играет роль пробного заряда в электростатике. Ампер эксп-но установил, что сила d(в-р)F действ на элемент тока Id(в-р)l с индукцией (в-р) B равна: – закон Ампера (сила Ампера). Если проводник прямолинейный и магнитное поле однородное (одинаковое в каждой точке), интегрируя последнее выражение, получаем:. Направление силы Ампера (в-р)F опр по правилу в-рного произведения. Сила (в-р)F ┴-а пл-сти, в кот лежат в-ры l и B и напр силы (в-р)F опред правилом правого винта: «если рукоятка правого винта вращается от первого вектора l ко второму ве-ру B на кратчайший угол, то поступательное движ винта указ направление силы (в-р)F». Модуль силы Ампера: . Сила Ампера нецентральная, т. е. зависит от ориентации проводника с током в магнитном поле. Из з-на Ампера обычно определяют магнитную индукцию (в-р)B. Пусть проводник прямолинейный и ┴-ый однородному магнитному полю (в-р) B: F=IlB, B=F/Il. Магнитная индукция (вектор) B – силовая, в-ная хар-ка магнитного поля, числ равная силе, действ- со стороны однородного магнитного поля на единицу длины проводника, по которому течет ток =1А и расположение проводника ┴-о напр магнитного поля. Ед изм В в системе СИ явл Тесла (Тл). 1 Тесла – магнитная индукция такого однородного магнитного поля, кот действует с силой 1Н на каждый метр длины проводника с током 1А и расположенное ┴-о магнитному полю: 1Тл=1Н/(1А*1м). Из опытов вытекает, что для магнитных полей справедлив принцип суперпозиции: . Поле (в-р)B, порожденное несколькими движущими зарядами или токами, равно в-рной сумме полей (в-р)B i , порожденных каждым зарядом или током в отдельности. Магнитное поле, как и эл-кое, изображается магнитными силовыми линиями – линиями (в-р) B. Линии магнитной индукции (в-р) B – это линии, касат к кот в каждой точке совпадают с напр в-ра B. Линии (в-р) B всегда замкнуты, что указывает на вихревой характер магнитного поля, на отсутствие магнитных зарядов, на кот могли бы начинаться и заканчиваться силовые линии. По густоте силовых линий судят о величине магнитного поля; там где силовые линии редкие – магнитное поле слабое.

    Линии индукции прямолинейного проводника с током представляют собой концентрические окружности, центры которых лежат на оси тока.

    При поступательном движении правого винта направление вращения рукоятки винта указывает направление силовых линий.

    22. Закон Био-Савара-Лапласа

    З-н БСВ даёт выражение для магнитной индукции d , создаваемой элементом I d в точке, характеризуемой радиус-вектором , проведённым из элемента проводникаd в искомую точку.