Канонический вид гиперболы. Гипербола определение свойства построение

Определение. Гиперболой называется геометрическое место точек плоскости у абсолютная величина разности расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами у есть постоянная величина, при условии, что эта величина не равна нулю и меньше расстояния между фокусами.

Обозначим расстояние между фокусами через а постоянную величину, равную модулю разности расстояний от каждой точки гиперболы до фокусов, через (по условию ). Как и в случае эллипса, ось абсцисс проведем через фокусы, а за начало координат примем середину отрезка (см. рис. 44). Фокусы в такой системе будут иметь координаты Выведем уравнение гиперболы в выбранной системе координат. По определению гиперболы для любой ее точки имеем или

Но . Поэтому получим

После упрощений, подобных тем, которые были сделаны при выводе уравнения эллипса, получим следующее уравнение:

которое является следствием уравнения (33).

Нетрудно заметить, что это уравнение совпадает с уравнением (27), полученным для эллипса. Однако в уравнении (34) разность , так как для гиперболы . Поэтому положим

Тогда уравнение (34) приводится к следующему виду:

Это уравнение называется каноническим уравнением гиперболы. Уравнению (36), как следствию уравнения (33), удовлетворяют координаты любой точки гиперболы. Можно показать, что координаты точек, не лежащих на гиперболе, уравнению (36) не удовлетворяют.

Установим форму гиперболы, пользуясь ее каноническим уравнением. Это уравнение содержит лишь четные степени текущих координат. Следовательно, гипербола имеет две оси симметрии, в данном случае совпадающих с координатными осями. В дальнейшем оси симметрии гиперболы мы будем называть осями гиперболы, а точку их пересечения - центром гиперболы. Ось гиперболы, на которой расположены фокусы, называется фокальной осью. Исследуем форму гиперболы в I четверти, где

Здесь так как иначе у принимал бы мнимые значения. При возрастании х от а до возрастает от 0 до Частью гиперболы, лежащей в I четверти, будет дуга , изображенная на рис. 47.

Так как гипербола расположена симметрично относительно координатных осей, то эта кривая имеет вид, изображенный на рис. 47.

Точки пересечения гиперболы с фокальной осью называются ее вершинами. Полагая в уравнении гиперболы, найдем абсциссы ее вершин: . Таким образом, гипербола имеет две вершины: . С осью ординат гипербола не пересекается. В самом деле, положив в уравнении гиперболы получим для у мнимые значения: . Поэтому фокальная ось гиперболы называется действительной осью, а ось симметрии, перпендикулярная фокальной оси, - мнимой осью гиперболы.

Действительной осью также называется отрезок, соединяющий вершины гиперболы, и его длина 2а. Отрезок, соединяющий точки (см. рис. 47), а также его длина называется мнимой осью гиперболы. Числа а и b соответственно называются действительной и мнимой полуосями гиперболы.

Рассмотрим теперь гиперболу, расположенную в I четверти и являющуюся графиком функции

Покажем, что точки этого графика, расположенные на достаточно большом расстоянии от начала координат, сколь угодно близки к прямой

проходящей через начало координат и имеющей угловой коэффициент

С этой целью рассмотрим две точки имеющие одну и ту же абсциссу и лежащие соответственно на кривой (37) и прямой (38) (рис. 48), и составим разность между ординатами этих точек

Числитель этой дроби - величина постоянная, а знаменатель неограниченно возрастает при неограниченном возрастании . Поэтому разность стремится к нулю, т. е. точки М и N неограниченно сближаются при неограниченном возрастании абсциссы.

Из симметрии гиперболы относительно координатных осей следует, что имеется еще одна прямая , к которой сколь угодно близки точки гиперболы при неограниченном удалении от начала координат. Прямые

называются асимптотами гиперболы.

На рис. 49 указано взаимное расположение гиперболы и ее асимптот. На этом рисунке указано также, как построить асимптоты гиперболы.

Для этого следует построить прямоугольник с центром в начале координат и со сторонами, параллельными осям и соответственно равными . Этот прямоугольник называется основным. Каждая из его диагоналей, неограниченно продолженная в обе стороны, является асимптотой гиперболы. Перед построением гиперболы рекомендуется строить ее асимптоты.

Отношение половины расстояния между фокусами к действительной полуоси гиперболы называется эксцентриситетом гиперболы и обозначается обычно буквой :

Так как для гиперболы , то эксцентриситет гиперболы больше единицы: Эксцентриситет характеризует форму гиперболы

Действительно, из формулы (35) следует, что . Отсюда видно, что чем меньше эксцентриситет гиперболы,

тем меньше отношение - ее полуосей. Но отношение - определяет форму основного прямоугольника гиперболы, а следовательно, и форму самой гиперболы. Чем меньше эксцентриситет гиперболы, тем более вытянут ее основной прямоугольник (в направлении фокальной оси).

В математике часто приходится строить разнообразные графики. Но не каждому школьнику это дается легко. Да что говорить о школьниках, если не каждый взрослый понимает, как это сделать? Хотя, казалось бы, это азы математики, и ничего сложного в построении графика нет, главное – просто понять алгоритм. Из данной статьи вы узнаете, как построить гиперболу.

Строим систему координат

Для построения любого графика, в первую очередь, необходимо построить прямоугольную систему координат Декарта. Что для этого нужно:

  1. На листе бумаги рисуем горизонтальную прямую. Желательно, чтобы это был лист в клеточку, но не обязательно. Конец прямой, справа, обозначаем стрелкой. Это у нас получилась ось X. Она называется абсциссой.
  2. Посреди оси Х рисуем перпендикулярную прямую. Конец прямой, вверху, обозначаем стрелкой. Таким образом, мы получаем ось Y, так называемую ординату.
  3. Далее нумеруем шкалу. Справа на оси Х у нас располагаются положительные значения Х в порядке возрастания – от 1 и выше. Слева – отрицательные. Вверху на оси Y располагаются положительные значения Y в порядке возрастания. Внизу – отрицательные

Точка пересечения абсциссы и ординаты – это начало координат, то есть число 0. Отсюда мы будем откладывать все значения Х и Y.

Наглядно вы можете посмотреть получившуюся систему координат на рисунке ниже. Также мы видим, что прямоугольная система координат делит плоскость на 4 части. Они называются четвертями и имеют нумерацию против часовой стрелки, как показано на рисунке:

Для построения любого графика нужны точки. Каждая точка координатной плоскости определяется парой чисел (x;y). Эти числа называются координатами точки, где:

  • х – абсцисса точки
  • y – соответственно, ордината

Теперь, когда мы знаем, как строить систему координат, можем приступать непосредственно к построению графика.

Строим гиперболу

Гипербола – это график функции, заданной формулой y=k/x, где

  • k – это любой коэффициент, но он не должен равняться 0
  • x – независимая переменная

Гипербола состоит из 2-х частей, которые располагаются симметрично в разных четвертях. Они называются ветвями гиперболы. Если k>0, то ветви мы строим в 1 и 3 четвертях, если же k<0, тогда – во 2 и 4.

Для построения гиперболы возьмем в качестве примера функцию, заданную формулой y=3/х.

  1. Поскольку коэффициент 3 у нас со знаком «+», то наша гипербола, соответственно, будет находиться в 1 и 3 четвертях.
  2. Задаем произвольно значения Х, вследствие чего находим значения Y. Так у нас будут координаты точек, благодаря которым мы и построим нашу гиперболу. Но обратите внимание, что Х нельзя задать нулевое значение, ведь мы знаем, что на 0 делить нельзя.
  3. Поскольку мы знаем, что гипербола располагается в 2 четвертях, то берем как положительные значения, так и отрицательные. Итак, возьмем, к примеру, значения Х, равные -6, -3, -1, 1, 3, 6.
  4. Теперь вычисляем наши ординаты. Это сделать достаточно просто – подставляем каждое значение Х в нашу исходную формулу: y=3/-6; у=3/-3; у=3/-1; у=3/1; у=3/3; у=3/6. Путем несложных математических вычислений получаем значения Y, равные -0.5, -1, -3, 3, 1, 0.5.
  5. У нас получилось 6 точек с координатами. Теперь просто откладываем эти точки на нашей системе координат и через них плавно проводим кривые, как показано на рисунке ниже. Вот мы и построили гиперболу.


Как вы успели убедиться, строить гиперболу не так-то сложно. Просто нужно понять принцип и придерживаться очередности выполнения действий. Следуя нашим советам и рекомендациям, вы с легкостью сможете построить не только гиперболу, а и множество других графиков. Пробуйте, тренируйтесь, и все у вас обязательно получится!

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.