Какие две фигуры называются подобными. Реферат: Подобие фигур

На тему: «Подобие фигур»

Выполнила:

Проверила:


1. Преобразование подобия

2. Свойства преобразования подобия

3. Подобие фигур

4. Признак подобия треугольников по двум углам

5. Признак подобия треугольников по двум сторонам и углу между ними

6. Признак подобия треугольников по трем сторонам

7. Подобие прямоугольных треугольников

8. Углы, вписанные в окружность

9. Пропорциональность отрезков хорд и секущих окружности

10. Задачи на тему «Подобие фигур»


1. ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры F в фигуру F" называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X", Y" фигуры F", то X"Y" = k-XY, причем число k - одно и то же для всех точек X, Y. Число k называется коэффициентом подобия. При k = l преобразование подобия, очевидно, является движением.

Пусть F - данная фигура и О - фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ", равный k·OX, где k - положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X", построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F" называются гомотетичными.


Теорема 1. Гомотетия есть преобразование подобия

Доказательство. Пусть О - центр гомотетии, k - коэффициент гомотетии, X и Y - две произвольные точки фигуры (рис.3)

Рис.3 Рис.4

При гомотетии точки X и Y переходят в точки X" и Y" на лучах ОХ и OY соответственно, причем OX" = k·OX, OY" = k·OY. Отсюда следуют векторные равенства ОХ" = kOX, OY" = kOY.

Вычитая эти равенства почленно, получим: OY"-OX" = k (OY- OX).

Так как OY" - OX"= X"Y", OY -OX=XY, то Х" Y" = kХY. Значит, /X"Y"/=k /XY/, т.e. X"Y" = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

2. СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А 1 , В 1 , С 1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В 1 лежит между точками А 1 и С 1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А 1 В 1 С 1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А 2 и С 2 . Треугольники А 2 ВС 2 и А 1 В 1 С 1 равны по третьему признаку. Из равенства треугольников следует равенство углов А 2 ВС 2 и А 1 В 1 С 1 . Значит, углы ABC и А 1 В 1 С 1 равны, что и требовалось доказать.

Медианы треугольников; 4. , где BH и B1H1 высоты треугольников. §5. Опытная работа Цель опытной работы: выявление методических особенностей изучения темы «Подобные треугольники» в средней школе. Идея: для выявления методических особенностей необходимо провести несколько уроков по разработанной методики, в конце обучения провести контрольную работу, при анализе которой можно судить о...





Позитивизма. Для позитивистов верным и испытанным является только то, что получено с по­мощью количественных методов. Признают наукой лишь математику и естествознание, а обществознание от­носят к области мифологии. Неопозитивизм, Слабость педагогики нео­позитивисты усматривают в том, что в ней доминируют беспо­лезные идеи и абстракции, а не реальные факты. Яркий...

РЕФЕРАТ

На тему: «Подобие фигур»

Выполнила:

ученица

Проверила:

1. Преобразование подобия

2. Свойства преобразования подобия

3. Подобие фигур

4. Признак подобия треугольников по двум углам

5. Признак подобия треугольников по двум сторонам и углу между ними

6. Признак подобия треугольников по трем сторонам

7. Подобие прямоугольных треугольников

8. Углы, вписанные в окружность

9. Пропорциональность отрезков хорд и секущих окружности

10. Задачи на тему «Подобие фигур»


1. ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры Fв фигуру F"называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Yфигуры Fпри преобразовании подобия переходят в точки X", Y"фигуры F",то X"Y" = k-XY, причем число k- одно и то же для всех точек X, Y. Число kназывается коэффициентом подобия. При k = lпреобразование подобия, очевидно, является движением.

Пусть F - данная фигура и О - фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ", равный k·OX, где k - положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X", построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F" называются гомотетичными.


Теорема 1.Гомотетия есть преобразование подобия

Доказательство. Пусть О - центр гомотетии, k - коэффициент гомотетии, X и Y- две произвольные точки фигуры (рис.3)


Рис.3 Рис.4

При гомотетии точки X и Y переходят в точки X" и Y" на лучах ОХ и OY соответственно, причем OX" = k·OX, OY" = k·OY. Отсюда следуют векторные равенства ОХ" = kOX, OY" = kOY. Вычитая эти равенства почленно, получим: OY"-OX" = k (OY- OX). Так как OY" - OX"= X"Y", OY -OX=XY, то Х"Y" = kХY. Значит, /X"Y"/=k /XY/, т.e. X"Y" = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

2. СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А 1 , В 1 , С 1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В 1 лежит между точками А 1 и С 1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А 1 В 1 С 1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А 2 и С 2 . Треугольники А 2 ВС 2 и А 1 В 1 С 1 равны по третьему признаку. Из равенства треугольников следует равенство углов А 2 ВС 2 и А 1 В 1 С 1 . Значит, углы ABC и А 1 В 1 С 1 равны, что и требовалось доказать.


3. ПОДОБИЕ ФИГУР

Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия. Для обозначения подобия фигур используется специальный значок: ∞. Запись F∞F" читается так: «Фигура F подобна фигуре F"».

Докажем, что если фигура F 1 подобна фигуре F 2 , а фигура F 2 подобна фигуре F 3 , то фигуры F 1 и F 3 подобны.

Пусть Х 1 и Y 1 - две произвольные точки фигуры F 1 . Преобразование подобия, переводящее фигуру F 1 в F 2 , переводит эти точки в точки Х 2 , Y 2 , для которых X 2 Y 2 = k 1 X 1 Y 1 .

Преобразование подобия, переводящее фигуру F 2 в F 3 , переводит точки Х 2 , Y 2 в точки Х 3 , Y 3 , для которых X 3 Y 3 = - k 2 X 2 Y 2 .

Из равенств

X 2 Y 2= kX 1 Y 1, X 3 Y 3 = k 2 X 2 Y 2

следует, что X 3 Y 3 - k 1 k 2 X 1 Y 1 . А это значит, что преобразование фигуры F 1 в F 3 , получающееся при последовательном выполнении двух преобразований подобия, есть подобие. Следовательно, фигуры F 1 и F 3 подобны, что и требовалось доказать.

В записи подобия треугольников: ΔABC∞ΔA 1 B 1 C 1 - предполагается, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. А переходит в А 1 , В - в B 1 и С - в С 1 .

Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, у подобных треугольников ABC и А 1 В 1 С 1

A=А 1 , В=В 1 , С=С 1

4. ПРИЗНАК ПОДОБИЯ ТРЕУГОЛЬНИКОВ ПО ДВУМ УГЛАМ

Теорема 2. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство. Пусть у треугольников ABC и A 1 B 1 C 1

Примеры

  • Каждая гомотетия является подобием.
  • Каждое движение (в том числе и тождественное) также можно рассматривать как преобразование подобия с коэффициентом k = 1 .

Подобные фигуры на рисунке имеют одинаковые цвета.

Связанные определения

Свойства

В метрических пространствах так же, как в n -мерных римановых , псевдоримановых и финслеровых пространствах подобие определяется как преобразование, переводящее метрику пространства в себя с точностью до постоянного множителя.

Совокупность всех подобий n-мерного евклидова, псевдоевклидова, риманова, псевдориманова или финслерова пространства составляет r -членную группу преобразований Ли , называемой группой подобных (гомотетических) преобразований соответствующего пространства. В каждом из пространств указанных типов r -членная группа подобных преобразований Ли содержит (r − 1) -членную нормальную подгруппу движений.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Подобные фигуры" в других словарях:

    ПОДОБНЫЕ ФИГУРЫ - фигуры, у которых соответственные линейные элементы пропорциональны, а углы между ними равны, т. е. при одинаковой форме имеют разные размеры … Большая политехническая энциклопедия

    Две гомологические фигуры называются Г., если расстояния соответствующих точек до центра пропорциональны. Отсюда видно, что Г. фигуры суть фигуры подобные и подобно расположенные, или же подобные и обратно расположенные. Центр гомологии в этом… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

    Щит Тинктуры Щитодержатель Щитодержатель (девиз) … Википедия

    Известная Шила на гиг из церкви в Килпеке, Англия Шила на гиг (англ. Sheela na Gig) скульптурные изображения обнажённых женщин, обычно с увеличенной в … Википедия

    - … Википедия

    Во второй раз собирался я ехать в страну черных, не обращая внимания на то, что ее адский климат едва не уморил меня в первую поездку. Я предпринимал это путешествие с весьма смешанными чувствами и никак не мог отделаться от различных,… … Жизнь животных

    Общее имя с относительно ясным содержанием и сравнительно четко очерченным объемом. П. являются, напр., «химический элемент», «закон», «сила тяготения», «астрономия», «поэзия» и т.п. Отчетливой границы между теми именами, которые можно назвать П … Философская энциклопедия

    Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И К Л М Н О П Р С … Википедия

    Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

Книги

  • Пророки и чудотворцы. Этюды о мистицизме , В. Е. Рожнов. Москва, 1977 год. Политиздат. Владельческий переплет. Сохранность хорошая. Спиритизм и астрология, теософия и оккультизм - эти слова постоянно можно встретить на страницах журналов и газет…
  • Счет, форма, величина. Для занятий с детьми от 4 до 5 лет. Книжка с игрой и наклейками , Дорофеева А.. Альбом «Счет. Форма. Величина» из серии Школа семи гномов, пятый год обучения, представляет собой развивающее пособие, где каждое занятие проводится в игровой формеи продолжает давать детям в…

Определение преобразования подобия одинаково и на плоскости, и в пространстве. Преобразование фигуры в фигуру называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Это значит, что если произвольные точки А и В фигуры F при этом преобразовании переходят в точки фигуры то где .

Число к называется коэффициентом подобия При преобразование подобия является движением.

Гомотетия есть преобразование подобия.

Рассмотри свойства преобразования подобия.

1. При преобразовании подобия три точки А, В и С, лежащие на одной прямой, переходят в три точки Ли также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка лежит между точками

2. Преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки, плоскости в плоскости.

3. Преобразование подобия сохраняет углы между полупрямыми.

4. Не всякое преобразование подобия является гомотетией.

На рисунке 226 фигура получена из фигуры F гомотетией, а фигура получена из фигуры симметрией относительно прямой . Преобразование фигуры F в F? есть преобразование подобия, так как при нем сохраняются отношения расстояний между соответствующими точками, однако это преобразование не является гомотетией.

Для гомотетии в пространстве верна теорема:

Преобразование гомотетии в пространстве переводит любую плоскость, не проходящую через центр гомотетии, в параллельную плоскость или в себя.

На рисунке 227 изображены два гомотетичных куба с коэффициентом гомотетии, равным 2. По плоскость ABCD переходит в параллельную ей плоскость АВСТУ. Это же можно сказать и о плоскостях других граней куба.

78. Подобные фигуры.

Две фигуры F и называются подобными, если они переводятся друг в друга преобразованием подобия. Для обозначения подобия фигур употребляется символ . Запись читается так: «Фигура подобна фигуре F».

Из свойств преобразования подобия следует, что у подобных многоугольников соответствующие углы равны, а соответствующие стороны пропорциональны.

В записи предполагается, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. А переходит в - в

Для подобных треугольников верны равенства

Два треугольника подобны, если соответствующие углы равны и соответствующие стороны пропорциональны. Сформулируем признаки подобия треугольников.