Как найти косинус зная синус формула. Синус (sin x) и косинус (cos x) – свойства, графики, формулы. Понятие угла: радиан, градус

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Инструкция

Воспользуйтесь знаниями планиметрии, чтобы выразить синус через косинус . Согласно определению, синус ом угла в прямоугольном треугольнике длины противолежащего к , а косинус ом – прилежащего катета к гипотенузе. Даже знание теоремы Пифагора позволит вам в некоторых случаях быстро искомое преобразование.

Выразите синус через косинус , воспользовавшись простейшим тригонометрическим тождеством, согласно которому сумма квадратов этих величин дает единицу. Обратите внимание, что корректно выполнить задание вы сможете, только если знаете, в четверти находится искомый угол, в противном случае вы получите два возможных результата – с положительным и знаком.

соs?=(b?+c?-а?)/(2*b*c)

Имеется треугольник со сторонами а, b, с, равными 3, 4, 5 мм, соответственно.

Найти косинус угла, заключенного между большими сторонами.

Обозначим противоположный стороне а угол через?, тогда, согласно выведенной выше формуле, имеем:

соs?=(b?+c?-а?)/(2*b*c)=(4?+5?-3?)/(2*4*5)=(16+25-9)/40=32/40=0,8

Ответ: 0,8.

Если треугольник прямоугольный, то для нахождения косинус а угла достаточно знать длины всего двух любых сторон (косинус прямого угла равен 0).

Пусть имеется прямоугольный треугольник со сторонами а, b, с, где с – гипотенуза.

Рассмотрим все варианты:

Найти соs?, если известны длины сторон а и b ( треугольника)

Воспользуемся дополнительно теоремой Пифагора:

соs?=(b?+c?-а?)/(2*b*c)=(b?+b?+а?-а?)/(2*b*v(b?+а?))=(2*b?)/(2*b*v(b?+а?))=b/v(b?+а?)

Чтобы правильность полученной формулы, подставим в нее из примера 1, т.е.

Проделав элементарные вычисления, получаем:

Аналогично находится косинус в прямоугольном треугольнике в остальных случаях:

Известны а и с (гипотенуза и противолежащий катет), найти соs?

соs?=(b?+c?-а?)/(2*b*c)=(с?-а?+с?-а?)/(2*с*v(с?-а?))=(2*с?-2*а?)/(2*с*v(с?-а?))=v(с?-а?)/с.

Подставляя значения а=3 и с=5 из примера, получаем:

Известны b и с (гипотенуза и прилежащий катет).

Найти соs?

Произведя аналогичные (показанные в примерах 2 и 3 преобразования), получим, что в этом случае косинус в треугольнике вычисляется по очень простой формуле:

Простота выведенной формулы объясняется элементарно: фактически, прилежащий к углу? катет является проекцией гипотенузы, его длина равна длине гипотенузы, умноженной на соs?.

Подставляя значения b=4 и с=5 из первого примера, получим:

Значит, все наши формулы верны.

Для того чтобы получить формулу, связывающую синус и косинус угла, необходимо дать или вспомнить некоторые определения. Так, синус угла - это отношение (частное от деления) противолежащего катета прямоугольного треугольника к гипотенузе. Косинус угла - это отношение прилежащего катета к гипотенузе.

Инструкция

Полезный совет

Величина синуса и косинуса любого угла не может быть больше 1.

Синус и косинус - это прямые тригонометрические функции, для которых существует несколько определений - через окружность в декартовой системе координат, через решения дифференциального уравнения, через острые углы в прямоугольном треугольнике. Каждое из таких определений позволяет вывести зависимость между этими двумя функциями. Ниже приведен самый, пожалуй, простой способ выразить косинус через синус - через их определения для острых углов прямоугольного треугольника.

Инструкция

Выразите синус острого угла прямоугольного треугольника через длины сторон этой фигуры. Согласно определению, синус угла (α) должен быть отношению длины стороны (a), лежащей напротив него - катета - к длине стороны (c), противолежащей прямому углу - гипотенузы: sin(α) = a/c.

Найдите аналогичную формулу для косинус а того же угла. По определению эта величина должна выражаться отношением длины стороны (b), примыкающей к этому углу (второго катета), к длине стороны (c), лежащей напротив прямого угла: cos(а) = a/c.

Перепишите равенство, вытекающее из теоремы Пифагора, таким образом, чтобы в нем были задействованы соотношения между катетами и гипотенузой, выведенные на двух предыдущих шагах. Для этого сначала разделите обе исходного этой теоремы (a² + b² = c²) на квадрат гипотенузы (a²/c² + b²/c² = 1), а затем полученное равенство перепишите в таком виде: (a/c)² + (b/c)² = 1.

Замените в полученном выражении соотношения длин катетов и гипотенузы тригонометрическими функциями, исходя из формул первого и второго шага: sin²(а) + cos²(а) = 1. Выразите косинус из полученного равенства: cos(a) = √(1 - sin²(а)). На этом задачу можно решенной в общем виде.

Если кроме общего нужно получить численный результат, воспользуйтесь, например, калькулятором, встроенным в операционную систему Windows. Ссылку на его запуск в подразделе «Стандартные» раздела «Все программы» меню ОС. Эта ссылка сформулирована лаконично - «Калькулятор». Чтобы иметь возможность вычислять с этой программы тригонометрические функции включите ее «инженерный» интерфейс - нажмите комбинацию клавиш Alt + 2.

Введите в условиях значение синуса угла и кликните по кнопке интерфейса с обозначением x² - так вы возведете исходное значение в квадрат. Затем наберите на клавиатуре *-1, нажмите Enter, введите +1 и нажмите Enter еще раз - таким способом вы вычтите из единицы квадрат синуса. Щелкните по клавише со значком радикала, чтобы извлечь квадратный и получить окончательный результат.

Одной из фундаментальных основ точных наук является понятие о тригонометрических функциях. Они определяют простые отношения между сторонами прямоугольного треугольника. К семейству данных функций относится синус. Найти его, зная угол, можно большим количеством способов, включающих экспериментальные, вычислительные методы, а также использование справочной информации.

Вам понадобится

  • - калькулятор;
  • - компьютер;
  • - электронные таблицы;
  • - таблицы брадиса;
  • - бумага;
  • - карандаш.

Инструкция

Используйте с функцией вычисления синуса для получения нужных значений на основании знания угла. Подобный функционал сегодня имеют даже самые простые . При этом вычисления производятся с очень высокой степенью точности (как правило, до восьми и более знаков после запятой).

Примените программное обеспечение, представляющее собой среду для работы с электронными таблицами, запущенное на персональном компьютере. Примерами подобных приложений являются Microsoft Office Excel и OpenOffice.org Calc. Введите в любую ячейку формулу, состоящую из вызова функции вычисления синуса с нужным аргументом. Нажмите Enter. В ячейке отобразится искомая величина. Преимуществом электронных таблиц является возможность быстрого расчета значений функций для большого набора аргументов.

Узнайте приближенное значение синуса угла из таблиц Брадиса, если они имеются в наличии. Их недостатком является точность значений, ограниченная четырьмя знаками после запятой.

Найдите приближенное значение синуса угла, совершив геометрические построения. На листе бумаги вычертите отрезок. При помощи транспортира отложите от него угол, синус которого необходимо найти. Начертите еще один отрезок, пересекающий первый в некоторой точке. Перпендикулярно первому же отрезку проведите прямую линию, пересекающую два уже существующих отрезка. Получится прямоугольный треугольник. Измерьте длину его гипотенузы и катета, противолежащего углу, построенному при помощи транспортира. Разделите второе значение на первое. Это и будет искомая величина.

Рассчитайте синус угла, используя разложение в ряд Тейлора. Если значение угла представлено в градусах, переведите его в радианы. Используйте формулу вида: sin(х) = х - (х^3)/3! + (х^5)/5! - (х^7)/7! + (х^9)/9! - ... Для повышения скорости расчетов записывайте текущее значение числителя и знаменателя последнего члена ряда, производя вычисление следующего значения на основе предыдущего. Увеличивайте длину ряда для получения более точной величины.

Прямоугольный треугольник

Изначально синус и косинус возникли из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было замечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается всегда одинаковым.

Именно так и были введены понятия синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

Теоремы косинусов и синусов

Но косинусы и синусы могут применяться не только в прямоугольных треугольниках. Чтобы найти значение тупого или острого угла, стороны любого треугольника, достаточно применить теорему косинусов и синусов.

Теорема косинусов довольно проста: «Квадрат стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними».

Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему часто расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

Производные

Производная - математический инструмент, показывающий, как быстро меняется функция относительно изменения ее аргумента. Производные используются , геометрии, и , ряде технических дисциплин.

При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса - синус, но со знаком «минус».

Применение в математике

Особенно часто синусы и косинусы используются при решении прямоугольных треугольников и задач, связанных с ними.

Удобство синусов и косинусов нашло свое отражение и в технике. Углы и стороны было просто оценивать по теоремам косинусов и синусов, разбивая сложные фигуры и объекты на «простые» треугольники. Инженеры и , часто имеющие дело с расчетами соотношения сторон и градусных мер, тратили немало времени и усилий для вычисления косинусов и синусов не табличных углов.

Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов разных углов. В советское время некоторые преподаватели заставляли своих подопечных страницы таблиц Брадиса наизусть.

Радиан - угловая величина дуги, по длине равной радиусу или 57,295779513° градусов.

Градус (в геометрии) - 1/360-я часть окружности или 1/90-я часть прямого угла.

π = 3.141592653589793238462… (приблизительное значение числа Пи).

Таблица косинусов для углов: 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°.

Угол х (в градусах) 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Угол х (в радианах) 0 π/6 π/4 π/3 π/2 2 x π/3 3 x π/4 5 x π/6 π 7 x π/6 5 x π/4 4 x π/3 3 x π/2 5 x π/3 7 x π/4 11 x π/6 2 x π
cos x 1 √3/2 (0,8660) √2/2 (0,7071) 1/2 (0,5) 0 -1/2 (-0,5) -√2/2 (-0,7071) -√3/2 (-0,8660) -1 -√3/2 (-0,8660) -√2/2 (-0,7071) -1/2 (-0,5) 0 1/2 (0,5) √2/2 (0,7071) √3/2 (0,8660) 1

Формулы суммы и разности синусов и косинусов для двух углов α и β позволяют перейти от суммы указанных углов к произведению углов α + β 2 и α - β 2 . Сразу отметим, что не стоит путать формулы суммы и разности синусов и косинусов с формулами синусов и косинусов суммы и разности. Ниже мы перечислим эти формулы, приведем их вывод и покажем примеры применения для конкретных задач.

Yandex.RTB R-A-339285-1

Формулы суммы и разности синусов и косинусов

Запишем, как выглядят формулы суммы и разности для синусов и для косинусов

Формулы суммы и разности для синусов

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Формулы суммы и разности для косинусов

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

Данные формулы справедливы для любых углов α и β . Углы α + β 2 и α - β 2 называются соответственно полусуммой и полуразностью углов альфа и бета. Дадим формулировку для каждой формулы.

Определения формул сумм и разности синусов и косинусов

Сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.

Разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус полусуммы.

Сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы и косинуса полуразности этих углов.

Разность косинусов двух углов равна удвоенному произведению синуса полусуммы на косинус полуразности этих углов, взятому с отрицательным знаком.

Вывод формул суммы и разности синусов и косинусов

Для вывода формул суммы и разности синуса и косинуса двух углов используются формулы сложения. Приведем их ниже

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α · sin β cos (α - β) = cos α · cos β + sin α · sin β

Также представим сами углы в виде суммы полусумм и полуразностей.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

Переходим непосредственно к выводу формул суммы и разности для sin и cos.

Вывод формулы суммы синусов

В сумме sin α + sin β заменим α и β на выражения для этих углов, приведенные выше. Получим

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Теперь к первому выражению применяем формулу сложения, а ко второму - формулу синуса разностей углов (см. формулы выше)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Раскроем скобки, приведем подобные слагаемые и получим искомую формулу

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Действия по выводу остальных формул аналогичны.

Вывод формулы разности синусов

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Вывод формулы суммы косинусов

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Вывод формулы разности косинусов

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Примеры решения практических задач

Для начала, сделаем проверку одной из формул, подставив в нее конкретные значения углов. Пусть α = π 2 , β = π 6 . Вычислим значение суммы синусов этих углов. Сначала воспользуемся таблицей основных значений тригонометрических функций, а затем применим формулу для суммы синусов.

Пример 1. Проверка формулы суммы синусов двух углов

α = π 2 , β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 · 3 2 · 3 2 = 3 2

Рассмотрим теперь случай, когда значения углов отличаются от основных значений, представленных в таблице. Пусть α = 165 ° , β = 75 ° . Вычислим значение разности синусов этих углов.

Пример 2. Применение формулы разности синусов

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 · sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 · sin 45 ° · cos 120 ° = 2 · 2 2 · - 1 2 = 2 2

С помощью формул суммы и разности синусов и косинусов можно перейти от суммы или разности к произведению тригонометрических функций. Часто эти формулы называют формулами перехода от суммы к произведению. Формулы суммы и разности синусов и косинусов широко используются при решении тригонометрических уравнений и при преобразовании тригонометрических выражений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

– уж наверняка встретятся задания по тригонометрии. Тригонометрию часто не любят за необходимость зубрить огромное количество трудных формул, кишащих синусами, косинусами, тангенсами и котангенсами. На сайте уже когда-то давались советы, как вспомнить забытую формулу, на примере формул Эйлера и Пиля .

А в этой статье мы постараемся показать, что достаточно твёрдо знать всего пять простейших тригонометрических формул, а об остальных иметь общее представление и выводить их по ходу дела. Это как с ДНК: в молекуле не хранятся полные чертежи готового живого существа. Там содержатся, скорее, инструкции по его сборке из имеющихся аминокислот. Так и в тригонометрии, зная некоторые общие принципы, мы получим все необходимые формулы из небольшого набора тех, которые нужно обязательно держать в голове.

Будем опираться на следующие формулы:

Из формул синуса и косинуса сумм, зная о чётности функции косинуса и о нечётности функции синуса, подставив -b вместо b, получаем формулы для разностей:

  1. Синус разности : sin (a-b) = sin a cos (-b) +cos a sin (-b) = sin a cos b -cos a sin b
  2. Косинус разности : cos (a-b) = cos a cos (-b) -sin a sin (-b) = cos a cos b +sin a sin b

Поставляя в эти же формулы a = b, получаем формулы синуса и косинуса двойных углов:

  1. Синус двойного угла : sin 2a = sin (a+a) = sin a cos a +cos a sin a = 2sin a cos a
  2. Косинус двойного угла : cos 2a = cos (a+a) = cos a cos a -sin a sin a = cos 2 a -sin 2 a

Аналогично получаются и формулы других кратных углов:

  1. Синус тройного угла : sin 3a = sin (2a+a) = sin 2a cos a +cos 2a sin a = (2sin a cos a )cos a +(cos 2 a -sin 2 a )sin a = 2sin a cos 2 a +sin a cos 2 a -sin 3 a = 3sin a cos 2 a -sin 3 a = 3sin a (1-sin 2 a )-sin 3 a = 3sin a -4sin 3 a
  2. Косинус тройного угла : cos 3a = cos (2a+a) = cos 2a cos a -sin 2a sin a = (cos 2 a -sin 2 a )cos a -(2sin a cos a )sin a = cos 3 a-sin 2 a cos a -2sin 2 a cos a = cos 3 a-3sin 2 a cos a = cos 3 a-3(1-cos 2 a )cos a = 4cos 3 a-3cos a

Прежде чем двигаться дальше, рассмотрим одну задачу.
Дано: угол - острый.
Найти его косинус, если
Решение, данное одним учеником:
Т.к. , то sin a = 3,а cos a = 4.
(Из математического юмора)

Итак, определение тангенса связывает эту функцию и с синусом, и с косинусом. Но можно получить формулу, дающую связь тангенса только с косинусом. Для её вывода возьмём основное тригонометрическое тождество: sin 2 a +cos 2 a = 1 и разделим его на cos 2 a . Получим:

Так что решением этой задачи будет:

(Т.к. угол острый, при извлечении корня берётся знак +)

Формула тангенса суммы – ещё одна, тяжело поддающаяся запоминанию. Выведем её так:

Сразу выводится и

Из формулы косинуса двойного угла можно получить формулы синуса и косинуса для половинного. Для этого к левой части формулы косинуса двойного угла:
cos 2 a = cos 2 a -sin 2 a
прибавляем единицу, а к правой – тригонометрическую единицу, т.е. сумму квадратов синуса и косинуса.
cos 2a +1 = cos 2 a -sin 2 a +cos 2 a +sin 2 a
2cos 2 a = cos 2 a +1
Выражая cos a через cos 2 a и выполняя замену переменных, получаем:

Знак берётся в зависимости от квадранта.

Аналогично, отняв от левой части равенства единицу, а от правой - сумму квадратов синуса и косинуса, получим:
cos 2a -1 = cos 2 a -sin 2 a -cos 2 a -sin 2 a
2sin 2 a = 1-cos 2 a

И, наконец, чтобы преобразовать сумму тригонометрических функций в произведение, используем следующий приём. Допустим, нам нужно представить в виде произведения сумму синусов sin a +sin b . Введём переменные x и y такие, что a = x+y, b+x-y. Тогда
sin a +sin b = sin (x+y)+sin (x-y) = sin xcos y+cos xsin y+sin xcos y-cos xsin y = 2sin xcos y. Выразим теперь x и y через a и b.

Поскольку a = x+y, b = x-y, то . Поэтому

Сразу же можно вывести

  1. Формулу для разбиения произведения синуса и косинуса в сумму : sin a cos b = 0.5(sin (a+b) +sin (a-b))

Рекомендуем потренироваться и вывести самостоятельно формулы для преобразования в произведение разности синусов и суммы и разности косинусов, а также для разбиения в сумму произведений синусов и косинусов. Проделав эти упражнения, вы досконально освоите мастерство вывода тригонометрических формул и не потеряетесь даже на самой сложной контрольной, олимпиаде или тестировании.

Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду. О важности их знания написать можно много. Этих формул аж 32 штуки!

Не пугайтесь, учить их не надо, как и многие другие формулы в курсе математики. Лишней информацией голову забивать не нужно, необходимо запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!» – это значит, что действительно, это необходимо именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например:

– задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.

– задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.

– задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.

– стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от 0 до 450 градусов:

угол альфа лежит пределах от 0 до 90 градусов

* * *

Итак, необходимо уяснить «закон», который здесь работает:

1. Определите знак функции в соответствующей четверти.

Напомню их:

2. Запомните следующее:

функция изменяется на кофункцию

функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Вот и всё!

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов, значит:

Вот вам ещё дополнительное подтверждение того, что синусы смежных углов равны:

Угол лежит во второй четверти, синус во второй четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов, значит:

Проработайте мысленно или письменно каждую формулу, и вы убедитесь, что ничего сложного нет.

***

В статье на решение был отмечен такой факт – синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.