Характеристика бериллия. Бериллий — свойства, применения сплавы бериллия

(Beryllium ) Be – химический элемент 2 (IIa ) группы Периодической системы Д.И.Менделеева. Атомный номер 4, относительная атомная масса 9,01218. В природе встречается только один стабильный изотоп 9 Be . Известны также радиоактивные изотопы бериллия 7 Be и 10 Be с периодами полураспада 53.29 дней и 1,6·10 6 лет, соответственно. Степени окисления +2 и +1 (последняя крайне неустойчива).

Бериллиесодержащие минералы известны с древности. Некоторые из них добывались на Синайском полуострове еще в 17 в. до н.э. Название берилл встречается у греческих и латинских (Beryll) античных писателей. Сходство берилла и изумруда отмечал Плиний Старший : «Берилл, если подумать, имеет ту же природу, что и смарагд (изумруд), или, по крайней мере, очень похожую» (Естественная история, книга 37). В Изборнике Святослава (1073) берилл фигурирует под названием вируллион.

Бериллий был открыт в 1798. Французский кристаллограф и минералог Рене Жюст Гаюи (

Haüy René Just ) (1743–1822), отметив сходство твердости, плотности и внешнего вида зеленовато-голубых кристаллов берилла из Лиможа и зеленых кристаллов изумруда из Перу, предложил французскому химику Никола Луи Воклену (Vauquelin Nicolas Louis ) (1763–1829) проанализировать берилл и изумруд, чтобы узнать, не являются ли они химически идентичными. В результате Воклен показал, что оба минерала содержат не только оксиды алюминия и кремния, как было известно и раньше, но также и новую «землю», которая очень напоминала оксид алюминия, но, в отличие от него, реагировала с карбонатом аммония и не давала квасцов. Именно этими свойствами Воклен и воспользовался для разделения оксидов алюминия и неизвестного элемента.

Редакция журнала «

Annakts de Chimie », опубликовавшего работу Воклена, предложила для открытой им земли название «глицина» за способность к образованию соединений, обладающие сладким вкусом. Известные химики Мартин Генрих Клапрот (Klaproth Martin Heinrich ) (1743–1817) и Андерс Экеберг (Ekeberg Anders ) (1767–1813) сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее, в научной литературе 19 в. для нового элемента долгое время использовали термины «глиций», «глициний» или «глюциний». В России до середины 19 в. оксид этого элемента называли «сладкоземом», «сладимой землей», «сладоземом» а сам элемент именовался глицинием, глицинитом, глицием, сладимцем В виде простого вещества элемент, открытый Вокленом, впервые получил немецкий химик Фридрих Вёлер (Wöhler Friedrich ) (1800–1882) в 1828, восстановливая хлорид бериллия калием: BeCl 2 + 2 K = Be + 2 KCl

Независимо от него в этом же году тем же методом металлический бериллий был выделен французским химиком Антуаном Бюсси (

Bussy Antoine ) (1794–1882).

Общепринятым стало название элемента по имени минерала (латинское

beryllus от греческого bhrnlloV ), однако во Франции бериллий до сих пор называют глицинием.

Было установлено, что масса одного эквивалента бериллия равна примерно 4,7 г/моль. Однако сходство между бериллием и алюминием привело к существенному заблуждению относительно валентности и атомной массы бериллия. Долгое время бериллий считали трехвалентным с относительной атомной массой 14 (что примерно равно утроенной массе одного эквивалента бериллия 3

× 4,7). Лишь через 70 лет после открытия бериллия русский ученый Д.И. Менделеев пришел к выводу, что в его периодической таблице места для такого элемента нет, а вот двухвалентный элемент с относительной атомной массой 9 (приблизительно равной удвоенной массе одного эквивалента бериллия 2 × 4,7) легко размещается между литием и бором.

Бериллий в природе и его промышленное извлечение. Бериллий, как и соседние с ним литий и бор, относительно мало распространен в земной коре, его содержание составляет около 2·10 –4 %. Хотя бериллий и редкий элемент, но он не является рассеянным, так как входит в состав поверхностных залежей берилла в пегматитовых породах, которые последними закристаллизовались в гранитных куполах. Есть сообщения о гигантских бериллах длиной до 1 м и массой до нескольких тонн.

Известно 54 собственно бериллиевых минерала. Важнейший из них – берилл 3

BeO · Al 2 O 3 ·6 SiO 2 . У него много окрашенных разновидностей. Изумруд содержит около 2% хрома, придающего ему зеленый цвет. Аквамарин своей голубой окраской обязан примеси железа(II ). Розовый цвет воробьевита обусловлен примесью соединений марганца(II ), а золотисто-желтый гелиодор окрашен ионами железа(III ). Промышленно важными минералами являются также фенакит 2 BeO · SiO 2 , бертрандит 4 BeO ·2 SiO 2 · H 2 O , гельвин (Mn , Fe , Zn ) 4 [ BeSiO 4 ] 3 S .

Мировые природные ресурсы бериллия оцениваются более чем в 80 тыс. т (по содержанию бериллия), из которых около 65% сосредоточено в США, где основным бериллиевым сырьем является бертрандитовая руда. Ее подтвержденные запасы в США на месторождении Spur Mountain (шт. Юта), являющемся основным в мире источником бериллия, на конец 2000 составили примерно 19 тыс. т (по содержанию металла). Берилла в США очень мало. Из других стран наибольшими запасами бериллия обладают Китай, Россия и Казахстан. Во времена СССР бериллий на территории России добывался на Малышевском (Свердловская область), Завитинском (Читинская область), Ермаковском (Бурятия), Пограничном (Приморский край) месторождениях. В связи с сокращением ВПК и прекращением строительства атомных электростанций, его добыча была прекращена на Малышевском и Ермаковском и значительно сокращена на Завитимском месторождениях. При этом значительная часть добываемого бериллия продается за рубеж, в основном, в Европу и Японию.

По оценке Геологической службы США, мировая добыча бериллия в 2000 характеризовалась следующими данными (т):

Всего 356
США 255
КНР 55
Россия 40
Казахстан 4
Прочие страны 2
Характеристика простого вещества и промышленное получение металлического бериллия. По внешнему виду бериллий – серебристо-серый металл. Он очень твердый и хрупкий. Бериллий имеет две кристаллические модификации: a - Be имеет решетку гексагонального типа (что приводит к анизотропии свойств); решетка b - Be относится к кубическому типу; температура перехода составляет 1277° С. Бериллий плавится при 1287° С, кипит при 2471° С.

Это один из самых легких металлов (плотность равна 1,816 г/см 3). У него высокий модуль упругости, в 4 раза больший, чем у алюминия, в 2,5 раза превышающий соответствующий параметр титана, и на треть выше, чем у стали. Бериллий обладает наибольшей среди всех металлов теплоемкостью: 16,44 Дж/(моль К) для

a - Be , 30,0 Дж/(моль К) для b - Be .

По устойчивости к коррозии во влажном воздухе бериллий, благодаря образованию защитного оксидного слоя, напоминает алюминий. Тщательно отполированные образцы долго сохраняют свой блеск.

Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600° С. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600° С, а халькогены требуют еще более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200° С с образованием нитрида

Be 3 N 2 , а углерод дает карбид Ве 2 С при 1700° С. С водородом бериллий непосредственно не реагирует, и гидрид ВеН 2 получают косвенным путем.

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

Be + 2NaOH (р ) + 2H 2 O = Na 2 + H 2 При проведении реакции с расплавом щелочи при 400–500° С образуются диоксобериллаты: Be + 2 NaOH (ж) = Na 2 BeO 2 + H 2 NH 4 HF BeF 2 и очистки бериллия:

Металлический бериллий быстро растворяется в водном растворе

NH 4 HF 2 . Эта реакция имеет технологическое значение для получения безводного BeF 2 и очистки бериллия: Be + 2 NH 4 HF 2 = (NH 4) 2 [ BeF 4 ] + H 2

Бериллий выделяют из берилла сульфатным или фторидным способом. В первом случае концентрат сплавляют при 750° С с карбонатом натрия или кальция, а затем сплав обрабатывают концентрированной горячей серной кислотой. На образовавшийся раствор сульфата бериллия, алюминия и других металлов действуют сульфатом аммония. Это приводит к выделению большей части алюминия в виде алюмокалиевых квасцов. Оставшийся раствор обрабатывают избытком гидроксида натрия. При этом образуется раствор, содержащий

Na 2 [ Be (OH ) 4 ] и алюминаты натрия. При кипячении этого раствора в результате разложения гидроксобериллата осаждается гидроксид бериллия (алюминаты остаются в растворе).

По фторидному способу концентрат нагревают с

Na 2 [ SiF 6 ] и Na 2 CO 3 при 700–750° С. При этом образуется тетрафторобериллат натрия: 3BeO·Al 2 O 3 ·6SiO 2 + 2Na 2 + Na 2 CO 3 = 3Na 2 + 8SiO 2 + Al 2 O 3 + CO 2 Затем выщелачивают растворимый фторобериллат водой и осаждают гидроксид бериллия при рН около 12.

Для выделения металлического бериллия его оксид или гидроксид сначала переводят в хлорид или фторид. Металл получают электролизом расплавленных смесей хлоридов бериллия и щелочных элементов или действием магния на фторид бериллия при температуре около 1300° С:

BeF 2 + Mg = MgF 2 + Be

Для получения заготовок и изделий из бериллия используют, в основном, методы порошковой металлургии.

Бериллий – легирующая добавка в медных, никелевых, железных и других сплавах. Способность бериллия увеличивать твердость меди была открыта в 1926. Сплавы меди с 1–3% бериллия назвали бериллиевыми бронзами. Сейчас известно, что добавка около 2% бериллия в шесть раз увеличивают прочность меди. Кроме того, такие сплавы (которые также обычно содержат 0,25% кобальта) имеют хорошую электрическую проводимость, высокую прочность и сопротивление износу. Они не магнитны, устойчивы к коррозии и находят многочисленные области применения в движущихся частях двигателей самолетов, точных инструментах, управляющих реле в электронике. Кроме того, они не искрят и поэтому широко применяются для изготовления ручного инструмента в нефтяной промышленности. Никелевый сплав, содержащий 2% бериллия, используется также для высокотемпературных пружин, зажимов, мехов и электрических контактов. Все большее значение приобретают бериллий-алюминиевые сплавы, в которых содержание бериллия достигает 65%. Они имеют широкий круг сфер использования – от авиакосмической промышленности до производства компьютеров.

С помощью бериллия улучшают качество поверхности деталей машин и механизмов. Для этого готовое изделие выдерживают в порошке бериллия при 900–1000° С, и его поверхность делается тверже, чем у лучших сортов закаленной стали.

Еще одна важная область применения бериллия – в ядерных реакторах, так как он является одним из наиболее эффективных замедлителей и отражателей нейтронов. Его используют и в качестве материала для окошек в рентгеновских трубках. Бериллий пропускает рентгеновские лучи в 17 раз лучше, чем алюминий и в 8 раз лучше, чем линдемановское стекло.

Смесь соединений радия и бериллия долгое время использовалась как удобный лабораторный источник нейтронов, образующихся по ядерной реакции:

Be + 4 He = 12 C + 1 n

В 1932 при использовании именно этой смеси английским физиком Джеймсом Чедвиком был открыт нейтрон.

В производстве металлического бериллия доминируют США (американская фирма «Brush Wellman», базирующаяся в Кливленде). Китай и Казахстан также имеют производственные мощности по выпуску металлического бериллия.

Потребление бериллия в США, где этот металл применяется больше всего, в 2000 составило примерно 260 т (по содержанию металла), из которых 75% использовалось в виде медно-бериллиевых сплавов для изготовления пружин, соединителей и переключателей, применяемых в автомобилях, летательных аппаратах и компьютерах. В течение 1990-х цены на медно-бериллиевые сплавы оставались стабильными и составляли примерно 400 долларов за килограмм бериллия, этот уровень цен сохраняется и сейчас.

По оценке компании «Roskill», мировой спрос на бериллий в 2001 резко снизился, в частности, за счет сокращения рынка телекоммуникационного оборудования, являющегося, вероятно, крупнейшей сферой потребления этого металла. Однако эксперты «Roskill» полагают, что в среднесрочной перспективе это снижение будет компенсироваться ростом спроса на медно-бериллиевую ленту со стороны производителей автомобильных электронных устройств и компьютеров. В более отдаленной перспективе, как ожидают, продолжится рост потребления медно-бериллиевых сплавов в производстве подводного телекоммуникационного оборудования, а также повысится спрос на трубы для нефтегазовой промышленности, в состав материала которых входит бериллий.

Маловероятно, что спрос на металлический бериллий заметно возрастет, поскольку цены на альтернативные материалы ниже, чем на бериллий, который является весьма дорогостоящим металлом. Так, в ряде сфер потребления альтернативными ему материалами могут служить графит, сталь, алюминий и титан, а вместо медно-бериллиевых сплавов может использоваться фосфорная бронза.

Соединения бериллия. У бериллия, в отличие от других элементов 2 группы, нет соединений с преимущественно ионными связями, в то же время для него известны многочисленные координационные соединения, а также металлоорганические соединения, в которых часто образуются многоцентровые связи.

Вследствие малого размера атома бериллий почти всегда проявляет координационное число 4, что важно для аналитической химии.

Соли бериллия в воде быстро гидролизуются с образованием ряда гидроксокомплексов неопределенной структуры. Осаждение начинается при отношении

OH – : Be 2+ > 1. Дальнейшее добавление щелочи приводит к растворению осадка.

Гидрид бериллия ВеН 2 был впервые получен в 1951 восстановлением хлорида бериллия с помощью

LiAlH 4 . Он представляет собой аморфное белое вещество. При нагревании до 250° С гидрид бериллия начинает выделять водород. Это соединение умеренно устойчиво в воздухе и воде, но быстро разлагается кислотами. Гидрид бериллия полимеризован за счет трехцентровых связей ВеНВе.

Галогениды бериллия . Безводные галогениды бериллия нельзя получить реакциями в водных растворах вследствие образования гидратов, таких как [

Be (H 2 O ) 4 ] F 2 , и гидролиза. Лучшим способом для получения фторида бериллия является термическое разложение (NH 4) 2 [ BeF 4 ], а хлорид бериллия удобно получать из оксида. Для этого действуют хлором на смесь оксида бериллия и углерода при 650–1000° С. Хлорид бериллия можно также синтезировать прямым высокотемпературным хлорированием металлического бериллия или его карбида. Эти же реакции используются для получения безводных бромида и иодида.

Фторид бериллия – стекловидный материал. Его структура состоит из неупорядоченной сетки из атомов бериллия (КЧ 4), связанных мостиками из атомов фтора, и похожа на структуру кварцевого стекла. Выше 270° С фторид бериллия самопроизвольно кристаллизуется. Подобно кварцу, он существует в низкотемпературной

a -форме, которая при 227° С переходит в b -форму. Кроме того, можно получить формы кристобалита и тридимита. Структурное сходство между BeF 2 и SiO 2 распространяется также на фторобериллаты (которые образуются при взаимодействии фторида бериллия с фторидами щелочных элементов и аммония) и силикаты.

Фторид бериллия – компонент фторобериллатных стекол и солевой смеси, используемой в ядерных реакторах на расплавленных солях.

Хлорид и другие галогениды бериллия можно рассматривать как полиядерные комплексные соединения, в которых координационное число бериллия равно 4. В кристаллах хлорида бериллия есть бесконечные цепочки с мостиковыми атомами хлора

Даже при температуре кипения (550° С) в газовой фазе содержится около 20% молекул димеров Be 2 Cl 4 .

Цепочечная структура хлорида бериллия легко разрушается слабыми лигандами, такими как диэтиловый эфир, с образованием молекулярных комплексов [

BeL 2 Cl 2 ]: Более сильные доноры, такие так вода или аммиак, дают ионные комплексы [ BeL 4 ] 2+ (Cl –) 2 . В присутствии избытка галогенид-ионов образуются галогенидные комплексы, например [ BeF 4 ] 2– .

Оксид бериллия

BeO встречается в природе в виде редкого минерала бромеллита.

Непрокаленный оксид бериллия гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С – лишь 0,18%. Оксид бериллия, прокаленный не выше 500° С, легко взаимодействует с кислотами, труднее – с растворами щелочей, а прокаленный выше 727° С – лишь со фтороводородной кислотой, горячей концентрированной серной кислотой и расплавами щелочей. Оксид бериллия устойчив к воздействию расплавленных лития, натрия, калия, никеля и железа.

Оксид бериллия получают термическим разложением сульфата или гидроксида бериллия выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата [

Be 4 O (OOCH 3) 6 ] выше 600° С.

Оксид бериллия обладает очень высокой теплопроводностью. При 100° С она составляет 209,3 Вт / (м К), что больше, чем у любых неметаллов и даже у некоторых металлов. Оксид бериллия сочетает высокую температуру плавления (2507° С) при с незначительным давлением пара при температуре ниже этой. Он служит в качестве химически стойкого и огнеупорного материала для изготовления тиглей, высокотемпературных изоляторов, труб, чехлов для термопар, специальной керамики. В инертной атмосфере или вакууме тигли из оксида бериллия могут применяться при температурах до 2000° С.

Хотя оксид бериллия часто заменяют более дешевым и менее токсичным нитридом алюминия, в этих случаях обычно наблюдается ухудшение рабочих характеристик оборудования. Ожидают, что в более отдаленной перспективе продолжится стабильный рост потребления оксида бериллия, особенно в производстве компьютеров.

Гидроксид бериллия

Be (OH ) 2 осаждают из водных растворов солей бериллия аммиаком или гидроксидом натрия. Его растворимость в воде при комнатной температуре намного ниже, чем у его соседей по Периодической системе, и составляет всего лишь 3·10 –4 г л –1 . Гидроксид бериллия амфотерен, вступает в реакции как с кислотами, так и со щелочами с образованием солей, в которых бериллий входит в состав катиона или аниона, соответственно: Be(OH) 2 + 2H 3 O + = Be 2+ + 2H 2 O

Be(OH) 2 + 2OH – = 2–

Гидроксокарбонат бериллия – соединение переменного состава. Образуется при взаимодействии водных растворов солей бериллия с карбонатами натрия или аммония. При действии избытка растворимых карбонатов легко образует комплексные соединения, такие как (NH 4) 2 [ Be (CO 3) 2 ].

Карбоксилаты бериллия . Уникальность бериллия проявляется в образовании устойчивых летучих молекулярных оксид-карбоксилатов с общей формулой [

OBe 4 (RCO 2) 6 ], где R = H , Me , Et , Pr , Ph и т.д. Эти белые кристаллические вещества, типичным представителем которых является основный ацетат бериллия (R = CH 3), хорошо растворимы в органических растворителях, включая алканы, и нерастворимы в воде и низших спиртах. Их можно получить простым кипячением гидроксида или оксида бериллия с карбоновой кислотой. Структура таких соединений содержит центральный атом кислорода, тетраэдрически окруженный четырьмя атомами бериллия. На шести ребрах этого тетраэдра есть шесть мостиковых ацетатных групп, расположенных таким образом, что каждый атом бериллия имеет тетраэдрическое окружение из четырех атомов кислорода. Ацетатное соединение [ OBe 4 (MeCO 2) 6 ] плавится при 285° С и кипит при 330° С. Оно устойчиво к нагреванию и окислению в нежестких условиях, медленно гидролизуется горячей водой, но быстро разлается минеральными кислотами с образованием соответствующей соли бериллия и свободной карбоновой кислоты.

Нитрат бериллия

Be (NO 3) 2 при обычных условиях существует в виде тетрагидрата. Он хорошо растворим в воде, гигроскопичен. При 60–100° С образуется гидроксонитрат переменного состава. При более высокой температуре он разлагается до оксида бериллия.

Основный нитрат [

OBe 4 (NO 3) 6 ] имеет аналогичную карбоксилатам структуру с мостиковыми нитрато-группами. Это соединение образуется при растворении хлорида бериллия в смеси N 2 O 4 и этилацетата с образованием кристаллического сольвата [ Be (NO 3) 2 . 2 N 2 O 4 ], который затем нагревают до 50° С, чтобы получить безводный нитрат Be (NO 3) 2 , быстро разлагающийся при 125° С на N 2 O 4 и [ OBe 4 (NO 3) 6 ].

Бериллиеорганические соединения . Для бериллия известны многочисленные соединения, содержащие связи бериллий–углерод. Соединения состава Ве

R 2 , где R – алкил, являются ковалентными и имеют полимерную структуру. Соединение (CH 3) 2 Be имеет цепочное строение с тетраэдрическим расположением метильных групп вокруг атома бериллия. Он легко возгоняется при нагревании. В парах существует в виде димера или тримера.

Соединения

R 2 Be самовоспламеняются на воздухе и в атмосфере диоксида углерода, бурно реагируют с водой и спиртами, дают устойчивые комплексы с аминами, фосфинами, эфирами.

Синтезируют

R 2 Be взаимодействием хлорида бериллия с магнийорганическими соединениями в эфире или металлического бериллия с R 2 Hg . Для получения (C 6 H 5) 2 Be и (C 5 H 5) 2 Be используют реакцию хлорида бериллия с соответствующими производными щелочных элементов.

Предполагают, что соединения состава

RBeX (Х – галоген, OR , NH 2 , H ) представляют собой R 2 Be . BeX 2 . Они менее реакционноспособны, в частности, на них не действует диоксид углерода.

Бериллийорганические соединения используют как катализаторы димеризации и полимеризации олефинов, а также для получения металлического бериллия высокой чистоты.

Биологическая роль бериллия. Бериллий не относится к биологически важным химическим элементам. В то же время, повышенное содержание бериллия опасно для здоровья. Соединения бериллия очень ядовиты, особенно в виде пыли и дыма, обладают аллергическим и канцерогенным действием, раздражают кожу и слизистые оболочки. При попадании в легкие могут вызвать хроническое заболевание – бериллиоз (легочная недостаточность). Заболевания легких, кожи и слизистых оболочек могут возникнуть через 10–15 лет после прекращения контакта с бериллием.

Считают, что токсичные свойства этого элемента связаны со способностью

Be (II ) замещать Mg (II ) в магниесодержащих ферментах за счет его более сильной координационной способности.

Елена

Савинкина ЛИТЕРАТУРА Популярная библиотека химических элементов . Водород–хром. М., Наука, 1971
Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия . М., Химия, 1992
Greenwood N.N., Earnshaw A. Chemistry of the Elements , Oxford: Butterworth, 1997

Бериллий — это металл серебристо-серых оттенков с блестящими кристаллическими проявлениями на сломах, который является четвёртым по счёту химическим элементом таблицы Менделеева. Вес атома бериллия составляет 9,0122 в единице исчисления стандартной атомной массы, равной 1/12 массы изотопа углерода. Бериллий - редкоземельный металл, который соотносится к массе земли в процентном отношении 2,6·10-4 %.

Открытие Бериллия

Как и многие химические элементы, бериллий был открыт в связи с изучением свойств благородных металлов и драгоценных камней. В 1798 году известный французский Луи Никола Воклен работал с бериллом - полудрагоценным камнем, ближайшим «родственником» изумруда. В процессе экспериментов активно использовалась так называемая берилловая земля, в которой и содержался оксид бериллия ВеО. Однако в этот раз бериллий как автономный химический элемент не был идентифицирован и назван. Это произошло позже, в 1828 году, когда немецкому учёному Фридриху Вёллеру удалось получить металлический бериллий. А завершил эволюцию познания этого довольно редкого элемента французский химик Лебо, которому с помощью электролиза удалось получить чистые бериллиевые кристаллы.

Кристаллы бериллия имеют сладковатый привкус, поэтому элемент первоначально именовался «глюциний» от греческого «сладкий». С открытием бериллия со временем сформировалась новая отрасль — синтез полудрагоценных и драгоценных камней. Сегодня на основе берилла синтезируются искусственные изумруды, аквамарины, гелиодоры, которые активно используются в ювелирной промышленности. Полудрагоценный камень берилл, послуживший отправной точкой в открытии бериллия, был назван в честь южноиндийского города Веллур, который находился вблизи известных изумрудных копей Индии. Бериллий содержится и в человеческом организме в количестве, не превышающем 0,036 мг. Тем не менее, бериллий в газообразном состоянии и бериллиевая пыль являются высокотоксичными веществами, которые вызывают серьёзные патологи органов дыхания и кровообращения.

Основные физико-химические свойства

Благодаря самой высокой внутренней теплоте правления, этот металл обладает уникальными характеристиками, определяющими его востребованность в ведущих отраслях производства и науки. Вышеупомянутая редкость бериллия в природе делает этот элемент своеобразным дефицитом в мире современных металлических сплавов.

Относительно низкая температура плавления 1284°С позволяет создавать бериллиевые слитки в условиях вакуума, однако чаще всего практикуется производство бериллия в порошкообразном состоянии. Литой бериллий отличает высокая хрупкость структуры, так что наибольший интерес этот металл представляет в деформированном виде. Термическая обработка под давлением позволяет на порядок повысить конструкционную прочность бериллия, который в конечном состоянии, благодаря высокой пластичности становится схожим по многим характеристикам с магнием и алюминием. В частности, бериллий на открытом воздухе также образуют оксидную плёнку, препятствующую коррозии. Этот металл без труда растворяется во многих кислотах и даже щелочах, за исключением концентрированной азотной кислоты.

Получают бериллий путём выделения из алюминиевых сплавов с помощью разнообразных технологий очистки, а также из минералов бериллов, на которые воздействуют концентрированной серной кислотой. Металлический бериллий производится путём обработки бериллиевых оксидов и сульфатов (Ве(ОН)2 или BeSO4). Технологические процессы производства бериллия достаточно сложны и требуют значительных энергозатрат, поэтому этот металл относится к дорогостоящим материалам.

Область применения

Уникальное природное свойство бериллия — не вступать во взаимодействие с рентгеновским излучением определило активное использование этого металла в изготовлении рентгенотехнических приборов и оборудования.

Кроме того, сегодня бериллиевые сплавы применяются для изготовления нейтронных отражателей и замедлителей в ядерных реакторах. Оксид бериллия отличается предельно высокой теплопроводностью и огнеупорностью, которая также используется в производстве оборудования для ядерной энергетики.

Аэрокосмическая и авиационная промышленность — ещё две отрасли, в которых находят успешное применение прочности, антикоррозийности и огнеупорности бериллиевых сплавов. В металлургии бериллий используется в качестве легирующего элемента, увеличивающего антикоррозийную и конструкционную прочность стали.

4 | Be | Бериллий — Цена

Бериллий (Be) — рассеянный редкий металл , атомный номер — 4, атомная масса — 9,02, плотность — 1.85 г/см3, температура плавления — 1285ОС, коэффициент линейного расширения-(5.10-6) при (-100ОС); 21.10-6 при (650ОС), удельная электропроводность-4м/ом.мм2, предел прочности при растяжении-11,9кг/мм2(литой); 19,0кг/мм2(кованый), твёрдость по Бринелю-140кг/мм2.
В 1797 году, французский химик Воклен, анализируя минерал берилл, открыл оксид ранее неизвестного элемента, который он назвал «бериллиевой землёй» и, после выделения самого элемента, ему дали название бериллий. В 1828 году, химики исследователи получили металлический бериллий в виде порошка, путём восстановления хлорида бериллия, калием. В 1898 году, путём электролиза, был получен чистый металл-бериллий.
Бериллий-серебристо-серый металл, похожий на алюминий, очень лёгкий, в полтора раза легче алюминия, по плотности среди металлов стоит на втором месте, после лития. Бериллий очень прочный и упругий металл (превосходит по этим качествам спецстали), жаростоек. Эти ценные свойства бериллия сохраняются и в сплавах.
Добывается бериллий из минералов силикатов: берилла, фенакита, бертрандита. Месторождения берилла и других бериллиевых минералов встречаются в пегматитовых и и гидротермальных жилах, в виде кристаллов, иногда огромного размера и массы. Содержание окиси бериллия в рудах 0,1-0,3%.
Бериллом (от греческого слова « бериллос» — блестящий), называется особый минерал, прозрачная разновидность которого, окрашенная в голубой или зелёный цвет, считается драгоценным камнем. Зеленовато-голубые камни называются аквамаринами, зелёные-изумрудами.
На долю бериллия приходится 0,001% (столько же, сколько и на цинк) от общего количества атомов земной коры.
Металлический бериллий отлично полируется. Бериллий, полученный в вакууме, содержащий 99,95-99,97% Be, очень пластичен и катается в тонкие листы на холоду. Добавка к нему до 0,07% Al, не изменяет пластических свойств, кремний, даже в малых количествах не растворяется в бериллии. В твёрдом бериллии, железо крайне мало растворимо и располагается на грани зёрен кристаллов. Наихудшее влияние на пластичность оказывает кислород. Бериллий в 17 раз меньше алюминия задерживает рентгеновские лучи.
На воздухе, компактный бериллий, воспламеняется лишь при высокой температуре, воду, бериллий при обычной температуре и при нагревании, почти не разлагает, вследствие образования плотной защитной плёнки BeO, не растворимой в воде. Пары серы не действуют на бериллий, галоиды весьма энергично с ним соединяются. Бериллий хорошо соединяется с бором и углеродом, пары HCl легко действуют на бериллий, в слабой соляной кислоте бериллий легко растворяется с выделением водорода. С крепкой серной кислотой бериллий реагирует, с выделением сернистого газа, со слабой-выделяет водород, в азотной кислоте не растворяется, даже при кипячении. Бериллий растворим в щелочах (КОН), раствор аммиака на бериллий не действует.
Бериллий даёт сплавы с медью, железом, никелем, кобальтом и другими тяжёлыми металлами, а также с алюминием, не сплавляется с магнием.

ПОЛУЧЕНИЕ.

Основным сырьём для получения бериллия служит минерал берилл, после обогащения содержание окиси бериллия в технических концентратах колеблется от 4 до13%.
Первой стадией получения бериллия является «вскрытие» руды или концентрата действием кислот, щелочей, карбидизирующей плавкой в электропечи, хлорированием и другими способами разрушающими прочные связи природного алюмосиликата.
После вскрытия применяются различные сложные схемы химической обработки, в результате которых выделяют из вскрытого концентрата чистую окись или простые и двойные фтористые соли бериллия.
Для тонкой очистки бериллия от сопровождающих его примесей алюминия, урана, ванадия, титана, железа, используют свойство основной уксусной соли бериллия, растворяться в хлороформе, в отличие от солей перечисленных примесей.
Существует три основных промышленных способа получения металлического бериллия:
Электролиз соли оксифторида бария в расплаве из NaF+BaF3 , при температуре около 1350ОС, в тигле-аноде из чистого графита с железным трубчатым охлаждаемым «катодом касания», который по мере хода процесса поднимается из электролита с нарощенным стержнем бериллия. Выход по току 80 %, напряжение на ванне 80в, извлечение бериллия-90%.
Электролиз соли BeF2 в расплаве NaF+BaF2 при температуре около 1200ОС в графитовом тигле-аноде с подъёмным вращающимся охлаждаемым катодом.
Электролиз расплавленной смеси солей BeCl2+NaCl при температуре 750-800ОС, в железном тигле катоде с графитовым анодом, напряжение на ванне 5-6в. Металлический бериллий выделяется в виде мелких частиц.

ПРИМЕНЕНИЕ.

Бериллий, в настоящее время, очень широко применяется в самых передовых отраслях промышленности.
Одной из основных областей применения бериллия является производство меднобериллиевых сплавов. Добавка 0,5-3% бериллия к меди значительно повышает механические и антикоррозионные свойства меди-твёрдость по Бринелю возрастает с 50до 365кг/мм2, сопротивление разрыву повышается в семь раз, особенно сильно возрастает сопротивление усталости металла, вследствие чего, такие сплавы оказались значительно используемыми для изготовления пружин и деталей, работающих при повторно-переменных нагрузках.
Сплавы меди с небольшой добавкой бериллия (до2%)-бериллиевая бронза, устойчивы в бензине, маслах, морской воде, не дают искрение при ударе о другой металл. Изделия из бериллия устойчивы не только химически, но и механически: очень плохо истираются, хорошо сохраняют размеры в широком интервале температур. Бериллиевую бронзу используют для изготовления электрических контактов, деталей часовых механизмов, шестерён.
Тормозные диски для самолётов, носовые корпуса управляемых снарядов, кромки крыльев сверхзвуковых самолётов, обшивка космических кораблей для входа в плотные слои атмосферы-объекты потребляющие бериллий.
Большую техническую ценность представляют сплавы Cu-Be-Co, Cu-Be, Ag-Be, Al-Be. Сплавы Cu-Be (маллорит) и Al-Be (бералит) используются в самолётостроении, космическом аппаратостроении, кораблестроении, приборостроении.
Соединения бериллия применяются в осветительной технике, при изготовлении стекла, для синтеза соединений алифатического ряда, в качестве огнеупорного материала, при изготовлении красок.
Сплавы бериллия применяются в качестве компонентов ракетного топлива (легко воспламеняющие и взрывчатые сплавы).
Из бериллиевых сплавов изготавливают несущие конструкции и детали спутников, космических кораблей (теплозащитная обшивка отсеков и самих аппаратов, возвращаемых на землю, рули, антенны, переносные контейнеры). Бериллиевые сплавы используют при изготовлении ракетных двигателей, камер сгорания и сопел так как они обладают очень высокой теплопроводностью и теплоёмкостью при высоких температурах (3000ОС). Бериллиевые сплавы применяются для создания солнечных батарей для космических аппаратов, в конструкциях подводных аппаратов и подводных лодок. В автомобилестроении из бериллиевых сталей изготавливают «вечные» рессоры, выдерживающие сотни миллионов толчковых нагружений.
Из бериллиевых сплавов изготавливают «окна» рентгеновских аппаратов так как бериллий в 17 раз прозрачнее алюминия.
Чистый бериллий используется для производства рентгеновских трубок, антикатодов циклотронов, неоновых сигнальных ламп различных электронных приборов.
Особое место бериллий занимает в атомной промышленности.
Бериллий применяется для изготовления деталей атомных реакторов, а также, как источник и замедлитель быстрых нейтронов при производстве атомной энергии. Внедрению бериллия в атомную энергетику, в частности для изготовления тепловыделяющих элементов реакторов, отражателей нейтронов способствуют такие свойства бериллия как малая атомная масса, высокое рассеяние нейтронов на бериллии, устойчивость к воздействию облучения и высоких температур.
Высокие огнеупорные свойства окиси бериллия (температура плавления 2570ОС) , а также большая инертность её в нагретом состоянии ко многим расплавленным металлам и их солям, используется для изготовления огнеупорных тиглей.
Все растворимые соединения бериллия —ядовиты, и работа с ними требует применения специальных мер безопасности.

БЕРИЛЛИЙ, Be (лат. Beryllium * а. berillium; н. Beryllium; ф. beryllium; и. berilio), — химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122. Имеет один стабильный изотоп 9 Ве. Открыт в 1798 французским химиком Л. Вокленом в виде оксида ВеО, выделенного из . Металлический бериллий независимо друг от друга получили в 1828 немецкий химик Ф. Вёлер и французский химик А. Бюсси.

Свойства бериллия

Бериллий — лёгкий светло-серый металл. Кристаллическая структура а-Be (269-1254°С) гексагональная; Я-Be (1254-1284°С) — объёмноцентрированная, кубическая. 1844 кг/м 3 , t плавления 1287°С, t кипения 2507°С. Обладает наиболее высокой из всех металлов теплоёмкостью 1,80 кДж/кг. К, высокой теплопроводностью 178 Вт/м. К при 50°С, низким удельным электрическим сопротивлением (3,6-4,5) . 10 Ом. м при 20°С; коэффициентом термического линейного расширения 10,3-13,1 . 10 -6 град -1 (25- 100°С). Бериллий — хрупкий металл; ударная 10-50 кДж/м 2 . Бериллий обладает малым поперечным сечением захвата тепловых нейтронов.

Химические свойства бериллия

Бериллий — типичный амфотерный элемент с высокой химической активностью; компактный бериллий устойчив на воздухе благодаря образованию плёнки ВеО; степень окисления берилля +2.

Соединения бериллия

При нагревании соединяется с , галогенами и другими неметаллами. С кислородом образует оксид ВеО, с азотом — нитрид Be 3 N 2 , с — карбид Ве 2 С, с — сульфид BeS. Растворим в щелочах (с образованием гидрооксобериллатов) и большинстве кислот. При высоких температурах бериллий взаимодействует с большинством металлов, образуя бериллиды. Расплавленный бериллий взаимодействует с оксидами, нитридами, сульфидами, карбидами. Из соединений бериллий наибольшее промышленное значение имеют ВеО, Ве(ОН) 2 , фторбериллаты, например Na 2 BeF 4 и др. Летучие соединения бериллий и пыль, содержащая бериллий и его соединения, токсичны.

Бериллий — редкий (кларк 6.10 -4 %), типично литофильный элемент, характерный для кислых и щелочных пород. Из 55 собственных минералов бериллий 50% принадлежит к силикатам и бериллийсиликатам, 24% — к фосфатам, 10% — к окислам, остальные — к , . Близость потенциалов ионизации определяет сродство бериллия и цинка в щелочной среде, так что они одновременно находятся в некоторых , а также входят в состав одного и того же минерала — . В нейтральных и кислых средах пути миграции бериллия и цинка резко расходятся. Некоторое рассеивание бериллия в горных породах определяется его химическим сходством с Al и Si. Особенно близки эти элементы в виде тетраэдрических группировок ВеО 4 6- , AlO 4 5- и SiO 4 4- . В гранитах проявляется большее сродство бериллия к , а в щелочных породах — к . Т. к. энергетически более выгодно замещение Аl 3+ IV на Ве 2+ IV, чем Si 4+ IV на Ве 2+ IV, то изоморфное рассеивание бериллия в щелочных породах, как правило, выше, чем в кислых. Геохимическая миграция бериллия связана с , с которым он образует весьма устойчивые комплексы BeF 4 2- , BeF 3 1- , BeF 2 0 , BeF 1+ . При повышении температуры и щёлочности эти комплексы легко гидролизуются до соединений Be(OH)F 0 , Be(OH) 2 F 1- , в виде которых бериллий мигрирует.

Об основных генетических типах месторождений бериллия и схемы обогащения см. в ст. Бериллиевые руды. В промышленности металлический бериллий получают термическим восстановлением BeF 2 магнием, бериллий высокой чистоты — переплавкой в вакууме и вакуумной дистилляцией.

Применение бериллия

Бериллий и его соединения применяют в технике (свыше 70% общего потребления металла) как легирующую добавку к сплавам на основе Cu, Ni, Zn, Al, Pb и других цветных металлов. В ядерной технике Be и ВеО используют в качестве отражателей и замедлителей нейтронов, а также в качестве источника нейтронов. Малая плотность, высокая прочность и жаростойкость, большой модуль упругости и хорошая теплопроводность позволяют применять бериллий и его сплавы как конструкционный материал в авиа-, ракетостроении и космической технике. Сплавы бериллия и оксида бериллия отвечают требованиям прочности и коррозионной устойчивости в качестве материалов для оболочек твэлов. Бериллий служит для изготовления окон рентгеновских трубок, нанесения твёрдого диффузионного слоя на поверхность стали (бериллизация), в качестве присадок к ракетному топливу. Потребителем Be и ВеО являются также электротехника и радиоэлектроника; ВеО используют как материал корпусов, теплоотводов и изоляторов полупроводниковых приборов. Благодаря высокой огнеупорности, инертности по отношению к большинству расплавленных металлов и солей оксид бериллий применяется для изготовления тиглей и специальной керамики.

"Бериллий - один из самых замечательных элементов, огромного теоретического и практического значения.

Овладение воздухом, смелые полеты самолетов и стратостатов невозможны без легких металлов; и мы уже предвидим, что в помощь современным металлам авиации - алюминию и магнию - придет и бериллий.
И тогда наши самолеты будут летать со скоростью в тысячи километров в час.

За бериллием будущее!

Геохимики, ищите новые месторождения. Химики, научитесь отделять этот легкий металл от его спутника - алюминия. Технологи, сделайте легчайшие сплавы, не тонущие в воде, твердые, как сталь, упругие, как резина, прочные, как платина, и вечные, как самоцвет...

Может быть, сейчас эти слова кажутся сказкой. Но как много сказок на наших глазах превратилось в быль, влилось в наш простой домашний обиход, а мы забываем, что еще 20 лет тому назад наши радио и звуковое кино звучали фантастической сказкой".

Так писал почти полвека назад крупнейший советский ученый академик А.Е. Ферсман, уже тогда сумевший по достоинству оценить значение бериллия.

Да, бериллий - это металл будущего. И в то же время в Периодической системе найдется немного элементов, история которых, подобно истории бериллия, уходит в далекое-далекое прошлое.

Свыше двух тысячелетий назад в безводной пустыне Нубии, где находились знаменитые изумрудные копи царицы Клеопатры, рабы добывали чудесные кристаллы зеленого камня. Караваны верблюдов доставляли изумруды к берегам Красного моря, а оттуда они попадали во дворцы властителей стран Европы, Ближнего и Дальнего Востока - византийских императоров, персидских шахов, китайских богдыханов, индийских раджей.

Великолепным блеском, чистотой окраски, красотой игры - то густо-зеленый, почти темный, то сверкающий ослепительной зеленью - изумруд во все времена пленял человека. "В сравнении с ним, - писал римский историк Плиний Старший, - никакая вещь зеленее не зеленеет...". По преданию, жестокий и самовлюбленный римский император Нерон обычно смотрел на кровавые бои гладиаторов через большой отшлифованный кристалл изумруда. Когда в Риме вспыхнул пожар, Нерон любовался пляшущими языками огня через тот же "оптический" изумруд, в котором оранжевые краски пламени зловеще сливались с зеленью камня (Возможно, в эту древнюю легенду придется внести существенную поправку: по сообщениям печати, монокль Нерона, хранящийся в Ватикане, недавно якобы попал в руки специалисту-минералогу и оказалось, что кристалл представляет собой не изумруд, а хризолит). "Он зелен, чист, весел и нежен, как трава весенняя..." - писал об изумруде А.И. Куприн.

С открытием Америки в историю зеленого камня была вписана новая страница. В могилах и храмах Мексики, Перу, Колумбии испанцы обнаружили множество крупных темно-зеленых изумрудов. За несколько лет испанцы разграбили эти сказочные богатства. Найти же место, где добывался чудесный самоцвет, им долго не удавалось. И только в середине XVI столетия завоеватели Америки сумели, наконец, овладеть тайной инков и проникнуть к сокровищам изумрудных копей Колумбии.

Редкий по красоте колумбийский изумруд царил в ювелирном деле до XIX века. В 1831 году уральский смолокур Максим Кожевников, собирая валежник в лесу близ небольшой речушки Токовой, нашел первый русский изумруд. Крупные ярко-зеленые изумруды Урала быстро получили признание ювелиров всего мира.

Разработкой уральских изумрудных копей руководил в то время "исправляющий должность командира" Екатеринбургской гранильной фабрики Яков Коковин, кристально честный человек, большой знаток и художник камня. В 1834 году к нему попал найденный на одном из приисков громадный изумруд, весивший более двух килограммов. Мог ли он тогда знать, какую роковую роль сыграет в его судьбе этот красивый камень, вошедший в историю минералогии как "изумруд Коковина"?

Наиболее ценные камни командир гранил сам. И на этот раз он намеревался своими руками произвести огранку самоцвета-великана. Но его планам не суждено было сбыться: из Петербурга по ложному доносу внезапно нагрянула ревизия, у Коковина учинили обыск и "нашли" изумруд, который тот и не собирался прятать. Вместе с камнем его под стражей отправили в столицу. Следствие по этому делу вел граф Перовский, слывший большим знатоком и любителем драгоценных камней. Он и довел дело до желанного для себя конца: ни в чем не повинного Коковина граф упрятал в тюрьму (где сломленный несправедливыми наветами мастер вскоре покончил с собой), а изумруд, минуя государственную казну, пополнил коллекцию графа. Но у того камень не задержался: крупно проиграв в карты, знатный вельможа вынужден был расстаться с ним, и изумруд перекочевал к тайному советнику князю Кочубею, владельцу крупнейшей в России коллекции самоцветов. После смерти князя его сын перевез немало ценных камней, среди которых находился и "изумруд Коковина", в Вену, где устроил их распродажу. По настоянию российской Академии наук царское правительство за огромные деньги выкупило коллекцию. Самый крупный в мире изумруд вернулся на родину и сейчас украшает экспозицию Минералогического музея Академии наук СССР в Москве.

Изумруд - один из многих минералов бериллия. Голубовато-зеленый, цвета морской воды аквамарин и вишнево-розовый воробьевит, винно-желтый гелиодор и желтовато-зеленый берилл, чистейшей воды фенакит и нежный синий эвклаз, прозрачный зеленый хризоберилл и его удивительная разновидность александрит - густо-зеленый днем и малиновый при искусственном освещении ("зеленое утро и кровавый вечер" - образно описал его Н.С. Лесков) - вот лишь некоторые, но, пожалуй, наиболее именитые представители семейства бериллиевых самоцветов.

Земная кора отнюдь не бедна бериллием, хотя этот элемент прочно снискал себе репутацию редкого. Объясняется это, в частности, тем, что найти бериллиевые минералы подчас бывает нелегко. И тут на помощь человеку может прийти его давний друг - собака. В последнее время в литературе часто появляются сообщения о поисках полезных ископаемых с помощью четвероногих "геологов". Об умении собак находить что-либо или кого-либо по запаху известно немало фактов и легенд. Но каковы их геологические способности? Какие минералы могут отыскать лохматые рудознатцы? "Ответить на этот вопрос нам помогла коллекция Минералогического музея Академии наук СССР, - рассказывает доктор биологических наук Г.А. Васильев - инициатор нового направления в разведке спрятанных в земле природных кладов. - Особенно эффективным оказался опыт с металлическим бериллием: понюхав его, собака по кличке Джильда затем из множества минералов выбрала изумруд, аквамарин, воробьевит, фенакит, бертрандит, т.е. все то и только то, что содержит бериллий. Разложив все бериллийсодержащие минералы среди других образцов и дав их выбрать собаке, мы снова просили собаку искать. Тогда Джильда шла по музею, ложилась грудью на витрину, где находился огромный изумруд, и лаяла".


Представители флоры тоже готовы внести свою лепту в поиск бериллиевых месторождений. В этой роли может выступать обыкновенная сосна, имеющая склонность отбирать бериллий из почвы и накапливать его в своей коре. Если сосна растет недалеко от залегания бериллиевых минералов, то концентрация этого элемента в сосновой коре оказывается в сотни раз выше, чем в почве, и в десятки раз выше, чем в коре других деревьев, например березы или лиственницы.

Как вы уже знаете, ювелиры с почтением относятся ко многим бериллиевым камням-самоцветам, а вот технологи, занятые производством металлического бериллия, более разборчивы в своих привязанностях: из всех бериллиевых минералов они ценят лишь берилл, ибо только этот минерал имеет промышленное значение. В природе встречаются кристаллы-гиганты берилла: масса их достигает десятков тонн, длина - нескольких метров. А недавно на Мадагаскаре обнаружен монокристалл берилла, весящий 380 тонн. Длина этого "кристаллика" 18 метров, его поперечник 3,5 метра.

В Горном музее в Ленинграде есть интересный экспонат - полутораметровый кристалл берилла. В блокадную зиму 1942 года вражеский снаряд пробил крышу здания и разорвался в главном зале. Осколки серьезно повредили кристалл, и казалось, что ему уже не найдется места в экспозиции музея. Но после кропотливой ювелирной работы художников-реставраторов камень был восстановлен в первоначальном виде. Сейчас о пережитой им операции напоминают лишь два поржавевших снарядных осколка, вмурованных в пластину из органического стекла, да пояснительная табличка, рассказывающая об этом экспонате.

Не удивительно, что бериллиевые камни-самоцветы издавна привлекали внимание не только любителей драгоценностей, но и химиков.

В XVIII веке, когда науке еще не был известен элемент, находящийся сейчас в Периодической системе под номером 4, многие ученые пытались анализировать берилл, однако никто не смог обнаружить содержащийся в нем металл. Он словно прятался за спину алюминия и его соединений - свойства этих элементов удивительно схожи. Но различия все же были. И первым, кому удалось их заметить, стал французский химик Луи Никола Воклен. 26 плювиоза VI года революционного календаря (т.е. 15 февраля 1798 года) на заседании французской Академии наук Воклен сделал сенсационное сообщение о том, что в берилле и изумруде содержится новая "земля", отличная по своим свойствам от глинозема, или оксида алюминия.

Соли нового элемента имели сладковатый привкус, и потому Воклен предложил назвать его глицинием (по-гречески "гликос" - сладкий), однако многие ученые сочли это название неудачным, поскольку сладкий вкус присущ солям и других элементов, например иттрия. По предложению известных химиков немца Клапрота и шведа Экеберга, также занимавшихся исследованиями берилла, открытый в этом минерале химический элемент был назван бериллием, а название глициний долгое время сохранялось лишь во французской химической литературе.

Сходство бериллия и алюминия доставило немало хлопот создателю Периодической системы элементов Д.И. Менделееву. Дело в том, что в середине XIX века бериллий именно из-за этого сходства считался трёхвалентным металлом с атомной массой 13,5 и, следовательно, должен был занимать в таблице место между углеродом и азотом. Это вносило явную путаницу в закономерное изменение свойств элементов и ставило под сомнение правильность Периодического закона. Менделеев, убежденный в своей правоте, считал, что атомная масса бериллия определена неверно, что элемент должен быть не трехвалентным, а двухвалентным с магнезиальными свойствами. На основании этого он поместил бериллий во вторую группу, исправив его атомную массу на 9. Вскоре это вынуждены были подтвердить шведские химики Нильсон и Патерсон, которые ранее были твердо убеждены в трехвалентности бериллия. Их тщательные исследования показали, что атомная масса этого элемента равна 9,1. Так, благодаря бериллию - возмутителю спокойствия в Периодической системе - восторжествовал один из важнейших химических законов.

Судьба этого элемента во многом сходна с судьбами его собратьев-металлов. В свободном виде он был выделен в 1828 году немецким химиком Вёлером и независимо от него французским химиком Бюсси, но лишь спустя семь десятилетий француз Лебо электролизом расплавленных солей смог получить чистый металлический бериллий. Не мудрено, что еще в начале нашего века химические справочники безапелляционно обвиняли бериллий в "тунеядстве": "Практического применения не имеет".

Однако бурное развитие науки и техники, которым ознаменовался XX век, заставило химиков и других специалистов пересмотреть этот явно несправедливый приговор. Изучение чистого бериллия показало, что он обладает многими ценными и интересными свойствами.

Один из самых легких металлов, бериллий характеризуется в то же время солидной прочностью, большей, чем у конструкционных сталей, не говоря уже о "коллегах" бериллия по группе металлов-легковесов. Так, если алюминиевая проволока сечением 1 квадратный миллиметр способна выдержать лишь чуть более 10 килограммов (например, ведро с водой), то бериллиевая проволока такого же сечения выдерживает груз в шесть раз тяжелее, т.е. равный приблизительно массе тела взрослого человека. В то же время бериллий плавится при гораздо более высокой температуре, чем магний и алюминий. Такое удачное сочетание свойств делает бериллий сегодня одним из основных авиационных материалов. Детали самолета, изготовленные из этого металла, намного легче, чем алюминиевые.

Отличная теплопроводность, высокая теплоемкость и жаропрочность дают возможность использовать бериллий и его соединения в космической технике в качестве теплозащитного материала. Из бериллия были выполнены, например, элементы тепловой защиты кабины американского космического корабля "Меркурий".


Бериллиевые детали, сохраняющие высокую точность и стабильность размеров, используются в гироскопах - приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.

С точки зрения освоения космического пространства весьма перспективно еще одно свойство бериллия: при его горении выделяется огромное количество тепла. В этом отношении с ним не в силах конкурировать ни один другой металл. Не случайно конструкторы космической техники рассматривают бериллий как возможный компонент высокоэнергетического ракетного горючего для полетов на Луну и более далекие от нас небесные тела. Предложено также изготовлять из него топливные резервуары ракетных систем: когда горючее израсходуется, вместо него можно будет использовать (или, попросту говоря, сжечь) бериллиевую "тару".

Широкое применение в авиации находят сплавы меди с бериллием - бериллиевые бронзы. Из них изготовляют многие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в значительном интервале температур, высокая электро- и теплопроводность. Подсчитано, что в современном тяжелом самолете свыше тысячи деталей сделано из этих сплавов. Благодаря своим упругим свойствам бериллиевая бронза служит прекрасным пружинным материалом. Пружины из такой бронзы практически не знают усталости: они способны выдерживать миллиарды циклов значительной по величине нагрузки!

Кстати, именно с пружинами связан любопытный эпизод из истории второй мировой войны. Гитлеровская промышленность была отрезана от основных источников бериллиевого сырья. Мировая добыча этого ценного стратегического металла практически полностью находилась в руках США. И немцы пошли на хитрость. Они решили использовать нейтральную Швейцарию для контрабандного ввоза бериллиевой бронзы: американские фирмы получили от швейцарских "часовщиков" заказ на такое ее количество, которой хватило бы на часовые пружины всему миру лет на пятьсот вперед. Хитрость, правда, была разгадана, и этот заказ остался невыполненным. Но все же время от времени в новейших марках скорострельных авиационных пулеметов, поступавших на вооружение фашистской армии, появлялись пружины из бериллиевой бронзы.

Усталость - одно из "профессиональных заболеваний" многих металлов и сплавов, которые, не выдерживая переменных нагрузок, постепенно разрушаются. Добавка же в сталь даже небольшого количества бериллия как рукой снимает усталость. Если автомобильные рессоры из обычной углеродистой стали ломались уже после 800-850 тысяч толчков, то после введения я сталь "витамина Be" рессоры выдерживали десятки миллионов толчков, не обнаруживая и следов усталости.

В отличие от стали, бериллиевая бронза не искрится при ударе о камень или металл, поэтому ее широко используют для изготовления инструмента, применяемого на взрывоопасных работах - в шахтах, на пороховых заводах, нефтебазах.

Бериллий существенно влияет на свойства магния. Так, присадка всего нескольких тысячных долей процента бериллия предотвращает возгорание магниевых сплавов при плавке и разливке (т.е. примерно при 700°С). Резко уменьшается при этом и коррозия сплавов - как на воздухе, так и в воде.

Большое будущее принадлежит, по-видимому, сплавам бериллия с литием. Союз этих двух легчайших металлов приведет, быть может, к появлению отличных конструкционных сплавов - прочных, как сталь, и легких, как дерево.

По своим химическим данным бериллий мог бы с успехом исполнять роль раскислителя стали, помогая ей избавляться от проникшего в нее кислорода. К сожалению, он еще слишком дорог, и использовать его в больших количествах металлургии пока не могут. Но они нашли бериллию другое важное применение, где расход его невелик: насыщение этим металлом поверхности стальных изделий - бериллизация - значительно повышает их твердость, прочность, износостойкость.

Весьма благосклонны к бериллию рентгенотехники - ведь он лучше всех других устойчивых на воздухе металлов пропускает рентгеновские лучи. Сейчас из него во всем мире делают окна для рентгеновских трубок. Пропускная способность таких окон почти в двадцать раз выше, чем алюминиевых, применявшихся ранее для этой цели.

Бериллий сыграл заметную роль в развитии учения о строении атома и его ядра. Еще в начале 30-х годов немецкие физики Боте и Беккер, бомбардируя бериллий альфа-частицами, обнаружили так называемое бериллиевое излучение - очень слабое, но обладающее значительной проникающей силой: лучи проходили через слой свинца толщиной несколько сантиметров. Природу этого излучения установил в 1932 году англичанин Чэдвик. Оказалось, что оно представляет собой поток электрически нейтральных частиц, масса которых примерно равна массе протона. Новые частицы были названы нейтронами.

Отсутствие электрического заряда позволяет нейтронам легко внедряться в ядра атомов других элементов. Это свойство сделало нейтрон эффективнейшим снарядом атомной артиллерии. Сейчас нейтронные пушки широко применяются для осуществления ядерных реакций.

Изучение атомной структуры бериллия показало, что для него характерно малое сечение захвата нейтронов и большая величина их рассеяния. Благодаря этому бериллий рассеивает нейтроны, изменяет направление их движения и замедляет скорость до таких значений, при которых цепные реакции протекают более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов. Прекрасно справляется он с ролью отражателя нейтронов, возвращает их в активную зону реактора, противодействует их утечке. Ему присуща также высокая радиационная стойкость, сохраняющаяся при очень больших температурах. Все эти замечательные свойства делают бериллий одним из самых необходимых элементов "томной техники.

Несомненный интерес для науки представляет "звукопропускная" способность этого металла. В воздухе скорость звука составляет 330 метров в секунду, в воде - около 1500 метров. В бериллии же звук побивает все рекорды, преодолевая за секунду 12600 метров (в 2-3 раза больше, чем в других металлических материалах). На эту особенность уже обратили внимание создатели музыкальных инструментов.

Многими ценными свойствами обладает и оксид бериллия. Высокая огнеупорность (температура плавления более 2600 °С), значительная химическая стойкость и большая теплопроводность позволяют использовать этот материал для футеровки индукционных печей, изготовления тиглей для плавки различных металлов и сплавов. Так, для выплавки бериллия в вакууме применяют тигли только из оксида бериллия, который с ним абсолютно не взаимодействует. Этот оксид служит основным материалом для оболочек тепловыделяющих элементов (твэлов) атомных реакторов.

Теплоизоляционные свойства оксида бериллия, возможно, будут использованы и при исследовании глубинных слоев нашей планеты. Существует проект взятия проб из мантии Земли с глубин до 32 километров с помощью так называемой "атомной иглы", представляющей собой миниатюрный атомный реактор, который заключен в теплоизолирующий футляр из оксида бериллия с острием из тяжелых вольфрамовых сплавов.

Оксид бериллия имеет уже большой стаж работы в стекольной промышленности. Добавки его повышают твердость, показатель преломления и химическую стойкость стекол. Введение оксида и других соединений бериллия позволяет получать специальные стекла высокой прозрачности для всех лучей спектра - от ультрафиолетовых до инфракрасных.

Оксид бериллия служит и исходным сырьем для создания искусственных изумрудов и других бериллиевых самоцветов, выращиваемых при высоких давлениях и температурах. Этот процесс осуществляется сегодня уже не только в научных лабораториях, но и в производственных условиях.

Сбылись пророческие слова замечательного ученого и мечтателя А.Е. Ферсмана. Совсем немного времени понадобилось бериллию, чтобы оправдать возлагаемые на него надежды. Из малоизвестного редкого элемента он превратился сегодня в один из важнейших металлов XX века.