Генная инженерия технология ликвидации нежелательных признаков. Чем занимается генная-инженерия. Две версии будущего: трансгенный рай или трансгенный апокалипсис

1. Возможности генной инженерии. 4

2. История генной инженерии. 6

3. Генная инженерия как наука. Методы генной инженерии. 10

4. Области применения генной инженерии. 12

5. Научные факты опасности генной инженерии. 18

Заключение. 22

Список литературы.. 23

Введение

Тема генной инженерии в последнее время пользуется все большей популярностью. Больше всего внимания уделяется негативным последствиям, к которым может привести развитие этой отрасли науки, и в совсем малой степени освещается польза, которую может принести генная инженерия.

Наиболее многообещающая область применения - это производство лекарственных препаратов с использованием генно-инженерных технологий. Недавно появилась возможность получать полезные вакцины на основе трансгенных растений. Не меньший интерес представляет производство пищевых продуктов с использованием все тех же технологий.

Генная инженерия - наука будущего. На данный момент во всем мире миллионы гектаров земли засеваются трансгенными растениями, создаются уникальные медицинские препараты, новые продуценты полезных веществ. Со временем генная инженерия позволит добиться новых достижений в медицине, сельском хозяйстве, пищевой промышленности и в животноводстве.

Цель данной работы - изучить особенности возможности, историю развития и области применения генной инженерии.

1. Возможности генной инженерии

Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств. В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200 - 250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков. В 1978 году исследователи из компании «Генентек» впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не

отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания «Genentec» в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом, можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.

Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК,в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Сейчас, даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

2. История генной инженерии

История высоких медико-биологических технологий, генетических методов исследования, как, впрочем, и самой генной инженерии, непосредственно связана с извечным стремлением человека к улучшению пород домашних животных и возделываемых людьми культурных растений. Отбирая, определенные особи из групп животных и растений и скрещивая их между собой, человек, не имея правильного представления о внутренней сути процессов, протекавших внутри живых существ, тем не менее, многие сотни и тысячи лет создавал улучшенные породы животных и сорта растений, которые обладали определенными полезными и нужными для людей свойствами.

В XVIII и XIX веках предпринималось немало попыток выяснить, как передаются признаки из поколения в поколение. Одно важное открытие сделал в 1760 году ботаник Кельрейтер, который скрещивал два вида табака, перенося с тычинок пыльцу одного вида на пестики другого вида. Растения, полученные из гибридных семян, имели признаки, промежуточные между признаками обоих родителей. Кельрейтер сделал из этого логический вывод, что родительские признаки передаются как через пыльцу (семенные клетки), так и через семяпочки (яйцеклетки). Однако ни ему, ни его современникам, занимавшимся гибридизацией растений и животных, не удалось раскрыть природу механизма передачи наследственности. Отчасти это объясняется тем, что в те времена еще не были известны цитологические основы этого механизма, но главным образом тем, что ученые пытались изучать наследование всех признаков растений одновременно.

Научный же подход при изучении наследования определенных признаков и свойств был разработан австрийским католическим монахом Грегором Менделем, который летом 1865 года приступил к своим опытам по гибридизации растений (к скрещиванию различных сортов гороха) на территории своего монастыря. Он и открыл впервые основные законы генетики. Грегор Мендель достиг успеха, потому что изучал наследование отдельных, четко отличающихся один от другого (контрастирующих) признаков, подсчитывал число потомков каждого типа и тщательно вел подробные записи всех своих опытов по скрещиванию. Знакомство с основами математики позволило ему правильно истолковать полученные данные и выдвинуть предположение о том, что каждый признак определяется двумя наследственными факторами. Талантливому монаху-исследователю удалось позднее ясно показать, что наследственные свойства не смешиваются, а передаются потомству в виде определенных единиц. Это блестящее умозаключение было впоследствии полностью подтверждено, когда удалось увидеть хромосомы и выяснить особенности разных видов клеточного деления: митоза (соматических клеток - клеток тела), мейоза (половых, воспроизводящих, герминативных) и оплодотворения.

Мендель сообщил об итогах своих работ на собрании Брюннского общества естествоиспытателей и опубликовал их в трудах этого общества. Значение полученных им результатов не было понято его современниками, и эти исследования не привлекали внимания со стороны ученых-селекционеров и естествоиспытателей в течение почти 35 лет.

В 1900 году, после того как стали известны подробности деления клеток по типу митоза, мейоза и самого оплодотворения, три исследователя - де Фриз в Голландии, Корренс в Германии и Чермак в Австрии - провели ряд опытов и независимо друг от друга вторично открыли законы наследственности, описанные ранее Менделем. Позднее, обнаружив статью Менделя, в которой эти законы были ясно сформулированы за 35 лет до них, эти ученые единодушно воздали должное ученому-иноку, назвав два основных закона наследственности его именем.

В первом десятилетии XX века были проведены опыты с самыми разнообразными растениями и животными, а также сделаны многочисленные наблюдения, касающиеся наследования признаков у человека, которые ясно показали, что у всех этих организмов наследственность подчиняется тем же основным законам. Было установлено, что описанные Менделем факторы, определяющие отдельный признак, находятся в хромосомах клеточного ядра. Впоследствии, в 1909 году, эти единицы были названы датским ботаником Иогансеном генами (от греческого слова «ге-нос» - род, происхождение), а американский ученый Уильям Сэттон заметил удивительное сходство между поведением хромосом во время образования гамет (половых клеток), их оплодотворением и передачей менделевских наследственных факторов - генов. На основании этих гениальных открытий и была создана так называемая хромосомная теория наследственности.

Собственно говоря, сама генетика как наука о наследственности и изменчивости живых организмов и о методах управления ими, возникла в начале XX века. Американский ученый-генетик Т. Морган вместе со своими сотрудниками провел многочисленные опыты, позволившие раскрыть генетическую основу определения пола и объяснить ряд необычных форм наследования, при которых передача признака зависит от пола особи (так называемые признаки, сцепленные с полом). Следующий крупный шаг вперед был сделан в 1927 году, когда Г. Меллер установил, что, облучая плодовую муху-дрозофилу и другие организмы рентгеновскими лучами, можно искусственно вызывать у них изменения генов, то есть мутации. Это позволило получить множество новых мутантных генов - дополнительный материал для изучения наследственности. Данные о природе мутаций послужили одним из ключей к пониманию и строению самих генов.

В 20-е годы нашего века советскими учеными школы А.С. Серебровского были проведены первые опыты, показавшие насколько сложно устроен ген. Эти представления и были использованы Дж. Уотсоном и Ф. Криком, которым удалось в 1953 году в Англии создать модель ДНК и расшифровать генетический код. Развернутая затем научно-исследовательская работа, связанная с целенаправленным созданием новых комбинаций генетического материала, и привела к появлению самой генной инженерии.

Одновременно, в 40-х годах, началось опытное изучение отношений между генами и ферментами. С этой целью был широко использован другой объект - плесневый гриб Neurospora, у которого можно было искусственно получать и исследовать ряд биохимических мутаций, связанных с выпадением того или иного особого фермента (белка). В течение двух последних десятилетий самыми распространенными объектами генетических исследований были кишечная палочка (Escherichia coli) и некоторые бактериофаги, поражающие эту бактерию.

С самого начала XX века наблюдался неослабевающий интерес к изучению наследования определенных (специфических) признаков у человека и к наследственной передаче желательных и нежелательных признаков у домашних животных и культурных растений. Опираясь на все более глубокое знание генетических закономерностей, ученые-генетики и селекционеры научились почти по заказу выводить породы скота, способные выживать в условиях жаркого климата, коров, дающих много молока с высоким содержанием жира, кур, несущих крупные яйца с тонкой скорлупой, сорта кукурузы и пшеницы, обладающие высокой устойчивостью к определенным болезням.

В 1972 году в США в лаборатории П. Берга была получена первая гибридная (рекомбинантная) ДНК. Захватывающие идеи в области генетики человека и генетические методы исследования стали широко разрабатываться и применяться и в самой медицине. В 70-е годы началась расшифровка генома человека. Вот уже более десятков лет существует проект под названием «Геном человека». Из 3 миллиардов пар нуклеотидов, расположенных в виде сплошных непрерывных пассажей, прочтено пока всего около 10 миллионов знаков. Вместе с тем создаются и новые генетические методики, которые увеличивают скорость прочтения ДНК. Директор медико-генетического Центра Российской Академии медицинских наук В.И. Иванов определенно полагает, что «весь геном будет прочитан примерно к 2020 году».

3. Генная инженерия как наука. Методы генной инженерии

Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А.А.). По Э.С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.

Речь идет о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата рецепиентного организма и сообщают ему новые уникальные генетические, биохимические, а затем и физиологические свойства.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

Технология рекомбинантных ДНК использует следующие методы:

Специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

Быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

Конструирование рекомбинантной ДНК;

Гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;

Клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

Введение рекомбинантной ДНК в клетки или организмы.

4. Области применения генной инженерии

Совершаемые в настоящее время научные открытия в области генетики человека имеют на самом деле революционное значение, поскольку речь идет о возможности создания «карты генома человека», или «патологической анатомии генома человека». Эта генетическая карта позволит установить на длинной спирали ДНК местонахождение генов, несущих ответственность за определенные наследственные заболевания. Как полагают ученые-генетики, эти неограниченные возможности легли в основу идеи применения в клинической практике, так называемой генной терапии, представляющей собой такое направление лечения больных, которое связано с заменой пораженных генов при помощи высоких медико-биологических технологий и генной инженерии. Вторжение в состав генных систем человека и обеспечение их жизнедеятельности возможно как на уровне соматических (всяких телесных, обладающих определенными структурными и функциональными различиями) клеток тела, так и на уровне половых, воспроизводящих (герминативных) и зародышевых (эмбриональных) клеток.

Генная инженерия как разновидность терапии - лечения определенного генетически обусловленного заболевания - связана с поставкой соответствующей недефектной молекулы ДНК с целью замены при помощи ее того гена - участка хромосомы, который содержит в себе дефект, либо для встраивания в генетический материал человека путем слияния с так называемыми соматическими клетками тела человека, имеющими генетический дефект. Задачей генной инженерии в отношении человека является оказание соответствующего целенаправленного воздействия на определенный ген для его исправления в сторону правильного функционирования и обеспечение человека, страдающего от наследственного заболевания, нормальным, неизмененным вариантом гена. В отличие от медикаментозной, лекарственной терапии такая терапия, называемая генной инженерией, сможет, по всей видимости, предоставить больному длительное, пролонгированное, высокоэффективное, приносящее большое облегчение и пользу лечение.

Однако все современные методы введения ДНК в живые организмы не способны направить и доставить ее к определенной популяции клеток, содержащих измененный и потому превратно функционирующий ген. Другими словами, так называемый направленный перенос, транспорт генов в условиях организма (в модели «in vivo») в настоящее время невозможен.

Иной методологический подход, основанный на извлечении из организма больного определенной популяции клеток, содержащих пораженный ген, и манипуляции с генетическим материалом путем замены дефектных генов в клетках при помощи генной инженерии (в модели «in vitro») и возвращении их в то место в организме, откуда они были взяты у больного, в настоящее время в условиях медико-генетических центров возможен. Этот метод генной терапии посредством генной инженерии уже был использован при опытной попытке излечить двух больных, страдавших редким генетически обусловленным заболеванием, так называемой бета-талассемией, которое, подобно серповидно-клеточной анемии, также вызывается наличием в эритроцитах неправильно устроенного и потому неверно функционирующего белка. Суть манипуляции заключалась в том, что из костного мозга этих больных были выделены так называемые стволовые клетки, в хромосомы которых был введен ответственный за выработку нормального белка гемоглобулина участок ДНК - ген. После того как оставшиеся в костном мозге больных неправильно функционировавшие стволовые клетки были почти полностью разрушены, пациентам были введены улучшенные при помощи генной инженерии стволовые клетки. К сожалению, эти две попытки оказались клинически неудачными, так как больные скончались. Этот первый случай применения генной инженерии в условиях больничного стационара не был разрешен и не был одобрен соответствующими контрольными комитетами, и его участники были решительно осуждены за грубое нарушение правил проведения научно-исследовательских работ в области генетики человека.

Совсем к иным последствиям может привести генная инженерия воспроизводящих (половых) клеток, поскольку введение ДНК в эти клетки отличается от исправления генетического дефекта в соматических (телесных, неполовых) клетках. Известно, что внедрение других генов в хромосомы половых клеток приводит к их передаче последующим поколениям. В принципе можно представить прибавление определенных участков ДНК взамен дефектных участков к генетическому материалу каждой воспроизводящей клетки определенного человека, который поражен той или иной генетически предопределенной болезнью.

Действительно, этого удалось достичь у мышей. Так, из яичника самки была получена яйцеклетка, которая впоследствии и была оплодотворена в пробирке (in vitro), а затем в хромосому оплодотворенной яйцеклетки был введен инородный участок ДНК. Сама же оплодотворенная яйцеклетка с измененным геномом была имплантирована (внедрена) в материнскую матку мыши-самки. Источником инородной ДНК в одном опыте был генетический материал кролика, а в другом - человека.

Для того чтобы обнаружить в период внутриутробного развития плода вероятность рождения ребенка с определенными генетическими отклонениями, такими, например, как синдром Дауна или болезнь Тай-Сакса, применяют научно-исследовательскую методику так называемого амниоцентеза - предродового анализа, во время которого проба биологической жидкости, содержащей зародышевые клетки, берется из амниотического мешка на ранней стадии второго триместра беременности. Помимо этого, свое дальнейшее развитие получила методика извлечения различных клеток зародыша из пробы плацентарной крови матери. Полученные таким образом утробные клетки могут быть в настоящее время использованы только для выявления ограниченного числа генетически обусловленных заболеваний, при которых имеются выраженные, грубые нарушения в структуре ДНК и определяемые при помощи биохимических анализов изменения. Генная инженерия с использованием рекомбинантных ДНК при внутриутробном исследовании открывает возможность правильно поставить диагноз различных и многочисленных наследственных заболеваний.

В этом случае разрабатываются методики по созданию так называемых генных «зондов», используя которые можно установить, имеется ли в хромосоме нормальный, неизмененный ген либо присутствует аномальный, дефектный ген. Помимо того, связанная с использованием рекомбинантных ДНК генная инженерия, находящаяся на одном из этапов своего становления, в будущем позволит проводить так называемое «планирование» генов человека, с тем расчетом, чтобы определенный ген, несущий в себе искаженную, патологическую информацию и потому представляющий интерес для врачей-генетиков, мог бы быть выявлен вовремя и достаточно быстро по аналогии с методикой использования другого «меченого» гена. Эта сложная медико-биологическая методика должна помочь при определении местонахождения любого гена в утробных клетках, а не только в тех, вероятность обнаружения в которых различных нарушений осуществима при помощи методики амниоцентезиса.

В связи с этим в последние годы возникли новые разделы медико-биологических наук, такие, как, например, высокие ДНК-технологии, эмбриональная терапия и клеточная терапия (цито-терапия), то есть внутриутробное диагностирование и лечение генетически обусловленного заболевания как на этапе образования и развития зародыша (эмбриона), так и на стадии созревания плода. Вторжения в эмбриональный материал и манипуляции с ним оказывают непосредственное воздействие на наследование генетических изменений, поскольку обладают способностью передаваться из поколения в поколение. Мало того, само генетическое диагностирование начинает перерастать в генетическое прогнозирование, то есть в определение, будущей участи человека, закрепляя главные революционные перемены в самой медицине, которая в итоге проведения сложных медико-генетических опытов и методик получила возможность задолго до появления «клинической картины болезни», подчас даже до самого рождения человека, определить, какие наследственные недуги ему грозят. Таким образом, благодаря усилиям врачей-генетиков и специалистов в области генной инженерии зародилась в недрах медико-биологических наук так называемая «прогностическая медицина», то есть медицина, «делающая прогнозы на будущее».

Вместе с тем, различные технологии и методики генной инженерии позволяют предсказать еще во внутриутробном периоде развития ребенка, до его рождения, не только наличие у него определенного наследственного заболевания, но и подробно описать медико-генетические свойства растущего эмбриона и плода.

По мере накопления новых данных по генетическому картированию генома человека и описанию (секвенированию) его ДНК, а также потому, что разрабатываемые современные методы исследования ДНК-полиморфизмов позволяют сделать доступной генетическую информацию о тех или иных структурно-функциональных (включая патологические) особенностях организма человека, которые, по всей видимости, проявятся в будущем, но еще не заметны теперь, становится возможным получение при помощи медико-генетической диагностики всех генетических сведений о ребенке не только преклинически, то есть до проявления определенного наследственного заболевания, и пренатально, то есть до его рождения, но и прецептивно, то есть даже до его зачатия.

Во вполне обозримом будущем, благодаря успеху и прогрессу в области медико-генетической диагностики, можно будет по данным ДНК-диагностики достаточно уверенно судить о том, например, каким будут рост человека, его умственные способности, предрасположенность к определенным заболеваниям (в частности, к онкологическим или психическим), обреченность на проявление и развитие каких-либо наследственных болезней.

Современные медико-биологические технологии позволяют обнаруживать различные нарушения в генах, способные проявить себя и вызвать определенные недуги, не только на стадии выраженного клинически заболевания, но и тогда, когда никаких признаков патологии еще нет и сама болезнь заявит о себе не так скоро. Примерами тому могут быть поражающие человека в возрасте старше 40 лет, а то и в 70 лет, болезнь Альцгеймера и хорея Гентингтона. Однако и в этих случаях возможно обнаружение генов, способных вызвать подобные болезни у человека, даже до зачатия самого больного. Известно также, что и сахарный диабет может быть отнесен к числу таких заболеваний. Предрасположенность к этому заболеванию и сама генетически обусловленная патология передаются по наследству и могут проявить себя в случае несоблюдения определенного образа жизни в зрелом или пожилом возрасте. Можно с достаточной уверенностью заявить о том, что если оба родителя или один из них страдают от диабета, то вероятность наследования гена «диабета» либо совокупности таких генов передается детям.

При этом оказывается возможным провести соответствующие медико-биологические исследования и поставить верный диагноз при наличии микроскопически малых количеств биологического материала. Иногда для этого бывает достаточно нескольких отдельных клеток, которые будут размножены в культуре in vitro, и по ним будет получен «генетический портрет» испытуемого лица, конечно, не по всем генам его генома (их ведь десятки тысяч!), а по тем из них, в отношении которых существуют веские основания подозревать наличие определенных дефектов. Одновременное развитие методов клеточной и генной инженерии позволит на последующих этапах познания генома открыть практическую возможность произвольно, и, прежде всего в терапевтических целях, изменять последовательность и порядок генов, их состав и строение.

Медицина не единственная область применения генной инженерии. Различают генную инженерию растений, генную инженерию бактериологических клеток.

В последнее время появились новые возможности в получении «съедобных» вакцин на основе трансгенных растений.

По трансгенным растениям в мире достигнуты большие успехи. Они во многом связаны с тем, что проблема получения организма из клетки, группы клеток или незрелого зародыша у растений сейчас не представляет большого труда. Клеточные технологии, культура тканей и создание регенерантов широко применяются в современной науке.

Рассмотрим достижения в области растениеводства, которые были получены в Сибирском институте физиологии и биохимии растений СО РАН.

Так, в последние годы получен целый ряд трансгенных растений путем переноса в их геном генов ugt, acp, acb, accc и других, выделенных из различных растительных объектов.

В результате введения этих генов появились трансгенные растения пшеницы, картофеля, томата, огурца, сои, гороха, рапса, клубники, осины и некоторых других.

Введение генов производилось либо «обстрелом» тканей из «генной пушки» (конструкция которой разработана в нашем институте), или генетическим вектором на основе агробактериальной плазмиды, имеющей встроенные целевые гены и соответствующие промоторы.

В итоге образован ряд новых трансгенных форм. Вот некоторые из них.

Трансгенная пшеница (2 сорта), обладающая значительно более интенсивным ростом и кущением, предположительно более устойчива к засухе и другим неблагоприятным факторам среды. Продуктивность ее и наследование приобретенных свойств изучаются.

Трансгенный картофель, наблюдения за которым ведутся уже три года. Он стабильно дает урожай на 50--90 процентов выше контроля, приобрел практически полную устойчивость к гербицидам ауксинового ряда и, кроме того, его клубни значительно меньше «чернеют» на срезах за счет снижения активности полифенолоксидазы.

Трансгенный томат (несколько сортов), отличающийся большей кустистостью и урожайностью. В условиях теплицы его урожай — до 46 кг с квадратного метра (в два с лишним раза выше контроля).

Трансгенный огурец (несколько сортов) дает большее количество фертильных цветков и, следовательно, плодов с урожайностью до 21 кг с квадратного метра против 13,7 в контроле.

Имеются трансгенные формы и других растений, многие из которых также обладают рядом полезных хозяйственных признаков.

Генная инженерия - это наука сегодняшнего и завтрашнего дня. Уже сейчас в мире трансгенными растениями засеваются десятки миллионов гектаров, создаются новые лекарственные препараты, новые продуценты полезных веществ. Со временем генная инженерия станет все более мощным инструментом для новых достижений в области медицины, ветеринарии, фармакологии, пищевой промышленности и сельском хозяйстве.

5. Научные факты опасности генной инженерии

Следует отметить, что наряду с прогрессом, который несет в себе развитие генной инженерии, выделяют и некоторые факты опасности генной инженерии, основные из которых представлены ниже.

1. Генная инженерия в корне отличается от выведения новых сортов и пород. Искусственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании.

2. В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.

3. В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худшем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о подобного рода возможностях еще очень неполны.

4. Не существует совершенно надежных методов проверки на безвредность. Более 10% серьезных побочных эффектов новых лекарств не возможно выявить, несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незамеченными, вероятно, значительно больше, чем в случае лекарств.

5. Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне нечувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незамеченными.

6. Созданные до настоящего времени с помощью генной инженерии продукты питания не имеют сколько-нибудь значительной ценности для человечества. Эти продукты удовлетворяют, главным образом, лишь коммерческие интересы.

7. Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесенных туда, совершенно недостаточны. Не доказано еще, что модифицированные с помощью генной инженерии организмы не окажут вредного воздействия на окружающую среду. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериями и вирусами. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.

8. Могут возникнуть новые и опасные вирусы. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов (так называемая рекомбинация). Такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы могут стать также менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей.

9. Знания о наследственном веществе, ДНК, очень неполны. Известно о функции лишь трех процентов ДНК. Рискованно манипулировать сложными системами, знания о которых неполны. Обширный опыт в области биологии, экологии и медицины показывает, что это может вызвать серьезные непредсказуемые проблемы и расстройства.

10. Генная инженерия не поможет решить проблему голода в мире. Утверждение, что генная инженерия может внести существенный вклад в разрешение проблемы голода в мире, является научно необоснованным мифом.

Заключение

Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов, прежде всего, связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Список литературы

2. Ли А., Тинланд Б. Интеграция т-ДНК в геном растений: прототип и реальность // Физиология растений. 2000. - Том 47. - № 3.

3. Лутова Л. А., Проворов Н. А., Тиходеев О. Н. и др. Генетика развития растений. - СПб.: Наука, 2000. - 539с.

4. Лядская М. Генная инженерия может все - даже вырастить вакцину в огороде // Фармацевтический вестник. - 2000. - №7.

5. Романов Г. А. Генетическая инженерия растений и пути решения проблемы биобезопасности // Физиология растений, 2000. - Том 47. - № 3.

6. Саляев Р. Мифы и реальности генной инженерии // Наука в Сибири. - 2002. - №7.

7. Фаворова О. О. Лечение генами - фантастика или реальность? // Фармацевтический вестник. - 2002. - №5.


Кузьмина Н.А. Основы биотехнологии: учебное пособие. - Омск: ОГПУ, 2001. - 256с.

Лутова Л. А., Проворов Н. А., Тиходеев О. Н. и др. Генетика развития растений. - СПб.: Наука, 2000. - 539с.

Лядская М. Генная инженерия может все - даже вырастить вакцину в огороде // Фармацевтический вестник. - 2000. - №7.

Кузьмина Н.А. Основы биотехнологии: учебное пособие. - Омск: ОГПУ, 2001. - 256с.

Фаворова О. О. Лечение генами - фантастика или реальность? // Фармацевтический вестник. - 2002. - №5.

Саляев Р. Мифы и реальности генной инженерии // Наука в Сибири. - 2002. - №7.

Кузьмина Н.А. Основы биотехнологии: учебное пособие. - Омск: ОГПУ, 2001. - 256с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Генетическая инженерия, совокупность методов биохимии и молекулярной генетики, с помощью которых осуществляется направленное комбинированное генетической информации любых организмов.

Генетическая инженерия позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удаленными видами организмов, и создавать клетки и организмы с не существующими в природе сочетаниями генов, с заданными наследуемыми свойствами. Главным объектом генно-инженерного воздействия является носитель генетической информации - дизоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактически универсальность генетического кода обеспечивает экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии нуклеиновых кислот, выявление молекулярных особенностей организации и функционирования генов (в т. ч.установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК. Важными предпосылками для появления генетической инженерии явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами, что позволило сформулировать представление о векторах: молекулах - переносчиках генов. Огромное значение в развитии методологии генетической инженерии сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определенные последовательности - сайты - и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусственных структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов. Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).

Принципы созд ания рекомбинантных молекул ДНК

Термин «Генетическая инженерия» получил распространение после того, как в 1972 П. Бергом с сотрудниками впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, ее вируса (бактериофага a) и ДНК обезьяньего вируса SV40. В 1973 С. Коэн с сотрудниками использовали плазмиду pSC101 и рестриктазу (EcoRI), которая раскрывает ее в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4 - 6 нуклеотидов). Их называли «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала, по крайней мере, один фрагмент чужеродной ДНК, встроенной в EcoRI-сайт плазмиды. Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.

Основная современная стратегия получения рекДНК сводится к следующему:

1) В ДНК плазмиды или вируса, способных размножаться независимо от хромосомы, встраивают принадлежащие другому организму фрагменты ДНК, содержащие определенные гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;

2) Образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;

3) Отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению.

Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клетик, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рек ДНК, а следовательно, и копий целевых генов в ее составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определенную рек ДНК. На заключительном этапе производится идентификация клонов, в которых заключен нужный ген. Одна основывается на том, что вставка в рек ДНК детерминирует какое-то уникальное свойство содержащей его клетки (например, продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа: ни одна из клеток, где происходит клонирование рек ДНК, не должнаполучить более одной плазмидной молекулы или вирусной частицы; последние должны быть способны к репликации.

В качестве векторных молекул в генетической инженерии используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетических маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованиям, например, лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, а также по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплфикацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).

Одна из важнейших задач генетической инженерии - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных, которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т. к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнается РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.

Поскольку генетический код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т. к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник, из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие, на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделенной интронами), можно встраивать в подходящий молекулярный вектор.

Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетического кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, т. к. состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.

Значение генетической инженерии

Генетическая инженерия значительно расширила экспериментальные границы молекулярной биологии, поскольку стало возможным вводить в различные типы клеток чужеродную ДНК и исследовать ее функции. Это позволило выявлять общебиологические закономерности организации и выражения генетической информации в различных организмах. Данный подход открыл перспективы создания принципиально новых микробиологических продуцентов биологически активных веществ, а также животных и растений, несущих функционально активные чужеродные гены. Многие ранее недоступные биологически активные белки человека, в т. ч. интерфероны, интерлейкины, пептидные гормоны, факторы крови, стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Все это дало мощный импульс к развитию биотехнологии.

Главными объектами генетической инженерии являются бактерии Escherichia coli (кишечная палочка) и Bacillus subtilis (сенная палочка), пекарские дрожжи Saccharomices cereuisiae, различные линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами генетической инженерии создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов млекопитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм животных и человека рекДНК, направляющих продукцию в их клетках антигенов различных инфекционных агентов (ДНК-вакцинация). Новейшим направлением генетической инженерии является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций. генетический инженерия рекомбинантный молекула

Опасения, связанные с проведением генно-инженерных экспериментов

Вскоре после первых успешных экспериментов по получению рек ДНК группа ученых во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетическую информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологическое равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того, отмечалось, что вмешательство человека в генетический аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 эти проблемы обсуждались на международной конференции в Асиломаре (США). Ее участники пришли к заключению о необходимости продолжения использования методов генетической инженерии, но при обязательном соблюдении определенных правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приемам, обычным в микробиологических исследованиях, созданию специальных защитных устройств, препятствующих распространению биологических агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.

Часто под генетической инженерией понимают только работу с рек ДНК, а как синонимы генетической инженерии используются термины «молекулярное клонирование», «клонирование ДНК», «клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину «генетическая инженерия». В России как синоним генетической инженерии широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: генетическая инженерия ставит целью создание организмов с новой генетической программой, в то время как термин «генная инженерия» поясняет, как это делается - путем манипуляции с генами.

Размещено на Allbest.ru

Подобные документы

    Генная инженерия как раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. История ее возникновения и развития, этапы генного синтеза. Безопасна ли генная модификация? Примеры ее применения.

    реферат , добавлен 23.11.2009

    Понятие и основные методы генной инженерии. Методика выделения ДНК на примере ДНК плазмид. Принципы действия системы рестрикции-модификации. Перенос и обнаружение клонируемых генов в клетках. Конструирование и введение в клетки рекомбинантных молекул ДНК.

    реферат , добавлен 23.01.2010

    Исследование сущности и предназначения генной инженерии - метода биотехнологии, который занимается исследованиями по перестройке генотипов. Метод получения рекомбинантных, то есть содержащих чужеродный ген, плазмид - кольцевых двухцепочных молекул ДНК.

    презентация , добавлен 19.02.2012

    Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.

    реферат , добавлен 18.04.2013

    Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад , добавлен 10.05.2011

    Генная инженерия как метод биотехнологии, который занимается исследованиями по перестройке генотипов. Этапы процесса получения рекомбинантных плазмид. Конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции.

    презентация , добавлен 20.11.2011

    Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа , добавлен 11.07.2012

    Генетическая инженерия - инструмент биотехнологии для получения рекомбинантных РНК и ДНК, осуществления манипуляций с генами и белковыми продуктами, введения их в другие организмы. Современное состояние науки о наследственности и хромосомных болезнях.

    реферат , добавлен 23.06.2009

    Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат , добавлен 23.07.2008

    Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

Энциклопедичный YouTube

  • 1 / 5

    Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма . В отличие от традиционной селекции , в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования . Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

    Основой микробиологической, биосинтетической промышленности является бактериальная клетка. Необходимые для промышленного производства клетки подбираются по определённым признакам, самый главный из которых - способность производить, синтезировать, при этом в максимально возможных количествах, определённое соединение - аминокислоту или антибиотик, стероидный гормон или органическую кислоту. Иногда надо иметь микроорганизм, способный, например, использовать в качестве «пищи» нефть или сточные воды и перерабатывать их в биомассу или даже вполне пригодный для кормовых добавок белок. Иногда нужны организмы, способные развиваться при повышенных температурах или в присутствии веществ, безусловно смертельных для других видов микроорганизмов.

    Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку - от обработки сильнодействующими ядами, до радиоактивного облучения. Цель этих приёмов одна - добиться изменения наследственного, генетического аппарата клетки. Их результат - получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели. Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной биотехнологии .

    Но их возможности ограничиваются природой самих микроорганизмов. Они не способны синтезировать ряд ценных веществ, которые накапливаются в растениях, прежде всего в лекарственных и эфирномасличных. Не могут синтезировать вещества, очень важные для жизнедеятельности животных и человека, ряд ферментов, пептидные гормоны, иммунные белки, интерфероны да и многие более просто устроенные соединения, которые синтезируются в организмах животных и человека. Разумеется, возможности микроорганизмов далеко не исчерпаны. Из всего изобилия микроорганизмов использована наукой, и особенно промышленностью, лишь ничтожная доля. Для целей селекции микроорганизмов большой интерес представляют, например, бактерии анаэробы , способные жить в отсутствие кислорода, фототрофы , использующие энергию света подобно растениям, хемоавтотрофы , термофильные бактерии, способные жить при температуре, как обнаружилось недавно, около 110 °C, и др.

    И всё же ограниченность «природного материала» очевидна. Обойти ограничения пытались и пытаются с помощью культур клеток и тканей растений и животных. Это очень важный и перспективный путь, который также реализуется в биотехнологии. За последние несколько десятилетий учёные создали методы, благодаря которым отдельные клетки тканей растения или животного можно заставить расти и размножаться отдельно от организма, как клетки бактерий. Это было важное достижение - полученные культуры клеток используют для экспериментов и для промышленного получения некоторых веществ, которые с помощью бактериальных культур получить невозможно.

    Другое направление исследований - удаление из ДНК генов, ненужных для кодирования белков и функционирования организмов и создание на основе таких ДНК искусственных организмов с "усеченным набором" генов. Это позволяет резко повысить устойчивость модифицируемых организмов к вирусам .

    История развития и достигнутый уровень технологии

    Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии . Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Фредериком Сенгером и американским учёным Уолтером Гилбертом (Нобелевская премия по химии 1980 года). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

    Основные этапы решения генно-инженерной задачи следующие:

    1. Получение изолированного гена.
    2. Введение гена в вектор для переноса в организм.
    3. Перенос вектора с геном в модифицируемый организм.
    4. Преобразование клеток организма.
    5. Отбор генетически модифицированных организмов (ГМО ) и устранение тех, которые не были успешно модифицированы.

    Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию . Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты - олигонуклеотиды . Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага , в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК.

    Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации . В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами . Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.

    Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция .

    Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование , то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

    Применение в научных исследованиях

    Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

    Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем . В 2016 в США группа учёных получила одобрение на клинические испытания метода лечения рака с помощью собственных иммунных клеток пациента, подвергаемых генной модификации с применением технологии CRISPR /Cas9 .

    Клеточная инженерия

    Клеточная инженерия основана на культивировании растительных и животных клеток и тканей, способных вне организма производить нужные для человека вещества. Этот метод используется для клонального (бесполого) размножения ценных форм растений; для получения гибридных клеток, совмещающих свойства, например, лимфоцитов крови и опухолевых клеток, что позволяет быстро получить антитела.

    Генетическая инженерия в России

    Отмечается, что после введения государственной регистрации ГМО заметно возросла активность некоторых общественных организаций и отдельных депутатов Государственной думы, пытающихся воспрепятствовать внедрению инновационных биотехнологий в российское сельское хозяйство. Более 350 российских ученых подписали открытое письмо Общества научных работников в поддержку развития генной инженерии в Российской Федерации. В открытом письме отмечается, что запрет ГМО в России нанесёт не только ущерб здоровой конкуренции на рынке сельскохозяйственной продукции, но приведёт к значительному отставанию в сфере технологий производства пищевых продуктов, усилению зависимости от импорта продуктов питания, и подорвет престиж России, как государства, в котором официально заявлен курс на инновационное развитие [значимость факта? ] .

    См. также

    Примечания

    1. Александр Панчин Обыгрывая бога // Популярная механика . - 2017. - № 3. - С. 32-35. - URL: http://www.popmech.ru/magazine/2017/173-issue/
    2. In vivo genome editing using a high-efficiency TALEN system (англ.) . Nature . Проверено 10 января 2017.
    3. Элементы - новости науки: Обезьян вылечили от дальтонизма при помощи генной терапии (неопр.) (18 сентября 2009). Проверено 10 января 2017.

    В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

    Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества.

    С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для излечения взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) - игрунка обыкновенная.

    Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

    Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем.

    _____________________________________________________________________________________________

    Генетическая инжене́рия (генная инженерия)

    Это совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

    Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии , используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.


    Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.

    В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200 - 250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков. В 1978 году исследователи из компании "Генентек" впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

    Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

    На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.
    Технология рекомбинантных ДНК сделала возможным нетрадиционный подход "белок-ген", получивший название "обратная генетика". При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом можно исправлять дефектные гены и лечить наследственные заболевания.

    Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.
    Сейчас даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

    Генная инженерия - это область биотехнологий, включающая в себя действия по перестройке генотипов. Уже сегодня генная инженерия позволяет включать и выключать отдельные гены, контролируя таким образом деятельность организмов, а также - переносить генетические инструкции из одного организма в другой, в том числе – организмы другого вида. По мере того, как генетики всё больше узнают о работе генов и белков, всё более реальной становится возможность произвольным образом программировать генотип (прежде всего, человеческий), с лёгкостью достигая любых результатов: таких, как устойчивость к радиации, способность жить под водой, способность к регенерации повреждённых органов и даже бессмертие.

    Генетическая (генная) инженерия

    Генетическая (генная) инженерия – конструирование искусственным путем генетических структур и наследственно измененных организмов. Генетическая инженерия – раздел (прикладная ветвь) молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине. При этом происходит искусственное, целенаправленное изменение генотипа организма (микроорганизма) и формирование новых признаков и свойств. Генная инженерия занимается рашифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов генов в клетки растений и животных с целью направленного изменения их генетических особенностей.

    Хорошо разработанными методами генной инженерии являются трансгенез, микробиологический синтез и др.

    Трансгенез – перенос генов от одного вида организмов в другой. Трансгенез осуществляется путем разрезания и сшивания участков ДНК при участии ферментов – рестриктаз и лигаз.

    Этапы трансгенеза :

    а) выделение генов (фрагментов ДНК) из клеток бактерий, растений или животных с помощью фермента рестриктазы ;

    б) соединение (сшивание) генов (фрагментов ДНК) с плазмидой с помощью фермента лигазы ;

    в) введение гибридной плазмидной ДНК, содержащей нужный ген в клетку хозяина;

    г) копирование (клонирование) этого гена в клетке хозяина и обеспечение его работы по схеме: «Код ДНК – транскрипция – трансляция – белок»

    Инструментами генной инженерии являются открытые в 1974 г ферменты – рестриктазы (рестрикционные эндонуклеазы). Рестриктазы узнают участки (сайты) ДНК, вносят разрезы в цепях ДНК. На концах каждого фрагмента образуются одноцепочечные хвосты, называемые «липкими концами», поскольку они могут, как бы слипаться между собой вследствие комплементарности.

    Рестриктазы узнают в двухцепочечной ДНК определенную, только свою последовательность нуклеотидов ДНК. Затем рестриктаза прикрепляется к распознаваемому участку нуклеотидов и разрезает его в месте прикрепления. Чаще рестриктазы распознают в молекуле ДНК участки длиной в 4–6 пар нуклеотидов и разрезают обе цепи ДНК посередине этих участков или обычно со смещением. Примеры рестриктаз : рестриктаза Eco RI , которая узнает фрагмент ДНК из шести нуклеотидов ГААТТЦ (место разреза между нуклеотидами Г и А обеих цепей ДНК); рестриктаза Hind III распознает участок ААГЦТТ (место разреза между нуклеотидами А и А обеих цепей ДНК); рестриктаза Bam I распознает участок ГГАТЦЦ (место разреза между нуклеотидами Г и Г обеих цепей ДНК); рестриктаза Hae III распознает участок ГГЦЦ (место разреза между нуклеотидами Г и Ц обеих цепей ДНК); рестриктаза Hpa II распознает участок ЦЦГГ(место разреза между нуклеотидами Ц и Ц обеих цепей ДНК).

    Далее для конструирования генетически измененного организма необходимо ввести нужный ген в клетку этого организма. Введение чужеродных генов в организм осуществляется с помощью плазмидного вектора . Вектором является плазмида маленькая кольцевая молекула ДНК, которую извлекают из цитоплазмы бактериальной клетки. Плазмиды – факторы наследственности, расположенные вне хромосом, представляющие собой внехромосомную ДНК .

    Рис . 37.

    А – Схема введения чужеродной ДНК в бактериальную плазмиду с использованием ферментов (рестрикционной эндонуклеазы и лигазы).

    Б – Схема переноса гена человека, ответственного за синтез гормона инсулина и образование векторной ДНК.

    Свойства плазмиды: 1) обладает способностью к автономной репликации; 2) содержит гены, кодирующие антибиотики; 3) способны встраиваться в хромосому клетки-реципиента; 4) распознает участки ДНК, которые могут разрезать ферменты - рестриктазы; 5) рестриктаза может разрезать плазмиду и переводить ее в линейное состояние. Эти свойства плазмиды исследователи используют для получения рекомбинантных (гибридных) ДНК.

    Последовательность введения ДНК в плазмиду (плазмидный вектор) с помощью фермента рестриктазы (рис. 37 А):

    1) рестрикция – разрезание молекулы ДНК рестриктазой, образование фрагментов ДНК и выделение необходимого гена ;

    2) включение выделенного гена в плазмиду , т. е. получение рекомбинантной (гибридной) ДНК путем введения фрагмента чужеродной ДНК в плазмиду;

    3) лигирование – сшивание ферментом лигазой плазмидного (векторного) и чужеродного фрагментов ДНК; при этом концы векторной и чужеродной ДНК (т. н. «клейкие концы») комплементарны друг другу;

    4) трансформация – введение рекомбинантной плазмиды в геном другой клетки (клетки-реципиента), в частности, бактериальной клетки.

    Следует отметить, что плазмиды проникают лишь в часть обработанных бактерий. Трансформированные бактерии вместе с плазмидами приобретают устойчивость к определенному антибиотику, что позволяет их отделить от нетрансформированных, погибающих на среде, содержащей антибиотик. Каждая из трансформированных бактерий, помещенная на питательную среду, размножается и образует колонию из многих тысяч потомков – клон.

    5) скрининг – отбор среди трансформированных бактерий тех, которые содержат плазмиды с нужным геном.

    Трансгенные животные и растения

    Клонированные гены с помощью микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированная клетка, лишенная клеточной стенки) и далее из них выращивают животных, или растения, в геноме которых действуют чужеродные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных организов (трансгенных растений и животных) , поскольку в нем содержатся чужеродные гены. Получены трансгенные мыши, кролики, свиньи, овцы. В их геноме работают гены бактерий, млекопитающих, человека. Получены трансгенные растения (кукуруза, перец, томаты, пшеница, рожь, бобовые, картофель и др.), содержащие гены неродственных видов. Трансгенные растения устойчивы к гербицидам, насекомым, неблагоприятным погным условиям и др. Постепенно решается проблема изменения наследственности многих сельскохозяйственных растений.

    Генетическая карта хромосом. Генная терапия

    Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом. На генетической карте указан порядок расположения генов в хромосоме и расстояния между ними (процент кроссинговера между определенными генами). Так создание новых штаммов микроорганизмов, способных синтезировать гормоны, белки, лекарственные препараты основывается на знании генетических карт микроорганизмов. Генетические карты человека необходимы для медицинской генетики. Знания о локализации гена в определенной хромосоме используются при диагностике ряда наследственных заболеваний, а также в генной терапии для исправления структуры и функции генов.



    Генная терапия – замена дефектных генов на неповрежденные, или исправление их структуры.

    Для борьбы с наследственными, онкологическими и возрастными заболеваниями разрабатываются методы генной терапии, безопасные для клеток человека. С использованием методов генной терапии можно заменять в организме дефектные гены, в которых произошли точковые мутации, на неповрежденные. В наше время ученые осваивают методы биобезопасности человека: внедрение нужных генов в клетки организма человека. Это позволит избавиться от многих наследственных заболеваний.

    Микробиологический синтез

    Методы генной инженерии позволили осуществить микробиологический синтез (рис. 37 Б). С помощью методов генной инжененрии микробиологи смогли получить штаммы бактерий, благодаря которым успешно осуществляется микробиологический синтез. Для этого производится отбор необходимых бактериальных клеток, не содержащих плазмид. Выделяются молекулы ДНК с заданной последовательностью нуклеотидов, определяющих развитие нужного признака. Плазмида с встроенным участком ДНК (геном) вводится в бактериальную клетку, в которой встроенный участок ДНК начинает работать (идут процессы репликации, транскрипции, трансляции), и в бактериальной клетке синтезируется нужный белок (интерферон, генферон, иммуноглобулин, инсулин, соматотропин и др.). В промышленных количествах получены гормоны (инсулин, соматотропин), многие аминокислоты, антибиотики, вакцины и др. Такие бактерии размножают в промышленных масшабах и производят необходимый белок.

    С помощью генетических методов получен штамм микроорганизма Pseudomonas denitrificans, который производит в десятки раз больше витамина C, витаминов группы B, чем исходная форма; новый штамм бактерии микрококкус глутамикус выделяет в сотни раз больше аминокислоты лизина, чем исходная (дикая) культура лизинобразующей бактерии.

    Клеточная инженерия

    Клеточная инженерия – культивирование отдельных клеток или тканей на специальных искусственных средах, разработка методов создания клеток нового типа путем их гибридизации, замены хромосом и выращивание из них гибридов.

    1. Метод культуры тканей

    Метод заключается в культивировании изолированных клеток или кусочков тканей на искусственной питательной среде в соответствующих микроклиматических условиях. В результате культивирования растительные клетки или кусочки ткани регенерируют в целое растение. Путем микроклонального размножения отдельных клеток, или кусочков тканей (чаще верхушечной меристемы стебля или корня) можно получить множество полезных растений. Микроклиматические условия и питательные среды для регенерации декоративных, культурных, лекарственных растений подбираются экспериментально. Культура тканей также используется для получения диплоидных растений после обработки исходных гаплоидных форм колхицином.

    2. Соматическая гибридизация

    Соматическая гибридизация включает получение гибридных клеток, а из них – новых форм; искусственное оплодотворение яйцеклеток.

    Получение новых гибридных растений путемслияния протопластов (ядро и цитоплазма) различных клеток в культуре тканей. Для слияния протопластов с помощью ферментов разрушают стенку растительной клетки и получают изолированный протопласт. При культивировании таких протопластов разных видов растений осуществляется их слияние и образование форм с новыми полезными признаками. Искусственное оплодотворение яйцеклеток осуществляют посредством метода экстракорпорального оплодотворения (ЭКО), позволяющего произвести оплодотворение яйцеклеток в пробирке с последующей имплантацией эмбриона на ранней стадии развития, и преодолеть некоторые формы бесплодия у человека.

    3. Хромосомная инженерия – замена отдельных хромосом в клетках растений или добавление новых. У диплоидов имеются пары гомологичных хромосом, и такие организмы называются дисомики. Если в одной какой-либо паре оставить одну хромосому, то формируется моносомик. Если добавить в какую-либо пару третью гомологичную хромосому, то формируется трисомик и т. д. Возможна замена отдельных хромосом одного вида на хромосомы другого вида. Полученные формы называются замещенными .