Единицей напряженности магнитного поля в си является. Напряженность магнитного поля, его базовые характеристики. Примеры задач

B и вектора намагниченности M .

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током , в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ - с точностью до постоянного размерного коэффициента) с вектором B 0 , который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B . Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи , которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи - то есть токи молекулярные и т. п. - учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля . Энергия магнитного поля как такового выражается только через фундаментальное B . Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Определение уровня напряженности магнитного поля расчетным путем производится, как правило, только на стадии проектирования установок, являющихся источниками магнитного поля. Во всех остальных случаях, таких как: ввод в эксплуатацию новых установок, изменение их конструкции, организация новых рабочих мест и т.д., необходимо проводить экспериментальную проверку.

Контроль уровней постоянного магнитного поля должен производиться путем измерения значений магнитной индукции или напряженности магнитного поля на постоянных рабочих местах персонала или в случае отсутствия постоянного рабочего места в нескольких точках рабочей зоны, расположенных на разных расстояниях от источника поля при всех режимах работы источника или только при максимальном режиме. При гигиенической оценке уровней постоянного магнитного поля на рабочем месте определяющим является наибольшее из всех зарегистрированных значений.

Измерения постоянного магнитного поля следует проводить на рабочих местах и в точках рабочей зоны, расположенных на минимальном расстоянии от источника, в которых находится обслуживающий персонал, на трех уровнях от поверхности поля: 0.5; 1.0 и 1.7 м (рабочая поза «стоя») и 0.5; 0.8 и 1.4 м (рабочая поза «сидя»).

При локальном воздействии постоянного магнитного поля измерения проводятся на уровне конечных фаланг пальцев кистей, середины предплечья, середины плеча. Определяющим значением измеряемых величин является их наибольшее значение.

В случае, когда при выполнении технологических операций возникает необходимость непосредственного контакта рук человека с поверхностью источника (поверхностью постоянного магнита), измерения должны проводиться путем также непосредственного контакта датчика прибора с поверхностью источника.

Контроль уровней магнитного поля промышленной частоты проводится при соблюдении тех же условий, что и при контроле электрического поля частотой 50 Гц.

Измерение напряженности (индукции) магнитного поля должно производиться на всех рабочих местах обслуживающего электроустановки персонала, в местах прохода людей (вблизи экранированных токопроводов, под шинными мостами и т.п.), а также в производственных помещениях с постоянным пребыванием персонала, которые расположены на расстоянии менее 20 м от токоведущих частей электроустановок.

Измерения должны производиться на рабочих местах на высоте 0.5; 1.5 и 1.8 м от поверхности земли (пола). При нахождении источника магнитного поля под рабочим местом измерения должны проводиться также на уровне пола помещения, земли. Определяющим является наибольшее зарегистрированное значение.

Не допускается проведение измерений при наличии осадков, температуре и влажности, выходящих за предельные рабочие параметры средств измерений.

Измерение напряженности магнитного поля (или магнитной индукции) производится с помощью специальных приборов. Выбор того или иного прибора зависит от уровня измеряемого поля, от частоты, от места и от цели, с которой производится измерение. Однако во всех случаях приборы должны обеспечивать погрешность измерения не более ±10 %.

Рекомендуется использовать приборы с трехкоординатным индукционным датчиком, обеспечивающим автоматическое измерение максимального модуля напряженности магнитного поля при любой ориентации датчика в пространстве.

Приведем характеристики некоторых приборов, применяемых для измерения уровней магнитных полей.

Миллитесламетр портативный универсальный ТП-2У предназначен для измерения магнитной индукции постоянных, переменных и импульсных магнитных полей. Прибор имеет диапазон измерений от 0.01 до 1999 мТл. При измерении амплитудного значения магнитной индукции переменного магнитного поля частота поля может изменяться от 0.2 до 2000 Гц.

Миллитесламетр портативный модульный трехкомпонентный МПМ-2 предназначен для измерения модуля и трех взаимно-перпендикулярных составляющих B X , B Y , B Z вектора магнитной индукции постоянных и переменных магнитных полей в диапазоне от 0.01 до 199.9 мТл. Удобен при контроле магнитных полей на рабочих местах, в помещениях и в полевых условиях. При измерении магнитной индукции переменного поля частота поля может изменяться от 40 до 200 Гц.

Измеритель переменного магнитного поля ИМП-0.4 имеет две полосы частотного диапазона. В полосе 1 частота сигнала может изменяться от 5 до 2000 Гц, а уровень измеряемой индукции от 200 до 5000 нТл. Полоса 2 имеет частотный диапазон от 2 до 400 кГЦ и уровень измеряемой индукции от 10 до 1000 нТл.

Измеритель переменного магнитного поля ИМП-0.5 состоит из двух блоков ИМП-0.5/1 и ИМП-0.5/2. Первый блок имеет диапазон частот от 5 до 2000 Гц и диапазон измерения от 100 до 2000 нТл. Второй блок имеет диапазон частот от 2 до 400 кГц и диапазон измерения от 10 до 200 нТл.

Приборы ИМП-04 и ИМП-05 предназначены для измерения среднеквадратических значений магнитной индукции низкочастотных магнитных полей вблизи различных технических средств, в том числе компьютеров, при их сертификации, при контроле норм в области охраны природы, а также при аттестации рабочих мест по условиям труда в соответствии с санитарными нормами (СанПиН 2.2.542-96 ).

Измеритель параметров электромагнитного поля промышленной частоты ЭМППЧ-метр предназначен для измерения среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты (50 Гц) в жилых и рабочих помещениях при наличии в них электрооборудования силового, хозяйственного, коммутационного и информационного назначения, а также при проведении комплексного санитарно-гигиенического обследования территорий.

Прибор обеспечивает измерение полей, возбуждаемых промышленными электроустановками, электросетевым оборудованием, медицинской и бытовой электроаппаратурой в соответствии с требованиями ГОСТ 12.1.002-84 , МСанПиН 001-96 , СанПиН 2.1.2.1002-00 .


Прибор имеет диапазон измерения напряженности магнитного поля от 10 до 10000 А/м.

Измеритель напряженности поля промышленной частоты ПЗ-50 предназначен для измерения напряженности электрического и магнитного полей промышленной частоты (50 Гц) и применяется для контроля ПДУ электрического и магнитного поля согласно ГОСТ 12.1.002-84 . Прибор имеет диапазон измерения напряженности магнитного поля от 0.01 до 20000 А/м.

Анализатор переменного магнитного поля типа EFA-1 имеет трехкоординатный датчик, встроенный в корпус прибора и позволяющий автоматически определять максимальный модуль индукции магнитного поля при любом положении в данной точке пространства. Прибор имеет встроенный частотомер и позволяет проводить измерения индукции МП в диапазоне частот 5 – 30 кГц, в т. ч. при фиксированной частоте 50 ± 5 % Гц, имеет цифровое и аналоговое отсчетное устройство, работающие одновременно. Отсчет показаний возможен в действующих и максимальных значениях. Прибор снабжен многофункциональным жидкокристаллическим индикатором с подсветкой, позволяющим осуществлять работу при малой освещенности. У прибора имеется меню пользователя, позволяющее устанавливать требуемый предел измерений, частоту (фиксированную или диапазон), режим работы (непрерывный отсчет показаний или выделение наибольшего значения в данной точке измерений), измеряемое значение (действующее или максимальное). Возможно использование прибора как индикатора при установке (через меню) значения ПДУ. Индикация – световой и звуковой сигнал. Анализатор имеет следующие технические характеристики: пределы измерений индукции МП – 5 нТл – 10 мТл; погрешность измерений – ± 3 или ± 5 % (в зависимости от типа датчика); питание – 5 стандартных гальванических элементов (непрерывная работа 20 ч). Укомплектован зарядным устройством; габариты – 110 х 200 х 60 мм; масса (с элементами питания) – 1000 г; допустимая температура окружающей среды – 0 – 50 °С; относительная

влажность воздуха – до 95 %; имеется возможность подключения к ПЭВМ; соответствует Международным стандартам ISO 9001 и SENELEC50166.

Измеритель напряженности магнитного поля ИНМП-50 имеет измерительный блок и выносной трехкоординатный датчик МП из секционированных катушек, смонтированных в ортогональных плоскостях, закрепленный на штанге с рукояткой; пределы измерения – 10; 100; 1000; 10000 А/м (выбор предела измерения осуществляется автоматически); отсчетное устройство – цифровое; погрешность измерения – < 10 %; питание – комбинированное.

Основные эксплуатационные характеристики: возможность работы в условиях воздействия ЭП частотой 50 Гц (при Е < 50 кВ/м); допустимая температура окружающей среды – 10 – 30 °С; относительная влажность воздуха – не более 90 %.

Измеритель магнитной индукции промышленной частоты ИМП-50 измеряет действующее значение индукции переменного МП; датчик трехкоординатный; частотный диапазон – 50±1 Гц; диапазон измерений – 0.01 мкТл – 10 мТл; погрешность измерения – < 10 %; относительная влажность – до 98 %; питание – автономное.

Для измерения напряженности постоянного магнитного поля используются также приборы Ш1-8 и Ф4355 , имеющие диапазон измерений 0 – 1600 кА/м, а также прибор Г-79 с диапазоном измерений 0 – 15 кА/м в частотном диапазоне 0.02 – 20 кГц.

После проведения измерений необходимо оформлять протокол. В протокол вносятся следующие данные:

– наименование объекта;

– реквизиты организации, проводящей измерения;

– дата проведения измерений;

– характеристика средства измерения (тип, заводской номер, пределы измерений, основная погрешность, дата последней поверки);

– Ф.И.О., должность представителя организации – владельца электроустановки;

– план размещения оборудования с указанием расположения рабочих мест и точек измерения;

– рабочий ток в источнике МП во время проведения измерений;

– сведения о методике измерений;

– температура и относительная влажность воздуха;

– результаты измерений;

– заключение (выводы) с оценкой соответствия измеренных уровней МП предельно допустимым уровням;

– фамилии и должности лиц, производивших измерения;

Общие сведения

Напряжённость магнитного поля и магнитная индукция. Казалось бы, зачем было физикам усложнять и без того сложные физические понятия при описании явлений магнетизма? Два вектора, одинаково направленные, отличающиеся разве что коэффициентом пропорциональности - ну какой в этом смысл с точки зрения простого человека, не слишком обременённого знаниями из области современной физики?

Тем не менее, именно в этом различии скрываются нюансы, позволившие учёным открыть и удивительные свойства различных веществ, и законы их взаимодействия с магнитным полем, и даже изменить наши представления об окружающем мире.

В действительности за этой разницей скрывается различный методологический подход. Упрощенно говоря, в случае использования понятия напряжённости магнитного поля мы пренебрегаем влиянием магнитного поля на вещество в конкретном случае; в случае применения понятия магнитной индукции, мы учитываем этот фактор.

С технической точки зрения, напряжённость магнитного поля сколь угодно сложной конфигурации достаточно просто рассчитать, а результирующую магнитную индукцию - измерить.

За этой кажущейся простотой скрывается титанический труд целой плеяды учёных, разделённых во времени и пространстве. Их идеи и концепции определили и определяют развитие науки и техники в прошлом, настоящем и будущем.

И неважно, как скоро мы овладеем термоядерной энергией с помощью нового поколения термоядерных реакторов, основанных на удержании «горячей» плазмы магнитным полем. Когда отправим в космос новые поколения исследовательских роботов на ракетах, основанных на применении иных принципов, чем сжигание химического топлива. Или, в частности, решим задачу коррекции орбит микроспутников двигателями Холла. Или насколько полно сможем утилизировать энергию Солнца, как быстро и дёшево мы сможем передвигаться по нашей планете - имена первопроходцев науки навеки останутся в нашей памяти.

Уже современному поколению учёных и инженеров двадцать первого века, вооружённому накопленными знаниями своих предшественников, покорится задача магнитной левитации, пока апробированная в лабораториях и пилотных проектах; и проблема извлечения энергии из окружающей среды с помощью технической реализации «демона Максвелла» с использованием невиданных до сих пор материалов и взаимодействий нового типа. Первые прототипы таких устройств уже появились на Kiсkstarter.

При этом будет решена главная проблема человечества - превращения в тепло накопленных за сотни миллионов лет запасов углей и углеводородов, нещадно изменяющих продуктами сгорания климат нашей планеты. И грядущая термоядерная революция, гарантирующая, вслед за её бездумным освоением, тепловую смерть всякой органической жизни на Земле, не станет смертным приговором цивилизации. Ведь энергия любого вида, которую мы расходуем, в конце концов превращается в тепло и нагревает нашу планету.

Дело за малым - временем; доживём - увидим!

Историческая справка

Несмотря на то, что сами магниты и явление намагничивания были известны издавна, научное изучение магнетизма началось с работ французского средневекового учёного Пьера Пелерена де Марикура в далёком 1269 году. Де Марикур подписывал свои труды именем Петруса Перегрина (лат. Petrus Peregrinus).

Исследуя поведение железной иглы возле сферического магнита, учёный обнаружил, что игла по-особенному ведёт себя возле двух точек, названных им полюсами. Так и подмывает дать аналогию с магнитными полюсами Земли, но в то время за такой образ мыслей легко можно было отправиться на костёр! Кроме того, исследователь обнаружил, что любой магнит всегда имеет (в современном представлении) северный и южный полюса. И как не распиливай магнит в продольном или в поперечном сечении, всё равно каждый из полученных магнитов всегда будет иметь два полюса, как бы тонок он ни был.

«Крамольная» идея о том, что Земля сама по себе является магнитом, была опубликована английским врачом и натуралистом Уильямом Гилбертом в работе «De Magnete», увидевшей свет почти три века спустя в 1600 году.

В 1750 году английский учёный Джон Митчелл установил, что магниты притягиваются и отталкиваются (взаимодействуют) в соответствии с законом «обратных квадратов». В 1785 году французский учёный Шарль Огюстен де Кулон экспериментально проверил предположения Митчелла и установил, что северный и южный магнитные полюса не могут быть разъединены. Тем не менее, по аналогии с открытым им ранее законом взаимодействия электрических зарядов, Кулон всё же предположил существование и магнитных зарядов - гипотетических магнитных монополей .

Основываясь на известных ему на то время фактов о магнетизме и на преобладающем в то время в науке методологическом подходе к построению теорий взаимодействия как о некоторых жидкостях, в 1824 году соотечественник Кулона Симеон Дени Пуассон создал первую успешную модель магнетизма. В его теоретической модели магнитное поле описывалось диполями магнитных зарядов.

Но буквально сразу же три открытия подряд поставили под сомнение модель Пуассона. Рассмотрим их ниже.

Датский физик Ханс Кристиан Эрстед в 1819 году заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки, обнаружив, таким образом, взаимосвязь между электричеством и магнетизмом.

В 1820 году французский учёный Андре-Мари Ампер установил, что проводники с токами, текущими в одном направлении притягиваются, а в противоположном - отталкиваются. В том же 1820 году французские физики Жан-Батист Био и Феликс Савар открыли закон названный впоследствии их именами. Этот закон позволял рассчитать напряжённость магнитного поля вокруг любого проводника с током вне зависимости от его геометрической конфигурации.

Обобщая полученные теоретические и экспериментальные данные, Ампер высказал идею об эквивалентности электрических токов и проявлений магнетизма. Он разработал свою модель магнетизма, в которой заменил магнитные диполи циркуляцией электрических токов в крошечных замкнутых петлях. Модель проявления магнетизма Ампера имела преимущество перед моделью Пуассона, поскольку объясняла невозможность разделения полюсов магнитов.

Ампер также предложил для описания таких явлений термин «электродинамика», который расширил применение науки об электричестве к динамическим электрическим объектам, дополняя тем самым электростатику. Пожалуй, наибольшее влияние на понимание сути проявлений магнетизма оказала концепция представления взаимодействия магнитов через силовое поле, описываемое силовыми линиями, предложенная английским учёным Майклом Фарадеем. Открытое в 1831 году Фарадеем явление электромагнитной индукции позднее было объяснено немецким математиком Францем Эрнстом Нейманом. Последний доказал, что возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него, является просто следствием закона Ампера. Нейман ввел в обиход науки понятие векторного магнитного потенциала, который во многом эквивалентен напряжённости силовых линий магнитного поля Фарадея.

Окончательную точку в споре двух моделей магнетизма поставил в 1850 году выдающийся английский физик Уильям Томпсон (лорд Кельвин). Введя понятие намагниченности среды M , в которой имеется магнитное поле, он не только установил зависимость между напряжённостью магнитного поля H и вектором магнитной индукции B , но и определил области применимости этих понятий.

Напряжённость магнитного поля. Определение

Напряжённость магнитного поля - это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности М . В Международной системе единиц (СИ) значение напряжённости магнитного поля определяется формулой:

H = (1/μ 0) · B - M

где μ0 - магнитная постоянная, иногда её называют магнитной проницаемостью вакуума

В системе единиц СГС напряженность магнитного поля определяется по другой формуле:

Н = B - 4·π·М

В Международной системе единиц СИ напряжённость магнитного поля измеряется в амперах на метр (А/м), в системе СГС - в эрстедах (Э).

В электротехнике встречается также внесистемная единица измерения напряжённости - ампер-виток на метр. С другими величинами измерения напряжённости магнитного поля, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.

Измерительные приборы для измерения величины напряжённости магнитного поля, как и приборы для измерения магнитной индукции, называют тесламетрами или магнитометрами.

Напряжённость магнитного поля. Физика явлений

Исследовательский токамак (то роидальная ка мера с ма гнитными катушками), работавший в научно-исследовательском институте государственной энергетической компании Hydro-Québec в пригороде Монреаля c 1987 по 1997 год, когда проект был закрыт для экономии бюджетных средств. Установка находится в экспозиции Канадского музея науки и техники

В вакууме (в классическом понимании этого термина) или в отсутствие среды, способной к магнитной поляризации или в случаях, когда магнитной поляризацией среды можно пренебречь, напряжённость магнитного поля Н совпадает (с точностью до коэффициента) с вектором магнитной индукции В . Для системы СГС этот коэффициент равен 1, для системы единиц СИ - μ0.

Напряжённость магнитного поля обусловлена свободными (внешними) токами, которые легко измерить или рассчитать. То есть напряжённость имеет смысл для внешнего магнитного поля, создаваемого катушкой с током, в которую вставлен материал, способный намагничиваться. Если нас не интересует поведение материала под действием магнитного поля, то достаточно оперировать только напряжённостью магнитного поля. Например, напряженности будет достаточно для технического расчёта взаимодействия магнитных полей двух или более катушек с током. Результирующая напряжённость будет векторной суммой полей, создаваемых отдельными катушками с током.

Поскольку большинство электромагнитных устройств работает в воздушной среде, важно знать её магнитную проницаемость. Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π 10⁻⁷ Гн/м.

Иное дело, когда нас интересует именно поведение среды, способной к намагничиванию, например, при использовании ядерных магниторезонансных явлений. При ЯМР ядра атомов, иначе называемые нуклонами и обладающие полуцелым спином (магнитным моментом), при воздействии магнитного поля поглощают или излучают электромагнитную энергию на определённых частотах. В этих случаях необходимо учитывать именно магнитную индукцию.

Применение напряжённости магнитного поля в технике

В большинстве случаев практического применения магнитного поля, например, для его создания или для измерения его величины, напряжённость магнитного поля играет ключевую роль. Существует множество примеров использования магнитного поля, в первую очередь в измерительной технике и в различных установках для проведения экспериментов.

Магнитное поле определённой силы и конфигурации удерживает плазменные шнуры или потоки заряженных частиц в исследовательских термоядерных реакторах и в ускорителях элементарных частиц, предотвращая тем самым охлаждение плазмы при контакте с ограждающими стенками. Оно же отклоняет потоки ионов или электронов в спектрометрах и кинескопах.

Измерение напряжённости магнитного поля Земли в различных точках очень важно для оценки состояния её магнитосферы. Существует даже целая сеть наземных станций и группировок научных спутников для мониторинга напряжённости магнитного поля Земли. Их работа позволяет предсказывать магнитные бури, возникающие на Солнце, сводя к минимуму, насколько это возможно, их последствия.

Измерение напряженности поля даёт возможность проводить различные изыскания, сортировать материалы и мусор, а также обеспечивать нашу безопасность, обнаруживая оружие террористов или заложённые мины.

Магнитометры

Магнитометрами называется целый класс измерительных приборов, предназначенных для измерения намагниченности материалов или для определения силы и направления магнитного поля.

Первый магнитометр был изобретён великим немецким математиком и физиком Карлом Фридрихом Гауссом в 1833 году. Этот прибор представлял собой оптический прибор с крутящимся намагниченным стержнем, подвешенным на золотой нити, и приклеенным к нему перпендикулярно оси магнита зеркалом. Измерялось различие колебаний намагниченного и размагниченного стержня.

Ныне используются более чувствительные магнитометры на иных принципах, в частности, на датчиках Холла, джозефсоновских туннельных контактах (СКВИД-магнитометры) индукционные и на ЯМР-резонансе. Они находят широкое применение в различных приложениях: измерении магнитного поля Земли, в геофизических исследованиях магнитных аномалий и в поиске полезных ископаемых; в военном деле для обнаружения объектов типа подводных лодок, затонувших кораблей или замаскированных танков, искажающих своим полем магнитное поле Земли; для поиска неразорвавшихся или заложенных боеприпасов на местах ведения боевых действий. В связи с миниатюризацией и снижением потребления тока, современными магнитометрами оснащаются смартфоны и планшеты. Ныне магнитометры входят как неотъемлемый компонент в оборудование разведывательных беспилотных летательных аппаратов и спутников-шпионов.

Любопытная деталь: в связи с повышением чувствительности магнитометров, одним из факторов перехода строительства подводных лодок на титановые корпуса вместо стальных корпусов было именно радикальное снижение их заметности в магнитном поле. Ранее подлодкам со стальным корпусом, как, впрочем, и надводным кораблям, приходилось время от времени проходить процедуру демагнетизации.

Магнитометры применяются при бурении скважин и проходке штолен, в археологии для оконтуривания раскопок и поиска артефактов, в биологии и медицине.

Металлодетекторы

Попытки использования напряжённости магнитного поля в военном деле предпринимались со времён Первой мировой войны, оставившей на полях сражений миллионы неразорвавшихся боеприпасов и установленных мин. Наиболее удачной оказалась разработка в начале 40-х годов прошлого столетия, поручика польской армии Юзефа Станислава Косацкого, принятая на вооружение британской армией и сослужившая немалую пользу при обезвреживании минных полей во время преследовании отступающих немцев войсками генерала Монтгомери при второй битве под Эль-Аламейном. Несмотря на то, что оборудование Коcацкого было выполнено на электронных лампах, оно весило всего 14 килограммов вместе с аккумуляторами питания и было настолько эффективным, что его модификации использовались британской армией в течение 50 лет.

Теперь нас не удивляет, в связи с распространением терроризма, прохождение перед посадкой на самолёт или на футбольные матчи сквозь индукционные рамки металлодетекторов, обследование охраной объектов нашего багажа или личный досмотр ручными металлоискателями на предмет обнаружения оружия.

Широкое распространение получили и бытовые металлоискатели, на пляжах модных курортов стала привычной картина искателей утерянных сокровищ, прочёсывающих местные пляжи в надежде найти что-либо ценное.

Эффект Холла и устройства на его основе

Наверное, все мы сталкивались в детстве с чудесными свойствами обыкновенных магнитов. Небольшой кусок металла привлекал к себе одни кусочки железа и отталкивал другие.

Удивительные свойства магнита этим не ограничиваются. Например, магнит, подвешенный на нити, всегда располагается в пространстве определенным образом - это свойство легло в основу изобретения компаса. Конечные точки магнита являются наиболее «сильными». Их принято называть «полюсами». Специфические свойства магнита обусловлены его магнитными полями, которые не являются веществом, но ведут себя весьма осязаемо. Одной из самых важных характеристик является напряженность магнитного поля.

Характеристики магнитного поля

Любое магнитное поле обладает энергией, которая проявляет себя при взаимодействии с другими телами. Под влиянием магнитных сил движущиеся частички меняют направление своего потока. Магнитное поле появляется лишь вокруг тех электрических зарядов, которые находятся в движении. Всякое изменение электрического поля влечет за собой появление магнитных полей.

Обратное утверждение также верно: изменение магнитного поля - предпосылка к возникновению электрического. Такое тесное взаимодействие привело к созданию теории электромагнитных сил, с помощью которых и сегодня успешно объясняются различные физические явления.

Изображение магнитных полей

Магнитное поле можно изобразить на листе бумаги при помощи силовых линий. Их рисуют таким образом, чтобы реальное направление сил поля в каждой точке совпадало с нарисованными. Направления силовых полей могут быть определены при помощи компасной стрелки, северный полюс которой всегда направлен по касательной к силовой линии. Северный полюс принято обозначать местом, откуда выходят силовые линии магнитного поля, и южный - местом их вхождения. Следует помнить, что такое разделение весьма условно, и принимается во внимание только из-за своей наглядности.

Что такое магнитная напряженность

Железные опилки, выстраивающиеся вдоль магнитных полей, доказывают, что магнитное поле имеет два важных показателя - величину и направление. В любой точке пространства магнитное поле распространяется со скоростью, равной скорости света в вакууме - 300000 километров/сек.

Чтобы дать определение характеристикам магнитного поля, ученые ввели величину «напряженность». Это векторная величина, указывающая направление действия магнитного поля и на количество его силовых линий. По своим характеристикам напряженность магнитного поля аналогична понятию «силы» в механике. Этот показатель не зависит от параметров среды, в которой проводятся эксперименты, а только от силы магнитного потока и расстояния до источника, продуцирующего поле. В различных случаях таким источником может служить одиночный магнит, магнитная катушка, электрический провод. В каждом из этих случаев возникает магнитное поле с определенными характеристиками.

Напряженность электромагнитного поля в экспериментах

Рассмотрим одиночный провод, по которому движется электрический ток. При движении этого провода вокруг него возникает магнитное поле. Его характеристики можно выразить через напряженность, которая определяется мерой воздействия магнитного поля на исследуемое тело.

Можно исследовать магнитное поле внутри катушки. В этом случае напряженность будет напрямую зависеть от количества витков катушки и расстояния между нею и исследуемым телом.

Объединяя эти два вывода, можно подвести итоги: напряженность магнитного поля в любой точке пространства обратно пропорциональна длине магнитной линии и прямо пропорциональна произведению количества витков катушки на силу тока.

Магнитная индукция

Определение напряженности магнитного поля было бы неполным без понятия «магнитная индукция». Эта величина объясняет, какую работу способно производить данное магнитное поле. Чем сильнее магнитное поле, тем больше работы оно может производить, тем больше значение его магнитной индукции.

В физике магнитная индукция обозначается литерой Ḇ. Наглядно ее можно изобразить в виде плотности магнитных силовых линий, приходящихся на единицу площади поверхности, которая расположена перперндикулярно к измеряемому магнитному полю. В настоящее время магнитная индукция измеряется в Теслах.

Магнитный поток

Еще одна величина, емко характеризующая магнитное поле. Магнитный поток определяет, какое количество силовых линий пронизывает определенную единицу площади. В однородном магнитном поле значение магнитного потока будет вычислено по формуле:

Ф= Ḇ/S, где:

Ф - магнитный поток;

Ḇ - значение магнитной индукции;

S - площадь, через которую проходя силовые линии магнитного поля.

В системе единиц СИ магнитный поток измеряется в Веберах.

Формула напряженности

Физический смысл этой величины можно выразить формулой: Н= I×ω/ L, где:

L - расстояние между телом и источником магнитного поля;

ω - количество витков катушки;

I - сила тока в электрической цепи.

Из этого уравнения можно сделать вывод, что напряженность измеряется в [А/м], поскольку витки в катушке - количественная величина.

Намагничивающая сила

Произведение Н×I в данной формуле является не чем иным, как аналогией напряжения электрического поля. Если этот параметр применить ко всей длине линии магнитной индукции, то полученное произведение будет носить название намагничивающей силы (н.с). Эта физическая величина измеряется в амперах, но специалисты предпочитают термин «ампер-виток», подчеркивающий прямую зависимость силы от количества витков катушки.

Правило буравчика

Чтобы определить направление магнитного поля катушки или провода, специалисты применяют правило буравчика. Если «вкручивающее» движение воображаемого буравчика параллельно направлению тока в цепи, то "рукоятка" буравчика показывает, как будут располагаться силовые линии магнитного поля.

Примеры на определение напряженности магнитного поля

Пример 1. Имеется катушка с количеством витков 100 и имеющая длину 10 см. Необходимо обеспечить заданное значение напряженности магнитного поля в 5000А/м. Какой силы ток должен протекать по катушке?

Решение: согласно определению, намагничивающая сила катушки равна Н = I×ω/ L. А произведение Н×I дает намагничивающую силу. Отсюда можно вывести значение силы тока, которое равно: 5000А/м*0,1м = сила тока * количество витков. Решая простую пропорцию, получаем, что сила тока в данной задаче должна быть равна 5А.

Пример 2. В катушке 2000 витков, через нее протекает ток силой в 5 Ампер. Чему равна намагничивающаяся сила катушки?

Решение: простая формула дает ответ: н.с.= I×ω. Таким образом н.с = 2000×5 = 10000 ампер-витков.

Пример 3.

Как определить напряженность магнитного поля прямого электрического провода на расстоянии 5 см? Сила тока, текущего через провод, равна 30 А.

В этом примере нам также пригодится формула

В случае прямого провода количество витков катушки будет равно 1, а длина l = 2∙π∙r.

Отсюда можно вывести, что

Н = 30/(2*3,14*0,02) = 238,85 А/м.

Эти и подобные задачи легко можно решить при помощи базового курса школьной физики. Решение таких несложных примеров поможет понять качественную суть электромагнитных процессов в окружающей нас природе.

1. Вращающий момент, действующий на рамку с током со стороны магнитного поля. Магнитный момент рамки с током. Вращающий момент. Определение индукции магнитного поля. Единицы индукции и вращающего момента.

Поместив рамку в однородное магнитное поле, на нее действует пара сил, которая создает вращающий момент.

2. Напряженность магнитного поля и ее связь с индукцией. Единица напряженности.

Вектор магнитной индукции является общей характеристикой точек магнитного поля независимо от того, как создается магнитное поле: намагниченным телом или проводником с током находящимся в данной среде.

Однако можно ввести некоторую характеристику магнитного поля не зависящую от среды, а определяющуюся токами и конфигурацией проводников - вектор напряженности магнитного поля . Эти две характеристики (одна общая, а другая частная) связаны между собой: где - абсолютная магнитная проницаемость вакуума,μ - относительная магнитная проницаемость среды, для вакуума μ = 1.

Напряженностью магнитного поля – отношение механической силы, действующей на положительный полюс пробного магнита, к величине его магнитной массы или механическая сила, действующая на положительный полюс пробного магнита единичной массы в данной точке поля.

Единица напряженности магнитного поля - ампер на метр (А/м): 1 А/м - напряженность такого поля, магнитная индукция которого в вакууме равна 4π*Тл.

3. Изображение магнитных полей с помощью силовых линий индукции (напряженности). Вид линий магнитной индукции прямого и кругового токов, соленоида. Правила, но которым определяют направление линий магнитной индукции.

4. Магнитные поля проводников с токами. Закон Био-Савара-Лапласа.

Магнитное поле – это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Закон Био-Савара-Лапласа:

В векторной форме:

В скалярной форме:

5. Применение закона Био-Савара-Лапласа для определения напряженности поля, создаваемого:

а) прямым проводником конечной длины (вывод формулы)

б) бесконечно длинным прямым проводником (вывод формулы)

в) круговым проводником в центре (вывод формулы)

г) соленоидом и тороидом

д) круговым проводником на оси (без вывода)

6. Сила Ампера. Правило для определения направления силы Ампера.

На проводник с током, находящийся в магнитном поле, действует сила, равная F = I·L·B·sina

I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле; a - угол между вектором магнитного поля инаправлением тока в проводнике.

Сила Ампера – Сила, действующую на проводник с током в магнитном поле.

Максимальная сила Ампера равна: F = I·L·B. Ей соответствует a = 90.

Направление силы Ампера определяется по правилу левой руки : если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.