Что значит арифметика. Что такое арифметика? Основная теорема арифметики. Двоичная арифметика. Арифметика - это азбука математики

Арифметика

Арифме́тика ж.
1.

Раздел математики, изучающий простейшие свойства чисел, способы их записи и действия над ними.


2.

Учебный предмет, содержащий основы данного раздела математики.


3. разг.

Учебник, излагающий содержание данного учебного предмета.


Толковый словарь Ефремовой . Т. Ф. Ефремова. 2000 .


Синонимы :

Смотреть что такое "Арифметика" в других словарях:

    - (от греч. arithmos число, и toche искусство). Наука, имеющая своим предметом числа. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АРИФМЕТИКА от греч. arithmos, число, и techne, искусство. Наука о числах.… … Словарь иностранных слов русского языка

    Жен., греч. учение о счете, наука о счислении; основа всей математики (науки о величинах, о измеримом); ·стар. счетная или цифирная мудрость; счет, счисление, цифирная сметка, выкладка. Арифметичный, арифметический, к ней относящийся. Арифметик,… … Толковый словарь Даля

    Цифирное дело, цифирная наука, цифирь, подсчет Словарь русских синонимов. арифметика цифирь (устар.) Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2011 … Словарь синонимов

    - (от греч. слов ariJmoV число и tecnh искусство) часть математики, которая занимается изучением свойств определенныхконкретных величин; в более тесном смысле А. есть наука о числах,выраженных цифрами, и занимается действиями над числами. А. можно… … Энциклопедия Брокгауза и Ефрона

    Современная энциклопедия

    - (от греч. arithmos число) часть математики; изучает простейшие свойства чисел, в первую очередь натуральных (целых положительных) и дробных, и действия над ними. Развитие арифметики привело к выделению из нее алгебры и чисел теории … Большой Энциклопедический словарь

    АРИФМЕТИКА, способ расчета при помощи сложения, вычитания, умножения и деления. Формальную аксиоматическую базу под эти операции подвел Джузеппе Пеано в конце XIX в. Исходя из некоторых постулатов, например, о том, что имеется лишь одно… … Научно-технический энциклопедический словарь

    АРИФМЕТИКА, арифметики, мн. нет, жен. (греч. arithmetike). Учение о числах, выражаемых цифрами, и действиях над ними. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    АРИФМЕТИКА, и, жен. 1. Раздел математики, изучающий простейшие свойства чисел, выраженных цифрами, и действия над ними. 2. перен. То же, что подсчет (во 2 знач.) (разг.). Проверили расходы неутешительная получилась а. | прил. арифметический, ая,… … Толковый словарь Ожегова

    арифметика - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN arithmetics … Справочник технического переводчика

    Арифметика - (от греческого arithmos число), часть математики, изучающая простейшие свойства целых и дробных чисел и действия над ними. Возникла в глубокой древности из практических потребностей счета, измерения расстояний, времени и др. Совершенствование… … Иллюстрированный энциклопедический словарь

Книги

  • Арифметика , Киселев Андрей Петрович. В 2017 г. исполняется 165 лет со дня рождения А. П. Киселёва. Его первый школьный учебник по арифметике вышел в 1884 г. В 1938 г. он был утверждён в качестве учебника арифметикидля 5-6…

Арифметикой называется тот раздел математики, предметом изучения которого являются числа, их свойства и отношения.

Ее название имеет греческое происхождение: на языке древней Эллады слово «аритмос » (его еще произносят как «арифмос ») означает «число ».

Арифметика изучает правила вычислений и простейшие свойства чисел. В том ее разделе, который называется теория чисел (или высшая арифметика), изучаются свойства отдельных целых чисел.

Арифметика самым тесным образом связана с теорией чисел, алгеброй и геометрией, и является одной из главных математических наук, а также самой древней из них.

Основными предметами арифметики являются действия над числами, их свойства, а также числовые множества. Кроме того, в арифметике изучаются такие вопросы, как происхождение и развитие понятия чисел, измерения и техника счета.

Действия над числами, являющиеся предметом изучения арифметики, – это сложение, вычитание, деление и умножение. К ним также можно отнести и такие операции, как извлечение корня, возведение в степень и решение различных численных уравнений.

Кроме того, исторически сложилось так, что к арифметическим действиям относят, помимо умножения, удвоение; помимо деления, деление с остатком и на два; счет; вычисление суммы геометрической и арифметической прогрессий. При этом все арифметические действия имеют собственную иерархию, в которой высшую ступень занимает извлечение корней и возведение в степень, более низкую – умножение и деление, и далее – сложение и вычитание.

Следует заметить, что те измерения и математические расчеты, которые находят широкое практическое применение (например, проценты, пропорции и т.п.) относятся к так называемой низшей арифметике, а понятие числа и его логический анализ – к арифметике теоретической.

Арифметика находится в очень тесной связи с алгеброй, основным предметом изучения которой являются различные операции с числами, не учитывающие их свойства и особенности. При этом извлечение корней и возведение в степень представляют собой техническую часть алгебры.

Поскольку в повседневной жизни арифметика используется практически повсеместно, то определенные познания в этой науке необходимы абсолютно всем. На протяжении жизни такие операции, как счет, вычисление объемов, площадей, скорости, временных промежутков и протяженностей приходится выполнять очень часто.

Для освоения любой профессии необходимо владеть основными арифметическими знаниями, и особенно это касается тех специальностей, которые связаны с экономикой, техникой и естественными науками.

С арифметики, науки о числе, начинается наше знакомство с математикой. Один из первых русских учебников арифметики, написанный Л. Ф. Магницким в 1703 г., начинался словами: «Арифметика или числительница, есть художество честное, независтное, и всем удобнопонятное, многополезнейшее и многохвальнейшее, от древнейших же и новейших, в разные времена живших изряднейших арифметиков, изобретенное и изложенное». С арифметикой мы входим, как говорил М. В. Ломоносов, во «врата учености» и начинаем наш долгий и нелегкий, но увлекательный путь познания мира.

Слово «арифметика» происходит от греческого arithmos, что значит «число». Эта наука изучает действия над числами, различные правила обращения с ними, учит решать задачи, сводящиеся к сложению, вычитанию, умножению и делению чисел. Часто представляют себе арифметику как некоторую первую ступень математики, основываясь на которой можно изучать более сложные ее разделы – алгебру, анализ математический и т.д. Даже целые числа – основной объект арифметики – относят, когда рассматривают их общие свойства и закономерности, к высшей арифметике, или теории чисел. Такой взгляд на арифметику, конечно, имеет основания – она действительно остается «азбукой счета», но азбукой «многополезнейшей» и «удобнопонятной».

Арифметика и геометрия – давние спутники человека. Эти науки появились тогда, когда возникла необходимость считать предметы, измерять земельные участки, делить добычу, вести счет времени.

Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии, Египте. Например, египетский папирус Ринда (названный по имени его владельца Г. Ринда) относится к XX в. до н.э. Среди прочих сведений он содержит разложения дроби на сумму дробей с числителем, равным единице, например:

Накопленные в странах Древнего Востока сокровища математических знаний были развиты и продолжены учеными Древней Греции. Много имен ученых, занимавшихся арифметикой в античном мире, сохранила нам история - Анаксагор и Зенон, Евклид (см. Евклид и его «Начала»), Архимед, Эратосфен и Диофант. Яркой звездой сверкает здесь имя Пифагора (VI в. до н.э.). Пифагорейцы (ученики и последователи Пифагора) преклонялись перед числами, считая, что в них заключена вся гармония мира. Отдельным числам и парам чисел приписывались особые свойства. В большом почете были числа 7 и 36, тогда же было обращено внимание на так называемые совершенные числа, дружественные числа и т. п.

В средние века развитие арифметики также связано с Востоком: Индией, странами арабского мира и Средней Азии. От индийцев пришли к нам цифры, которыми мы пользуемся, нуль и позиционная система счисления; от аль-Каши (XV в.), работавшего в Самаркандской обсерватории Улугбека, - десятичные дроби.

Благодаря развитию торговли и влиянию восточной культуры начиная с XIII в. повышается интерес к арифметике и в Европе. Следует вспомнить имя итальянского ученого Леонардо Пизанского (Фибоначчи), сочинение которого «Книга абака» знакомило европейцев с основными достижениями математики Востока и явилось началом многих исследований в арифметике и алгебре.

Вместе с изобретением книгопечатания (середина XV в.) появились первые печатные математические книги. Первая печатная книга по арифметике была издана в Италии в 1478 г. В «Полной арифметике» немецкого математика М. Штифеля (начало XVI в.) уже есть отрицательные числа и даже идея логарифмирования.

Примерно с XVI в. развитие чисто арифметических вопросов влилось в русло алгебры – в качестве значительной вехи можно отметить появление работ ученого из Франции Ф. Виета, в которых числа обозначены буквами. Начиная с этого времени основные арифметические правила осознаются уже окончательно с позиций алгебры.

Основной объект арифметики – число. Натуральные числа, т.е. числа 1, 2, 3, 4, ... и т.д., возникли из счета конкретных предметов. Прошло много тысячелетий, прежде чем человек усвоил, что два фазана, две руки, два человека и т.д. можно назвать одним и тем же словом «два». Важная задача арифметики – научиться преодолевать конкретный смысл названий считаемых предметов, отвлекаться от их формы, размера, цвета и т. п. Уже у Фибоначчи есть задача: «Семь старух идут в Рим. У каждой по 7 мулов, каждый мул несет по 7 мешков, в каждом мешке по 7 хлебов, в каждом хлебе по 7 ножей, каждый нож в 7 ножнах. Сколько всех?» Для решения задачи придется складывать вместе и старух, и мулов, и мешки, и хлеба.

Развитие понятия числа – появление нуля и отрицательных чисел, обыкновенных и десятичных дробей, способы записи чисел (цифры, обозначения, системы счисления) – все это имеет богатую и интересную историю.

«Под наукой чисел понимаются две науки: практическая и теоретическая. Практическая изучает числа постольку, поскольку речь идет о числах считаемых. Эту науку применяют в рыночных и гражданских делах. Теоретическая наука чисел изучает числа в абсолютном смысле, отвлеченные разумом от тел и всего, что поддается в них счету». аль-Фараби

В арифметике числа складывают, вычитают, умножают и делят. Искусство быстро и безошибочно производить эти действия над любыми числами долгое время считалось важнейшей задачей арифметики. Сейчас в уме или на листке бумаги мы делаем лишь самые простые вычисления, все чаще и чаще поручая более сложную вычислительную работу микрокалькуляторам, которые постепенно приходят на смену таким устройствам, как счеты, арифмометр (см. Вычислительная техника), логарифмическая линейка. Однако в основе работы всех вычислительных машин - простых и сложных – лежит самая простая операция – сложение натуральных чисел. Оказывается, самые сложные расчеты можно свести к сложению, только делать эту операцию надо многие миллионы раз. Но здесь мы вторгаемся в другую область математики, которая берет начало в арифметике, - вычислительную математику.

Арифметические действия над числами имеют самые различные свойства. Эти свойства можно описать словами, например: «От перемены мест слагаемых сумма не меняется», можно записать буквами: , можно выразить специальными терминами.

Например, указанное свойство сложения называют переместительным или коммутативным законом. Мы применяем законы арифметики часто по привычке, не осознавая этого. Часто ученики в школе спрашивают: «Зачем учить все эти переместительные и сочетательные законы, ведь и так ясно, как складывать и умножать числа?» В XIX в. математика сделала важный шаг – она стала систематически складывать и умножать не только числа, но также векторы, функции, перемещения, таблицы чисел, матрицы и многое другое и даже просто буквы, символы, не очень заботясь об их конкретном смысле. И вот здесь оказалось, что самым важным является то, каким законам подчиняются эти операции. Изучение операций, заданных над произвольными объектами (не обязательно над числами), - это уже область алгебры, хотя эта задача основана на арифметике и ее законах.

Арифметика содержит много правил решения задач. В старых книгах можно встретить задачи на «тройное правило», на «пропорциональное деление», на «метод весов», на «фальшивое правило» и т.п. Большинство этих правил сейчас устарело, хотя задачи, которые решались с их помощью, никак нельзя считать устаревшими. Знаменитая задача про бассейн, который наполняется несколькими трубами, имеет возраст не менее двух тысяч лет, и до сих пор она не легка для школьников. Но если раньше для решения этой задачи нужно было знать специальное правило, то в наши дни уже младших школьников обучают решать такую задачу, вводя буквенное обозначение искомой величины. Таким образом, арифметические задачи привели к необходимости решать уравнения, а это уже снова задача алгебры.

ПИФАГОР
(ок. 570-ок. 500 гг. до н.э.)

Письменных документов о Пифагоре Самосском не осталось, а по более поздним свидетельствам трудно восстановить подлинную картину его жизни и достижений. Известно, что Пифагор покинул свой родной остров Самос в Эгейском море у берегов Малой Азии в знак протеста против тирании правителя и уже в зрелом возрасте (по преданию в 40 лет) появился в греческом городе Кротоне на юге Италии. Пифагор и его последователи - пифагорейцы - образовали тайный союз, игравший немалую роль в жизни греческих колоний в Италии. Пифагорейцы узнавали друг друга по звездчатому пятиугольнику – пентаграмме.

На учение Пифагора большое влияние оказала философия и религия Востока. Он много путешествовал по странам Востока: был в Египте и в Вавилоне. Там Пифагор познакомился и с восточной математикой. Математика стала частью его учения, и важнейшей частью.

Пифагорейцы верили, что в числовых закономерностях спрятана тайна мира. Мир чисел жил для пифагорейца особой жизнью, числа имели свой особый жизненный смысл. Числа, равные сумме своих делителей, воспринимались как совершенные (6, 28, 496, 8128); дружественными называли пары чисел, из которых каждое равнялось сумме делителей другого (например, 220 и 284). Пифагор впервые разделил числа на четные и нечетные, простые и составные, ввел понятие фигурного числа. В его школе были подробно рассмотрены пифагоровы тройки натуральных чисел, у которых квадрат одного равнялся сумме квадратов двух других (см. Ферма великая теорема).

Пифагору приписывается высказывание: «Все есть число». К числам (а он имел в виду лишь натуральные числа) он хотел свести весь мир, и математику в частности. Но в самой школе Пифагора было сделано открытие, нарушавшее эту гармонию.

Было доказано, что не является рациональным числом, т.е. не выражается через натуральные числа.

Естественно, что геометрия у Пифагора была подчинена арифметике, это ярко проявилось в теореме, носящей его имя и ставшей в дальнейшем основой применения численных методов в геометрии. (Позже Евклид вновь вывел на первое место геометрию, подчинив ей алгебру.) По-видимому, пифагорейцы знали правильные тела: тетраэдр, куб и додекаэдр.

Пифагору приписывают систематическое введение доказательств в геометрию, создание планиметрии прямолинейных фигур, учения о подобии.

С именем Пифагора связывают учение об арифметических, геометрических и гармонических пропорциях, средних.

Следует заметить, что Пифагор считал Землю шаром, движущимся вокруг Солнца. Когда в XVI в. церковь начала ожесточенно преследовать учение Коперника, это учение упорно именовалось пифагорейским.

АРХИМЕД
(ок. 287-212 гг. до н.э.)

Об Архимеде – великом математике и механике – известно больше, чем о других ученых древности. Прежде всего достоверен год его смерти - год падения Сиракуз, когда ученый погиб от руки римского солдата. Впрочем, историки древности Полибий, Ливий, Плутарх мало рассказывали о его математических заслугах, от них до наших времен дошли сведения о чудесных изобретениях ученого, сделанных во время службы у царя Гиерона II. Известна история о золотом венце царя. Чистоту его состава Архимед проверил при помощи найденного им закона выталкивающей силы, и его возгласе «Эврика!», т.е. «Нашел!». Другая легенда рассказывает, что Архимед соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль «Сиракосия». Крылатыми стали произнесенные тогда слова Архимеда: «Дайте мне точку опоры, и я поверну Землю».

Инженерный гений Архимеда с особой силой проявился при осаде Сиракуз, богатого торгового города на острове Сицилия.

Воины римского консула Марцелла были надолго задержаны у стен города невиданными машинами: мощные катапульты прицельно стреляли каменными глыбами, в бойницах были установлены метательные машины, выбрасывающие грады ядер, береговые краны поворачивались за пределы стен и забрасывали корабли противника каменными и свинцовыми глыбами, крючья подхватывали корабли и бросали их вниз с большой высоты, системы вогнутых зеркал (в некоторых рассказах – щитов) поджигали корабли. В «Истории Марцелла» Плутарх описывает ужас, царивший в рядах римских воинов: «Как только они замечали, что из-за крепостной стены показывается веревка или бревно, они обращались в бегство с криком, что вот Архимед еще выдумал новую машину на их погибель».

Огромен вклад Архимеда и в развитие математики. Спираль Архимеда (см. Спирали), описываемая точкой, двигающейся по вращающемуся кругу, стояла особняком среди многочисленных кривых, известных его современникам. Следующая кинематически определенная кривая – циклоида – появилась только в XVII в. Архимед научился находить касательную к своей спирали (а ею предшественники умели проводить касательные только к коническим сечениям), нашел площадь ее витка, а также площадь эллипса, поверхности конуса и шара, объемы шара и сферического сегмента. Особенно он гордился открытым им соотношением объема шара и описанного вокруг него цилиндра, которое равно 2:3 (см. Вписанные и описанные фигуры).

Архимед много занимался и проблемой квадратуры круга (см. Знаменитые задачи древности). Ученый вычислил отношение длины окружности к диаметру (число ) и нашел, что оно заключено между и .

Созданный им метод вычисления длины окружности и площади фигуры был существенным шагом к созданию дифференциального и интегрального исчислений, появившихся лишь 2000 лет спустя.

Архимед нашел также сумму бесконечной геометрической прогрессии со знаменателем . В математике это был первый пример бесконечного ряда.

Большую роль в развитии математики сыграло его сочинение «Псаммит» - «О числе песчинок», в котором он показывает, как с помощью существовавшей системы счисления можно выражать сколь угодно большие числа. В качестве повода для своих рассуждений он использует задачу о подсчете количества песчинок внутри видимой Вселенной. Тем самым было опровергнуто существовавшее тогда мнение о наличии таинственных «самых больших чисел».

Среди важных понятий, которые ввела арифметика, надо отметить пропорции и проценты. Большинство понятий и методов арифметики основано на сравнении различных зависимостей между числами. В истории математики процесс слияния арифметики и геометрии происходил на протяжении многих веков.

Можно отчетливо проследить «геометризацию» арифметики: сложные правила и закономерности, выраженные формулами, становятся понятнее, если удается изобразить их геометрически. Большую роль в самой математике и ее приложениях играет обратный процесс – перевод зрительной, геометрической информации на язык чисел (см. Графические вычисления). В основе этого перевода лежит идея французского философа и математика Р. Декарта об определении точек на плоскости координатами. Разумеется, и до него эта идея уже использовалась, например в морском деле, когда нужно было определить местонахождение корабля, а также в астрономии, геодезии. Но именно от Декарта и его учеников идет последовательное применение языка координат в математике. И в наше время при управлении сложными процессами (например, полетом космического аппарата) предпочитают иметь всю информацию в виде чисел, которые и обрабатывает вычислительная машина. При необходимости машина помогает человеку перевести на язык рисунка накопленную числовую информацию.

Вы видите, что, говоря об арифметике, мы все время выходим за ее пределы - в алгебру, геометрию, другие разделы математики.

Как же очертить границы самой арифметики?

В каком смысле употребляется это слово?

Под словом «арифметика» можно понимать:

учебный предмет, занимающийся преимущественно рациональными числами (целыми числами и дробями), действиями над ними и задачами, решаемыми с помощью этих действий;

часть исторического здания математики, накопившую различные сведения о вычислениях;

«теоретическую арифметику» - часть современной математики, занимающуюся конструированием различных числовых систем (натуральные, целые, рациональные, действительные, комплексные числа и их обобщения);

«формальную арифметику» - часть математической логики (см. Логика математическая), занимающуюся анализом аксиоматической теории арифметики;

«высшую арифметику», или теорию чисел, самостоятельно развивающуюся часть математики.

Арифметика – самый основной, базовый раздел математики. Возникновению она обязана потребностям людей в счете.

Ментальная арифметика

Что называется ментальной арифметикой? Ментальная арифметика – это метод обучения быстрому счету, пришедший из древности.

В настоящее время, в отличии от предыдущего, преподаватели стараются не только обучить детей скорости счета, но и стараются развить мышление.

Сам процесс обучения строится на использовании и развитии обоих полушарий мозга. Главное – уметь их использовать вместе, потому что они дополняют друг друга.

Действительно, левое полушарие отвечает за логику, речь и рациональность, а правое – за воображение.

В программу обучения входит обучение работы и использование такого инструмента, как абакус .

Абакус – главный инструмент в изучении ментальной арифметики, потому что ученики учатся работать с ними, перебирать костяшки и осознавать суть счета. Со временем абакус стает вашим воображением, а обучаемые представляют их, опираются на эти знания и решают примеры.

Отзывы о данных методах обучения весьма положительные. Есть один минус – обучение платное, а его позволить могут не все. Поэтому путь гения зависит от материального положения.

Математика и арифметика

Математика и арифметика тесно связанные понятия, а вернее арифметика – раздел математики , работающий с числами и вычислениями (действиями с числами).

Арифметика – основной раздел, а значит и основа математики. Основа математики – важнейшие понятия и операции, составляющие базу, на которой строятся все последующие знания. В число главных операций входят: сложение , вычитание , умножение , деление .

Арифметика, как правило, изучается в школе с самого начала обучения, то есть. с первого класса. Дети осваивают базу математики.

Сложение – это арифметическое действие, в процессе которого складываются два числа, а их результатом будет новое – третье.

a + b = c .

Вычитание – это арифметическое действие, в процессе которого из первого числа вычитается второе число, а итогом будет третье.

Формула сложения выражается так: a - b = c .

Умножение – это действие, в итоге которого находится сумма одинаковых слагаемых.

Формула такого действия имеет вид: a1+a2+…+an=n*a .

Деление – это разбивание на равные части какого-либо числа или переменной.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Обучение арифметике

Обучение арифметике производится в стенах школы. С первого класса дети начинают изучение базового и главного раздела математики – арифметики.

Сложение чисел

Арифметика 5 класс

В пятом классе школьник начинают изучение таких тем как: дробные числа, смешанные числа. Информацию про операции с этими числами вы можете найти в наших статьях по соответствующим операциям.

Дробное число – это отношение двух чисел друг к другу или же числителя к знаменателю. Дробное число можно заменить операцией деления. Например, ¼ = 1:4.

Смешанное число – это дробное число, только с выделенной целой частью. Целая часть выделяется при условии, что числитель больше знаменателя. Например, была дробь: 5/4, ее можно преобразовать, путем выделения целой части: 1целая и ¼.

Примеры для тренировки:

Задание №1 :

Задание №2 :

Арифметика 6 класс

В 6ом классе появляется тема преобразования дробей в строчную запись. Что это значит? Например, дана дробь ½, она будет равна 0,5. ¼ = 0.25.

Примеры могут составляться в таком стиле: 0.25+0.73+12/31.

Примеры для тренировки:

Задание №1 :

Задание №2 :

Игры для развития устного счета и скорости счета

Существуют прекрасные игры, способствующие развитию счета, помогающие развивать математические способности и математическое мышление, устный счет и скорость счета! Можно играть и развиваться! Вам интересно? Прочтите краткие статьи об играх и обязательно попробуйте себя.

Игра «Быстрый счет»

Игра «быстрый счет» поможет вам ускорить устный счет. Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ да или нет на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Игра «Математические сравнения»

Игра «Математические сравнения» потребует от вас сравнения двух чисел на время. То есть вам предстоит выбрать как можно быстрее одно из двух чисел. Помните, что время ограничено, а чем больше вы ответите верно, тем лучше будут развиваться ваши математические способности! Попробуем?

Игра «Быстрое сложение»

Игра «Быстрое сложение» - отличный тренажер быстрого счета. Суть игры: дано поле 4x4, то есть. 16 чисел, а над полем семнадцатое число. Ваша цель: при помощи шестнадцати чисел составить 17, пользуясь операцией сложения. Например, над полем у вас написано число 28, то в поле вам надо найти 2 таких числа, которые в сумме дадут число 28. Вы готовы попробовать свои силы? Тогда вперед, тренироваться!

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать.

Арифметика (греч. arithmetika, от arithmys - число)

наука о числах, в первую очередь о натуральных (целых положительных) числах и (рациональных) дробях, и действиях над ними.

Владение достаточно развитым понятием натурального числа и умение производить действия с числами необходимы для практической и культурной деятельности человека. Поэтому А. является элементом дошкольного воспитания детей и обязательным предметом школьной программы.

С помощью натуральных чисел конструируются многие математические понятия (например, основное понятие математического анализа - действительное число). В связи с этим А. является одной из основных математических наук. Когда делается упор на логический анализ понятия числа (См. Число), то иногда употребляют термин теоретическая арифметика. А. тесно связана с алгеброй (См. Алгебра), в которой, в частности, изучаются действия над числами без учёта их индивидуальных свойств. Индивидуальные свойства целых чисел составляют предмет чисел теории (См. Чисел теория).

Историческая справка. Возникнув в глубокой древности из практических потребностей счёта и простейших измерений, А. развивалась в связи с усложнением хозяйственной деятельности и социальных отношений, денежными расчётами, задачами измерений расстояний, времени, площадей и требованиями, которые предъявляли к ней другие науки.

О возникновении счёта и о начальных стадиях образования арифметических понятий судят обычно по наблюдениям, относящимся к процессу счёта у первобытных народов, и, косвенным образом, путём изучения следов аналогичных стадий, сохранившихся в языках культурных народов и наблюдающихся при усвоении этих понятий детьми. Эти данные говорят о том, что развитие тех элементов мыслительной деятельности, которые лежат в основе процесса счёта, проходит ряд промежуточных этапов. К ним относятся: умение узнавать один и тот же предмет и различать предметы в подлежащей счёту совокупности предметов; умение устанавливать исчерпывающее разложение этой совокупности на элементы, отличимые друг от друга и вместе с тем равноправные при счёте (пользование именованной «единицей» счёта); умение устанавливать соответствие между элементами двух множеств, вначале непосредственно, а затем сопоставлением их с элементами раз навсегда упорядоченной совокупности объектов, т. е. совокупности объектов, расположенных в определённой последовательности. Элементами такой стандартной упорядоченной совокупности становятся слова (числительные), применяемые при счёте предметов любой качественной природы и отвечающие образованию отвлечённого понятия числа. При самых различных условиях можно наблюдать сходные особенности постепенного возникновения и усовершенствования перечисленных навыков и отвечающих им арифметических понятий.

Сначала счёт оказывается возможным лишь для совокупностей из сравнительно небольшого числа предметов, за пределами которого количественные различия осознаются смутно и характеризуются словами, являющимися синонимами слова «много»; при этом орудием счёта служат зарубки на дереве («бирочный» счёт), счётные камешки, чётки, пальцы рук и т.п., а также множества, заключающие постоянное число элементов, например: «глаза» - как синоним числительного «два», кисть руки («пясть») - как синоним и фактическая основа числительного «пять», и т.п.

Словесный порядковый счёт (раз, два, три и т.д.), прямую зависимость которого от пальцевого счёта (последовательное произнесение названий пальцев, частей рук) в некоторых случаях можно проследить непосредственно, связывается в дальнейшем со счётом групп, содержащих определённое число предметов. Это число образует основание соответствующей системы счисления, обычно, в результате счёта по пальцам двух рук, равное 10. Встречаются, однако, и группировки по 5, по 20 (французское 80 «quatre-vingt» = 4 × 20), по 40, по 12 («дюжина»), по 60 и даже по 11 (Новая Зеландия). В эпоху развитых торговых сношений способы нумерации (как устной, так и письменной) естественно обнаруживали тенденцию к единообразию у общавшихся между собой племён и народностей; это обстоятельство сыграло решающую роль в установлении и распространении применяемой в наст. время системы нумерации (счисления (См. Счисление)), принципа поместного (поразрядного) значения цифр и способов выполнения арифметических действий. По-видимому, аналогичными причинами объясняется и общеизвестное сходство имён числительных в различных языках: например, два - dva (санскр.), δυο (греч.), duo (лат.), two (англ.).

Источником первых достоверных сведений о состоянии арифметических знаний в эпоху древних цивилизаций являются письменные документы Др. Египта (Папирусы математические), написанные приблизительно за 2 тыс. лет до н. э. Это - сборники задач с указанием их решений, правил действий над целыми числами и дробями со вспомогательными таблицами, без каких бы то ни было пояснений теоретического характера. Решение некоторых задач в этом сборнике производится, по существу, с помощью составления и решения уравнений; встречаются также арифметические и геометрические прогрессии.

О довольно высоком уровне арифметической культуры вавилонян за 2-3 тыс. лет до н. э. позволяют судить Клинописные математические тексты . Письменная нумерация вавилонян в клинописных текстах представляет собой своеобразное соединение десятичной системы (для чисел, меньших 60) с шестидесятиричной, с разрядными единицами 60, 60 2 и т.д. Наиболее существенным показателем высокого уровня А. является употребление шестидесятиричных дробей с распространением на них той же системы нумерации, аналогично современным десятичным дробям. Техника выполнения арифметических действий у вавилонян, в теоретическом отношении аналогичная обычным приёмам в десятичной системе, осложнялась необходимостью прибегать к обширным таблицам умножения (для чисел от 1 до 59). В сохранившихся клинописных материалах, представлявших собой, по-видимому, учебные пособия, находятся, кроме того, и соответствующие таблицы обратных чисел (двузначные и трёхзначные, т. е. с точностью до 1 / 60 2 и 1 / 60 3), применявшихся при делении.

У древних греков практическая сторона А. не получила дальнейшего развития; применявшаяся ими система письменной нумерации с помощью букв алфавита была значительно менее приспособлена для производства сложных вычислений, нежели вавилонская (показательно, в частности, что древнегреческие астрономы предпочитали пользоваться шестидесятиричной системой). С другой стороны, древнегреческие математики положили начало теоретической разработке А. в части, касавшейся учения о натуральных числах, теории пропорций, измерения величин и - в неявной форме - также и теории иррациональных чисел. В «Началах» Евклида (3 в. до н. э.) имеются сохранившие своё значение и до сих пор доказательство бесконечности числа простых чисел, основные теоремы о делимости, алгоритмы для нахождения общей меры двух отрезков и общего наибольшего делителя двух чисел (см. Евклида алгоритм), доказательство несуществования рационального числа, квадрат которого равен 2 (иррациональность числа √2), и изложенная в геометрической форме теория пропорций. К рассматривавшимся теоретико-числовым задачам относятся задачи о совершенных числах (См. Совершенные числа) (Евклид), о пифагоровых числах (См. Пифагоровы числа), а также - уже в более позднюю эпоху - алгоритм для выделения простых чисел (Эратосфена решето) и решение ряда неопределённых уравнений 2-й и более высоких степеней (Диофант).

Существенную роль в образовании понятия бесконечного натурального ряда чисел сыграл «Псаммит» Архимеда (3 в. до н. э.), в котором доказывается возможность именовать и обозначать сколь угодно большие числа. Сочинения Архимеда свидетельствуют о довольно высоком искусстве в получении приближённых значений искомых величин: извлечение корня из многозначных чисел, нахождение рациональных приближений для иррациональных чисел, например

Римляне не продвинули вперёд технику вычислений, оставив, однако, дошедшую до нашего времени систему нумерации (Римские цифры), мало приспособленную для производства действий и применяемую в настоящее время почти исключительно для обозначения порядковых чисел.

Трудно проследить преемственность в развитии математики в отношении предыдущих, более древних, культур; однако чрезвычайно важные этапы в развитии А. связываются с культурой Индии, оказавшей влияние как на страны Передней Азии и Европы, так и на страны Вост. Азии (Китай, Япония). Помимо применения алгебры к решению задач арифметического содержания, наиболее существенная заслуга индийцев - введение позиционной системы счисления (с применением десяти цифр, включая нуль для обозначения отсутствия единиц в каком-либо из разрядов), сделавшей возможной разработку сравнительно простых правил выполнения основных арифметических действий.

Учёные средневекового Востока не только сохранили в переводах наследие древнегреческих математиков, но и содействовали распространению и дальнейшему развитию достижений индийцев. Методы выполнения арифметических действий, в значительной части ещё далёкие от современных, но уже использующие преимущества позиционной системы счисления, с 10 в. н. э. стали постепенно проникать в Европу, раньше всего в Италию и Испанию.

Сравнительно медленный прогресс А. в средние века сменяется к началу 17 в. быстрым усовершенствованием приёмов вычисления в связи с возросшими практическими запросами к технике вычислений (задачи мореходной астрономии, механики, усложнившиеся коммерческие расчёты и т.п.). Дроби со знаменателем 10, употреблявшиеся ещё индийцами (при извлечении квадратных корней) и неоднократно обращавшие на себя внимание и европейских учёных, применялись сначала в неявной форме в тригонометрических таблицах (в форме целых чисел, выражающих длины линий синуса, тангенса и т.д. при радиусе, принятом за 10 5). Впервые (1427) подробно описал систему десятичных дробей и правила действий над ними аль-Каши . Запись десятичных дробей, по существу совпадающая с современной, встречается в сочинениях С. Стевин а в 1585 и с этого времени получает повсеместное распространение. К той же эпохе относится изобретение логарифмов в начале 17 в. Дж. Непер ом. В начале 18 в. приёмы выполнения и записи вычислений приобретают современную форму.

В России до начала 17 в. применялась нумерация, сходная с греческой; хорошо и своеобразно была разработана система устной нумерации, доходившая до 50-го разряда. Из русских арифметических руководств начала 18 в. наибольшее значение имела высоко оцененная М. В. Ломоносовым «Арифметика» Л. Ф. Магницкого (См. Магницкий) (1703). В ней содержится следующее определение А.: «Арифметика или числительница, есть художество честное, независтное, и всем удобопонятное, многополезнейшее, и многохвальнейшее, от древнейших же и новейших, в разные времена живших изряднейших арифметиков, изобретенное, и изложенное». Наряду с вопросами нумерации, изложением техники вычисления с целыми числами и дробями (в т. ч. и десятичными) и соответствующими задачами в этом руководстве содержатся и элементы алгебры, геометрии и тригонометрии, а также ряд практических сведений, относящихся к коммерческим расчётам и задачам навигации. Изложение А. приобретает уже более или менее современный вид у Л. Эйлер а и его учеников.

Теоретические вопросы арифметики. Теоретическая разработка вопросов, касающихся учения о числе и учения об измерении величин, не может быть оторвана от развития математики в целом: решающие этапы её связаны с моментами, определявшими в равной мере и развитие алгебры, геометрии и анализа. Наиболее важным надо считать создание общего учения о Величина х, соответствующего абстрактного учения о числе (См. Число) (целом, рациональном и иррациональном) и буквенного аппарата алгебры.

Фундаментальное значение А. как науки, достаточной для изучения непрерывных величин различного рода, было осознано лишь к концу 17 в. в связи со включением в А. понятия иррационального числа, определяемого последовательностью рациональных приближений. Немаловажную роль при этом сыграли аппарат десятичных дробей и применение логарифмов, расширивших область осуществляемых с требуемой точностью операций над действительными числами (иррациональными наравне с рациональными).

Построение Грасмана было завершено в дальнейшем работами Дж. Пеано , в которых отчётливо выделена система основных (не определяемых через другие понятия) понятий, именно: понятие натурального числа, понятие следования одного числа непосредственно за другим в натуральном ряде и понятие начального члена натурального ряда (за который можно принять 0 или 1). Эти понятия связаны между собой пятью аксиомами, которые можно рассматривать как аксиоматическое определение указанных основных понятий.

Аксиомы Пеано: 1) 1 есть натуральное число; 2) следующее за натуральным числом есть натуральное число; 3) 1 не следует ни за каким натуральным числом; 4) если натуральное число а следует за натуральным числом b и за натуральным числом с , то b и с тождественны; 5) если какое-либо предложение доказано для 1 и если из допущения, что оно верно для натурального числа n , вытекает, что оно верно для следующего за п натурального числа, то это предложение верно для всех натуральных чисел. Эта аксиома - аксиома полной индукции - даёт возможность в дальнейшем пользоваться грасмановскими определениями действий и доказывать общие свойства натуральных чисел.

Эти построения, дающие решение задачи обоснования формальных положений А., оставляют в стороне вопрос о логической структуре А. натуральных чисел в более широком смысле слова, с включением тех операций, которые определяют собой приложения А. как в рамках самой математики, так и в практической жизни. Анализ этой стороны вопроса, выяснив содержание понятия количественного числа, вместе с тем показал, что вопрос об обосновании А. тесно связан с более общими принципиальными проблемами методологического анализа математических дисциплин. Если простейшие предложения А., относящиеся к элементарному счёту объектов и являющиеся обобщением многовекового опыта человечества, естественно укладываются в простейшие логической схемы, то А. как математическая дисциплина, изучающая бесконечную совокупность натуральных чисел, требует исследования непротиворечивости соответствующей системы аксиом и более детального анализа смысла вытекающих из неё общих предложений.

Лит.: Клейн Ф., Элементарная математика с точки зрения высшей, пер. с нем. т. 3 изд., т. 1, М.-Л., 1935; Арнольд И. В., Теоретическая арифметика, 2 изд., М., 1939; Беллюстин В. К., Как постепенно дошли люди до настоящей арифметики, М., 1940; Гребенча М. К., Арифметика, 2 изд., М., 1952; Берман Г. Н., Число и наука о ней, 3 изд., М., 1960; Дептяан И. Я., История арифметики, 2 изд., М., 1965; Выгодский М. Я., Арифметика и алгебра в Древнем мире, 2 изд., М., 1967.

И. В. Арнольд.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Арифметика" в других словарях:

    - (от греч. arithmos число, и toche искусство). Наука, имеющая своим предметом числа. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АРИФМЕТИКА от греч. arithmos, число, и techne, искусство. Наука о числах.… … Словарь иностранных слов русского языка