Что красное смещение спектральных линий. Феномен красного смещения. Красное смещение и старение света

КРАСНОЕ СМЕЩЕНИЕ

КРАСНОЕ СМЕЩЕНИЕ (обозначение z), увеличение длины волны видимого света или в другом диапазоне ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, вызванное либо удалением источника (эффект ДОПЛЕРА), либо расширением Вселенной (см. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ ). Определяется как изменение длины волны определенной спектральной линии, относительно эталонной длиной волны этой линии. Красные смещения, вызванные расширением Вселенной, называемые космологическим красным смещением, не имеют ничего общего с эффектом Доплера. Эффект Доплера возникает из-за движения в пространстве, тогда как космологическое красное смещение вызвано расширением самого пространства, которое в буквальном смысле растягивает длины волн света, движущегося к нам. Чем длиннее время путешествия света, тем больше растягивается его длина волны. Как показывает ПОСТОЯННАЯ ХАББЛА, гравитационное красное смещение - это явление, предсказанное общей ТЕОРИЕЙ ОТНОСИТЕЛЬНОСТИ Альберта ЭЙНШТЕЙНА. Свет, излучаемый звездой, должен проделать работу, чтобы преодолеть гравитационное поле звезды. В итоге имеет место небольшая потеря энергии, являющаяся результатом увеличения длины волны, так что все спектральные линии смещаются в сторону красного цвета.

Некоторые эффекты красного смещения, в которых свет, излучаемый звездами сдвигается в сторону более длинного (красного) конца спектра могут объясняться эффектом Доплера. Также как радар (А) может вычислить местонахождение движущегося объекта с помощью измерения времени, необходимого посланному сигналу (1), чтобы вернуться (2), также и движение звезд может быть измерено относительно Земли. Длина волны звезды, которая, по-видимому, не приближается к Земле и не удаляется от нее (В), не меняется. Длина волны звезды, которая удаляется от Земли, увеличивается (С) и движется по направлению к красному концу спектра. Длина волны приближающейся к Земле звезды (D) уменьшается и движется к синему концу спектра.


Научно-технический энциклопедический словарь .

Смотреть что такое "КРАСНОЕ СМЕЩЕНИЕ" в других словарях:

    Красное смещение сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектра … Википедия

    Современная энциклопедия

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. красное смещение возникает, когда расстояние между источником излучения и его приемником… … Большой Энциклопедический словарь

    Красное смещение - КРАСНОЕ СМЕЩЕНИЕ, увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и… … Иллюстрированный энциклопедический словарь

    Увеличение длин волн (l) линий в эл. магн. спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Количественно К. с. характеризуется величиной z=(lприн lисп)/lисп, где lисп и lприн… … Физическая энциклопедия

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приёмником… … Энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником… … Астрономический словарь

    красное смещение - raudonasis poslinkis statusas T sritis fizika atitikmenys: angl. red shift vok. Rotverschiebung, f rus. красное смещение, n pranc. décalage vers le rouge, m; déplacement vers le rouge, m … Fizikos terminų žodynas

    - (метагалактическое) – понижение частот электромагнитного излучения галактик (света, радиоволн) по сравнению с частотой лабораторных (земных) источников электромагнитного излучения. В частности, линии видимой части спектра смещены к красному его… … Философская энциклопедия

    Увеличение длин волн X в спектре оптическом источника излучения (смещение спектральных линий в сторону красной части спектра) по сравнению с X линий эталонных спектров. К. с. возникает, когда расстояние между источником излучения и наблюдателем… … Большой энциклопедический политехнический словарь

Книги

  • Красное смещение , Евгений Гуляковский. Бывший воин - афганец Глеб Яровцев, прикованный к креслу-каталке после тяжелого ранения, неожиданно попадает в центр внимания вербовщиков из иной реальности Земли. Ему возвращают здоровье с…

Что, по вашему мнению, означает термин Расширение Вселенной, в чем суть данного явления.

Как вы догадались, основа лежит в понятии красного смещения. Оно обрело свои очертания ещё в 1870 году, когда было замечено английским математиком и философом Уильямом Клиффордом. Он пришел к выводу, что пространство неодинаково в разных точках, то есть искривлено, а также то, что оно со временем может изменяться. Расстояние между галактиками увеличивается, но координаты остаются прежними. Также его допущения сводились к тому, что это явление каким-то образом относиться к сдвигу материи. Выводы Клиффорда не остались не замеченными и спустя некоторое время легли в основу труда Альберта Эйнштейна под названием « «.

Первые обоснованные идеи

Впервые же точные сведения о расширении Вселенной были представлены с помощью астроспектрографии. Когда в Англии, в 1886 году, астрономом-любителем Уильямом Хаггинсом было отмечено, что длины волн звёздного света сдвинуты в сравнении с такими же земными волнами. Такое измерение стало возможным при использовании оптической интерпретации эффекта Доплера, суть которого в том, что скорость звуковых волн постоянна в однородной среде и зависит лишь от свойств самой среды, в таком случае можно вычислить величину вращения звезды. Все эти действия позволяют нам негласно определить движение космического объекта.

Практика измерения скоростей

Буквально через 26 лет в Флагстаффе (США, Аризона) член национальной академии наук Весто Слайфер, изучая спектр спиральных туманностей через телескоп со спектрографом, первым обозначил разности скоростей скоплений, то есть Галактик, по интегральным спектрам. Учитывая, что скорость изучения была мала, ему все-таки удалось рассчитать, что туманность с каждой секундой на 300 км ближе к нашей планете. Уже в 1917 году им было доказано красное смещение более чем 25 туманностей, в направлении которых проглядывалась значительная асимметрия. Лишь четыре из них шли к направлению Земли, остальные же отдалялись, причем с довольно внушающей скоростью.

Формирование закона

Спустя десятилетие известный астроном Эдвин Хаббл доказал, что у дальних галактик красное смещение больше чем у более близко расположенных, и что оно растет пропорционально расстоянию до них. Им также была получена постоянная величина, называемая постоянной Хаббла, которая используется для нахождения лучевых скоростей любых галактик. Закон Хаббла как никто связывает красное смещение электромагнитных квантов. Учитывая это явление, он представлен не только в классической, но и в квантовой форме.

Популярные способы нахождения

На сегодня одним из основополагающих способов нахождения межгалактических расстояний это метод «стандартной свечи», суть которого в ослаблении потока обратно пропорционально квадрату его расстояния. Эдвин обычно пользовался цефеидами (переменными звездами) яркость коих тем больше чем больше их периодичность изменения свечения. Ими пользуются и в данный момент, хотя и видны они лишь на расстоянии меньше 100 млн. св. лет. Так же большим успехом пользуются сверхновые типа la характеризуемые одинаковым свечением около 10 млрд. таких звезд как наше Солнце.

Последние прорывы

Красное смещение - сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. - Сдвиг спектральных линий в фиолетовую (коротковолновую) сторону называется синим смещением.

Красное смещение может возникнуть в следствие одной из следующих причин или их комбинацией:

Для электромагнитных волн, излучаемых на расстоянии r от центра масс массивного тела и принимаемых на бесконечности (R=∞), гравитационное красное смещение приблизительно равно:

Существенных вопросов к гравитационному красному смещению, в общем нет. - Тут все по науке.

Красное смещение и старение света

Старение света (англ. tired light) - гипотеза, выдвинутая сторонниками стационарной Вселенной , в качестве альтернативного объяснения обнаруженной зависимости красного смещения от расстояния до объекта. Данная гипотеза не предполагает расширения Вселенной.

Концепция впервые была предложена Фрицем Цвикки в 1929 году, который предположил, что фотоны теряют энергию в столкновениях с другими частицами пространства.

Некоторые физики поторопились похоронить эту гипотезу, не зная реального строения элементарных частиц и подлинной картины их взаимодействий , Но полевая теория элементарных частиц позволяет по новому взглянуть на данную гипотезу и установить, как фотоны теряют часть своей энергии при прохождении через вселенную. Более того полевая теория нашла кандидатов на "темную материю " и "темных" переносчиков энергии (взамен "темной энергии "). Рассмотрим это более подробно.

Фотон-нейтринные взаимодействия

Согласно современным экспериментальным данным наше солнце ежесекундно испускает порядка 2×10 38 нейтрино (в основном электронных). С помощью полевой теории элементарных частиц и экспериментального значения верхнего предела массы покоя электронного нейтрино можно определить его минимальный объем как 10 -20 м 3 . Перемножив две цифры, мы сможем оценить минимальный объем всех нейтрино , испускаемых нашим солнцем за 1 секунду как 2×10 18 м 3 . Получился куб с размером грани более 1200 км. И это в каждую секунду работы нашего солнца. А если умножить на предполагаемое время горения нашего солнца 4,57×10 9 ×365×24×60×60=1,38×10 16 сек мы получим 2,76×10 54 нейтрино и объем 2,76×10 34 м 3 . Для сравнения объем пространства занимаемый нашей солнечной системой (рассчитанный по радиусу орбиты Плутона) 9×10 38 м 3 . Как видим это сопоставимые величины. Если вычислить среднее количество нейтрино ежесекундно испускаемых звездами а затем умножить на число звезд в галактике (в нашей это 10 11), число видимых галактик и на предполагаемый возраст Вселенной (12,07×10 9 лет) мы получим фактор воздействия не только на энергию фотонов при их движении по вселенной но и на сами галактики а также и на Вселенную в целом. А игнорировать влияние нейтрино на мега мир как это пыталась делать стандартная модель нельзя.

Но возникает еще один вопрос: а из чего следует, что возраст Вселенной равен именно 12,07×10 9 лет. Ведь возраст самых старых шаровых скоплений звезд позволяющий оценить возраст Вселенной указывает что возраст Вселенной больше, чем 12,07×10 9 лет. А определение возраста Вселенной по красному смещению (13,7×10 9 лет) вообще нельзя считать достоверным, поскольку при этом игнорировались фотон-нейтринные взаимодействия. Но если какая-то часть красного смещения обусловлена этими взаимодействиями, то возраст вселенной автоматически увеличивается. А это ведет в свою очередь к увеличению числа нейтрино во Вселенной и как следствие к увеличению части красного смещения вызванной фотон-нейтринными взаимодействиями. А значит, возраст вселенной придется снова двигать и снова и... .

Взаимодействия нейтрино

Согласно экспериментальным данным нейтрино покидают солнце с релятивистскими скоростями (и соответственно энергиями). А такое нейтрино , если оно ни с кем не столкнется, с легкостью преодолеет гравитационное поле и выйдет за пределы галактики. Но вероятность столкновения с нейтрино от других звезд (и звезд других галактик) достаточно высока. Такие столкновения могут произойти как внутри галактики, так и за ее пределами. При столкновении нейтрино они перейдут в возбужденные состояния . Затем из этих состояний произойдет переход в состояния с меньшей энергией и испусканием фотонов либо рождением нейтрино-антинейтрино или электрон-позитронных пар, если на это было достаточно энергии. И создается иллюзия образования из ничего пар частица-античастица, а также возникновение электромагнитного излучения, которое может быть приписано "реликтовому". Столкнувшиеся нейтрино будут пополнять собой невидимую массу во вселенной - темную материю (хотя возможно у "темной" материи имеются и другие компоненты, кроме нейтрино). Кроме того возможны аннигиляции пар нейтрино-антинейтрино с испусканием электромагнитного излучения.

Красное смещение и эффект Доплера

Параметр смещения определяется как:

,
где λ и λ 0 - значения длины волны в точках наблюдения и испускания излучения соответственно.

Доплеровское смещение длины волны в спектре источника, движущегося с лучевой скоростью и полной скоростью , равно:

,
При движении к источнику излучения длина волны будет уменьшаться, а при движении от источника излучения длина волны будет увеличиваться, и будет наблюдаться красное смещение.

Исходя из наблюдения красного смещения в спектрах галактик и эффекта Доплера делается вывод, что все галактики разбегаются и следовательно вселенная расширяется.

Никаких прямых доказательств того, что галактики разбегаются, в физике в настоящий момент нет. Никто не измерял напрямую расстояния до галактик и не обнаружил, что за некоторый интервал времени они выросли. Таким образом, факт разбегания галактик физикой в настоящий момент не установлен. Это всего лишь не доказанные предположения, основанные на наличии красного смещения в спектрах галактик и толковании его в пользу эффекта Доплера. Таким образом "теория Большого взрыва " продолжает оставаться недоказанной гипотезой.

Красное смещение и расширение Вселенной

Красное смещение, вызванное эффектом Доплера, если оно имеет место в природе, должно вызвать расширение космического пространства в масштабах всей Вселенной. Считается, что такое расширение Вселенной должно быть почти однородным и изотропным (расширение происходит почти равномерно в каждой точке Вселенной).

Утверждается, что экспериментально расширение Вселенной наблюдается в виде выполнения закона Хаббла. Предполагается, что началом расширения Вселенной является так называемый "Большой взрыв ". Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности.

Возникает вопрос: если Вселенная, как предполагается, расширяется, то увеличиваются и линейные размеры внутри нашей солнечной системы. Следовательно, увеличивается и длина эталона длины - 1 метра. Отсюда мы получаем невозможность определения расширения Вселенной - число метров от нас до удаленной галактики будет оставаться прежним. Число метров будет изменяться, в соответствии с законами механики и будет зависеть от направления и реальной величины линейной скорости галактики (относительно нашей планеты - "центра мироздания") - что не связанно с предполагаемым расширением Вселенной.

Таким образом наличие расширения Вселенной физикой не доказано - это всего-лишь одна из гипотез объясняющих красное смещение.

Итог

Гипотеза Большого взрыва по-прежнему остается не доказанным предположением (или просто говоря - является сказкой), а идея Стационарной Вселенной нуждается в дальнейшем исследовании. Какая теория возникнет потом - время покажет.

Вселенная не так пуста, как кажется. В ней идут процессы преобразования и переноса энергии (в том числе и теми же нейтрино - не видимыми переносчиками энергии) и физике предстоит понять, описать и объяснить все это, а не выдумывать всякие правдоподобные математические сказки.

Сейчас физика не может однозначно сказать, каков реальный возраст Вселенной и можно ли его как-то измерить. - Но теперь совершенно ясно, что 13,7 млрд. лет назад вселенная была, в ней были галактики со звездами, у звезд были планеты, на части планет была жизнь, на некоторых разумная и тогда мыслящие существа тоже задавались вопросом каков реальный возраст Вселенной и также не могли дать точного ответа, поскольку за тем сроком, который проглядывался в прошлое, Вселенная уже была и в ней тоже были галактики и... .

Горунович В.А. Роль нейтрино в красном смещении и в микроволновом фоновом космическом излучении

Красное смещение

понижение частот электромагнитного излучения, одно из проявлений Доплера эффект а. Название «К. с.» связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается и в излучениях любых др. частот, например в радиодиапазоне. Противоположный эффект, связанный с повышением частот, называется синим (или фиолетовым) смещением. Чаще всего термин «К. с.» используется для обозначения двух явлений - космологическое К. с. и гравитационное К. с.

Космологическим (метагалактическим) К. с. называют наблюдаемое для всех далёких источников (галактик (См. Галактики), квазаров (См. Квазары)) понижение частот излучения, свидетельствующее об удалении этих источников друг от друга и, в частности, от нашей Галактики, т. е. о нестационарности (расширении) Метагалактики. К. с. для галактик было обнаружено американским астрономом В. Слайфером в 1912-14; в 1929 Э. Хаббл открыл, что К. с. для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). Предлагались различные объяснения наблюдаемого смещения спектральных линий. Такова, например, гипотеза о распаде световых квантов за время, составляющее миллионы и миллиарды лет, в течение которого свет далёких источников достигает земного наблюдателя; согласно этой гипотезе, при распаде уменьшается энергия, с чем связано и изменение частоты излучения. Однако эта гипотеза не подтверждается наблюдениями. В частности, К. с. в разных участках спектра одного и того же источника, в рамках гипотезы, должно быть различным. Между тем все данные наблюдений свидетельствуют о том, что К. с. не зависит от частоты, относительное изменение частоты z = (ν 0 - ν)/ν 0 совершенно одинаково для всех частот излучения не только в оптическом, но и в радиодиапазоне данного источника (ν 0 - частота некоторой линии спектра источника, ν - частота той же линии, регистрируемая приёмником; ν). Такое изменение частоты - характерное свойство доплеровского смещения и фактически исключает все др. истолкования К. с.

В относительности теории (См. Относительности теория) доплеровское К. с. рассматривается как результат замедления течения времени в движущейся системе отсчёта (эффект специальной теории относительности). Если скорость системы источника относительно системы приёмника составляет υ (в случае метагалактич. К. с. υ - это Лучевая скорость), то

(c - скорость света в вакууме) и по наблюдаемому К. с. легко определить лучевую скорость источника: v приближается к скорости света, оставаясь всегда меньше её (v v, намного меньшей скорости света (υ), формула упрощается: υ cz. Закон Хаббла в этом случае записывается в форме υ = cz = Hr (r - расстояние, Н - постоянная Хаббла). Для определения расстояний до внегалактических объектов по этой формуле нужно знать численное значение постоянной Хаббла Н. Знание этой постоянной очень важно и для космологии (См. Космология): с ней связан т. н. возраст Вселенной.

Вплоть до 50-х гг. 20 в. внегалактические расстояния (измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение Н, определённое по этим расстояниям, получилось сильно завышенным. В начале 70-х гг. 20 в. для постоянной Хаббла принято значение Н = 53 ± 5 (км/сек )/Мгпс, обратная величина Т = 1/Н = 18 млрд. лет.

Фотографирование спектров слабых (далёких) источников для измерения К. с., даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения z ≈ 0,2, соответствующие скорости υ ≈ 60 000 км/сек и расстоянию свыше 1 млрд. пс. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10%, т. е. такая же, как погрешность определения Н ). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются z ≈ 2 и больше. При смещениях z = 2 скорость υ ≈ 0,8․с = 240 000 км/сек. При таких скоростях уже сказываются специфические космологические эффекты - нестационарность и кривизна пространства - времени (См. Кривизна пространства-времени); в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний - расстояние по К. с. - составляет здесь, очевидно, r= υlH = 4,5 млрд. пс ). К. с. свидетельствует о расширении всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной.

Гравитационное К. с. является следствием замедления темпа времени и обусловлено гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейн ом в 1911, наблюдалось начиная с 1919 сначала в излучении Солнца, а затем и некоторых др. звёзд. Гравитационное К. с. принято характеризовать условной скоростью υ, вычисляемой формально по тем же формулам, что и в случаях космологического К. с. Значения условной скорости: для Солнца υ = 0,6 км/сек, для плотной звезды Сириус В υ = 20 км/сек. В 1959 впервые удалось измерить К. с., обусловленное гравитационным полем Земли, которое очень мало: υ = 7,5․10 -5 см/ сек (см. Мёссбауэра эффект). В некоторых случаях (например, при коллапсе гравитационном (См. Коллапс гравитационный)) должно наблюдаться К. с. обоих типов (в виде суммарного эффекта).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, 4 изд., М., 1962, § 89, 107; Наблюдательные основы космологии, пер. с англ., М., 1965.

Г. И. Наан.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Красное смещение" в других словарях:

    Красное смещение сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектра … Википедия

    Современная энциклопедия

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. красное смещение возникает, когда расстояние между источником излучения и его приемником… … Большой Энциклопедический словарь

    Красное смещение - КРАСНОЕ СМЕЩЕНИЕ, увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и… … Иллюстрированный энциклопедический словарь

    Увеличение длин волн (l) линий в эл. магн. спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Количественно К. с. характеризуется величиной z=(lприн lисп)/lисп, где lисп и lприн… … Физическая энциклопедия

    - (обозначение z), увеличение длины волны видимого света или в другом диапазоне ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, вызванное либо удалением источника (эффект ДОПЛЕРА), либо расширением Вселенной (см. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ). Определяется как изменение… … Научно-технический энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приёмником… … Энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником… … Астрономический словарь

    красное смещение - raudonasis poslinkis statusas T sritis fizika atitikmenys: angl. red shift vok. Rotverschiebung, f rus. красное смещение, n pranc. décalage vers le rouge, m; déplacement vers le rouge, m … Fizikos terminų žodynas

КРАСНОЕ СМЕЩЕНИЕ

КРАСНОЕ СМЕЩЕНИЕ

Увеличение длин волн (l) линий в эл.-магн. спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Количественно К. с. характеризуется величиной z=(lприн-lисп)/lисп, где lисп и lприн - соответственно излучения, испущенного источником и принятого наблюдателем (приёмником излучения). Два механизма приводят к появлению К. с.

К. с., обусловленное эффектом Доплера, возникает в том случае, когда источника света относительно наблюдателя приводит к увеличению расстояния между ними (см. ДОПЛЕРА ЭФФЕКТ). В релятив. случае, когда движения источника v относительно приёмника сравнима со скоростью света (с), К. с. может возникнуть и в том случае, если расстояние между источником и приёмником не возрастает (т. н. поперечный эффект Доплера). К. с., возникающее при этом, можно интерпретировать как результат релятив. замедления времени на источнике по отношению к наблюдателю (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ). Космологич. К. с., наблюдаемое у далёких галактик и квазаров, интерпретируется на основе общей теории относительности (ОТО) как эффект расширения Метагалактики (взаимного удаления галактик друг от друга; (см. КОСМОЛОГИЯ)). Расширение Метагалактики приводит к увеличению длин волн реликтового излучения и снижению энергии его квантов (т. е. к охлаждению реликтового излучения).

Гравитац. К. с. возникает, когда приёмник света находится в области с меньшим гравитац. потенциалом (fi2), чем источник (fi1). В этом случае К. с.- следствие замедления темпа времени вблизи гравитирующей массы и уменьшения частоты испускаемых квантов света (эффект ОТО): n=(1+(fi2-fi1)/c2) , Примером гравитац. К. с. может служить смещение линии в спектрах плотных звёзд - белых карликов. Используя Мёссбауэра, эффект, в 1959 удалось измерить К. с. в гравитац. Земли.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КРАСНОЕ СМЕЩЕНИЕ

Увеличение длины монохроматич. компонента спектра источника излучения в системе отсчёта наблюдателя по сравнению с длиной волны этого компонента в собств. системе отсчёта . Термин "К. с." возник при изучении спектральных линий оптич. диапазона, смещённых в сторону длинноволнового (красного) конца спектра. Причиной К. с. может явиться движение источника относительно наблюдателя - Доплера эффект или (и) отличие напряжённости поля тяготения в точках испускания и регистрации излучения - гравитационное К. с. В обоих случаях параметр смещения не зависит от длины волны, так что плотность распределения энергии излучения f 0 () связана с аналогичной плотностью в собств. системе отсчёта f e (). соотношением

Доплеровское смещение длины волны в спектре источника, движущегося с лучевой скоростью и полной скоростью , равно

Для чисто радиального движения красному смещению (z D >>0) отвечает увеличение расстояния до источника (>0), однако при отличной от нуля тангенциальной составляющей скорости значения Z D >O могут наблюдаться и при <0.

Гравитац. К. с. было предсказано А. Эйнштейном (A. Einstein, 1911) при разработке общей теории относительности (ОТО). В линейном относительно ньютоновского потенциала приближении (см. Всемирного тяготения закон) , где соответственно значения гравитац. потенциала в точках испускания и регистрации излучения (z g >0 в том случае, когда в точке испускания по модулю больше). Для массивных компактных объектов с сильным полем тяготения (напр., нейтронных звёзд и чёрных дыр )следует пользоваться точными ф-лами. В частности, гравитац. К. с. в спектре сферич. тела массой М и радиусом (r g - гравитационный радиус, G - гравитационная постоянная )определяется выражением

Первоначально для эксперим. проверки эффекта Эйнштейна исследовались спектры Солнца и других астр. объектов. Для Солнца z g 2*10 -6 , что слишком мало для надёжного измерения эффекта, однако в спектрах белых карликов (r 10 3 -10 4 км, r g 1-3 км, z g 10 -4 - 10 -5) эффект был обнаружен. В 1960 Р. Паунд (R. Pound) и Г. Ребка (G. Rebka), используя Мёссбауэра эффект, измерили гравитац. К. с. при распространении гамма-излучения в земных условиях (z g 10 -15).

Представление о космологич. К. с. возникло в результате работ (1910-29) В. Слайфера (V. Slipher), К. Вирца (К. Wirtz), К. Лундмарка (К. Lundmark) и Э. Хаббла (Е. Hubble). Последний в 1929 установил т. н. Хаббла закон - приблизительно линейную зависимость z,. от расстояния D до далёких галактик и их скоплений: z c (H 0 /c)D, где H 0 - т. н. параметр Хаббла [совр. оценка Н 0 75 км/(с*Мпк) с неопределённостью до множителя 1,5].

Космологич. К. с. связано с общим расширением Вселенной и обусловлено совместным действием эффектов Доплера и Эйнштейна (для относительно близких галактик, при D <10 3 Мпк, осп. роль играет эффект Доплера). В спектрах галактик зарегистрировано макс. значение z c 3, в спектрах квазаров z c 4,5(1988). В 1965 А. Пензиас (A. Penzias) и Р. Вильсон (R. Wilson) обнаружили микроволновое фоновое с темп-рой 2,7 К, интерпретируемое как реликт ранней стадии расширения Вселенной. Для реликтового излучения z c 1500.

Эффект К. с. в спектрах далёких галактик (эффект "разбегания" галактик) получил объяснение в рамках нестационарной космологической модели, основанной на ОТО (А. А. Фридман, 1922). Для нестационарной изотропной и однородной Вселенной (см. Космология )величина z c связана с масштабным фактором R (t )в испускания t e и регистрации t 0 света соотношением

Расширению Вселенной отвечает здесь z c >0. Закон Хаббла рассматривается как линейное к последнему соотношению с . Конкретный вид ф-ции R (t )определяется ур-ниями гравитац. Поля Ото. В. Ю. Теребиж.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КРАСНОЕ СМЕЩЕНИЕ" в других словарях:

    Красное смещение сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектра … Википедия

    Современная энциклопедия

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. красное смещение возникает, когда расстояние между источником излучения и его приемником… … Большой Энциклопедический словарь

    Красное смещение - КРАСНОЕ СМЕЩЕНИЕ, увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и… … Иллюстрированный энциклопедический словарь

    - (обозначение z), увеличение длины волны видимого света или в другом диапазоне ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, вызванное либо удалением источника (эффект ДОПЛЕРА), либо расширением Вселенной (см. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ). Определяется как изменение… … Научно-технический энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приёмником… … Энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником… … Астрономический словарь