Большой окружностью называется сечение. План-конспект занятия на тему: План занятия по геометрии. Тема: "Шар. Тема занятия: "Шар. Сечение шара плоскостью"

Введение

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называемой радиусом.

Отрезок, соединяющий две точки шаровой поверхности проходящей через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, также как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Сечение шара плоскостью

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство: Пусть - секущая плоскость и О - центр шара (рис. 1) Опустим перпендикуляр из центра шара на плоскость и обозначим через О" основание этого перпендикуляра.

Пусть X - произвольная точка шара, принадлежащая плоскости. По теореме Пифагора ОХ2=ОО"2+О"Х2. Так как ОХ не больше радиуса R шара, то О"Х?, т.е. любая точка сечения шара плоскостью находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом. Обратно: любая точка Х этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Площадь, проходящая через центр шара, называется диаметрально плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью.

Или сферой . Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом . Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром . Концы любого диаметра называются диаметрально противоположными точками шара. Всякое сечение шара плоскостью есть круг . Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью . Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии . Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенному в эту точку, называется касательной плоскостью . Данная точка называется точкой касания . Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной . Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара. Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная между двумя параллельными плоскостями, пересекающими шар. Шаровой сектор получается из шарового сегмента и конуса. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется. Основные формулы Шар (R = ОВ - радиус): S б = 4πR 2 ; V = 4πR 3 / 3. Шаровой сегмент (R = ОВ - радиус шара, h = СК - высота сегмента, r = КВ - радиус основания сегмента): V сегм = πh 2 (R - h / 3) или V сегм = πh(h 2 + 3r 2) / 6 ; S сегм = 2πRh . Шаровой сектор (R = ОВ - радиус шара, h = СК - высота сегмента): V = V сегм ± V кон, «+» - если сегмент меньше,«-» - если сегмент больше полусферы. или V = V сегм + V кон = πh 2 (R - h / 3) + πr 2 (R - h) / 3 . Шаровой слой (R 1 и R 2 - радиусы оснований шарового слоя; h = СК - высота шарового слоя или расстояние между основаниями): V ш/сл = πh 3 / 6 + πh(R 1 2 + R 2 2 ) / 2 ; S ш/сл = 2πRh . Пример 1. Объем шара равен 288π см 3 . Найти диаметр шара. Решение V = πd 3 / 6 288π = πd 3 / 6 πd 3 = 1728π d 3 = 1728 d = 12 см. Ответ: 12. Пример 2. Три равных сферы радиусом r касаются друг друга и некоторой плоскости. Определить радиус четвертой сферы, касающейся трех данных и данной плоскости. Решение Пусть О 1 , О 2 , О 3 - центры данных сфер и О - центр четвертой сферы, касающейся трех данных и данной плоскости. Пусть А, В, С, Т - точки касания сфер с данной плоскостью. Точки касания двух сфер лежат на линии центров этих сфер, поэтому О 1 О 2 = О 2 О 3 = О 3 О 1 = 2r . Точки равноудалены от плоскости АВС , поэтому АВО 2 О 1 , АВО 2 О 3 , АВО 3 О 1 - равные прямоугольники, следовательно, ∆АВС - равносторонний со стороной 2r . Пусть х - искомый радиус четвертой сферы. Тогда ОТ = х . Следовательно, Аналогично Значит, Т - центр равностороннего треугольника. Поэтому Отсюда Ответ: r / 3 . Сфера, вписанная в пирамиду В каждую правильную пирамиду можно вписать сферу. Центр сферы лежит на высоте пирамиды в точке ее пересечения с биссектрисой линейного угла при ребре основания пирамиды. Замечание. Если в пирамиду, необязательно правильную, можно вписать сферу, то радиус r этой сферы можно вычислить по формуле r = 3V / S пп , где V - объем пирамиды, S пп - площадь ее полной поверхности. Пример 3. Коническая воронка, радиус основания которой R , а высота H , наполнена водой. В воронку опущен тяжелый шар. Каким должен быть радиус шара, чтобы объем воды, вытесненный из воронки погруженной частью шара, был максимальным? Решение Проведем сечение через центр конуса. Данное сечение образует равнобедренный треугольник. Если в воронке находится шар, то максимальный размер его радиуса будет равен радиусу вписанной в получившийся равнобедренный треугольник окружности. Радиус вписанной в треугольник окружности равен: r = S / p , где S - площадь треугольника, p - его полупериметр. Площадь равнобедренного треугольника равна половине высоты (H = SO ), умноженной на основание. Но поскольку основание - удвоенный радиус конуса, то S = RH . Полупериметр равен p = 1/2 (2R + 2m) = R + m . m - длина каждой из равных сторон равнобедренного треугольника; R - радиус окружности, составляющей основание конуса. Найдем m по теореме Пифагора: , откуда Кратко это выглядит следующим образом: Ответ: Пример 4. В правильной треугольной пирамиде с двугранным углом при основании, равным α , расположены два шара. Первый шар касается всех граней пирамиды, а второй шар касается всех боковых граней пирамиды и первого шара. Найти отношение радиуса первого шара к радиусу второго шара, если tgα = 24/7 . Решение
Пусть РАВС - правильная пирамида и точка Н - центр ее основания АВС . Пусть М - середина ребра ВС . Тогда - линейный угол двугранного угла , который по условию равен α , причем α < 90° . Центр первого шара, касающегося всех граней пирамиды, лежит на отрезке РН в точке его пересечения с биссектрисой . Пусть НН 1 - диаметр первого шара и плоскость, проходящая через точку Н 1 перпендикулярно прямой РН , пересекает боковые ребра РА, РВ, РС соответственно в точках А 1 , В 1 , С 1 . Тогда Н 1 будет центром правильного ∆А 1 В 1 С 1 , а пирамида РА 1 В 1 С 1 будет подобна пирамиде РАВС с коэффициентом подобия k = РН 1 / РН . Заметим, что второй шар, с центром в точке О 1 , является вписанным в пирамиду РА 1 В 1 С 1 и поэтому отношение радиусов вписанных шаров равно коэффициенту подобия: ОН / ОН 1 = РН / РН 1 . Из равенства tgα = 24/7 находим: Пусть АВ = х . Тогда Отсюда искомое отношение ОН / О 1 Н 1 = 16/9. Ответ: 16/9. Сфера, вписанная в призму Диаметр D сферы, вписанной в призму, равен высоте Н призмы: D = 2R = H . Радиус R сферы, вписанной в призму, равен радиусу окружности, вписанной в перпендикулярное сечение призмы. Если в прямую призму вписана сфера, то в основание этой призмы можно вписать окружность. Радиус R сферы, вписанной в прямую призму, равен радиусу окружности, вписанной в основание призмы. Теорема 1 Пусть в основание прямой призмы можно вписать окружность, и высота Н призмы равна диаметру D этой окружности. Тогда в эту призму можно вписать сферу диаметром D . Центр этой вписанной сферы совпадает с серединой отрезка, соединяющего центры окружностей, вписанных в основания призмы. Доказательство Пусть АВС…А 1 В 1 С 1 … - прямая призма и О - центр окружности, вписанной в ее основание АВС . Тогда точка О равноудалена от всех сторон основания АВС . Пусть О 1 - ортогональная проекция точки О на основание А 1 В 1 С 1 . Тогда О 1 равноудалена от всех сторон основания А 1 В 1 С 1 , и ОО 1 || АА 1 . Отсюда следует, что прямая ОО 1 параллельна каждой плоскости боковой грани призмы, а длина отрезка ОО 1 равна высоте призмы и, по условию, диаметру окружности, вписанной в основание призмы. Значит, точки отрезка ОО 1 равноудалены от боковых граней призмы, а середина F отрезка ОО 1 , равноудаленная от плоскостей оснований призмы, будет равноудалена от всех граней призмы. То есть F - центр сферы, вписанной в призму, и диаметр этой сферы равен диаметру окружности, вписанной в основание призмы. Теорема доказана. Теорема 2 Пусть в перпендикулярное сечение наклонной призмы можно вписать окружность, и высота призмы равна диаметру этой окружности. Тогда в эту наклонную призму можно вписать сферу. Центр этой сферы делит высоту, проходящую через центр окружности, вписанной в перпендикулярное сечение, пополам. Доказательство
Пусть АВС…А 1 В 1 С 1 … - наклонная призма и F - центр окружности радиусом FK , вписанной в ее перпендикулярное сечение. Поскольку перпендикулярное сечение призмы перпендикулярно каждой плоскости ее боковой грани, то радиусы окружности, вписанной в перпендикулярное сечение, проведенные к сторонам этого сечения, являются перпендикулярами к боковым граням призмы. Следовательно, точка F равноудалена от всех боковых граней. Проведем через точку F прямую ОО 1 , перпендикулярную плоскости оснований призмы, пересекающую эти основания в точках О и О 1 . Тогда ОО 1 - высота призмы. Поскольку по условию ОО 1 = 2FK , то F - середина отрезка ОО 1 : FK = ОО 1 / 2 = FО = FО 1 , т.е. точка F равноудалена от плоскостей всех без исключения граней призмы. Значит, в данную призму можно вписать сферу, центр которой совпадает с точкой F - центром окружности, вписанной в то перпендикулярное сечение призмы, которое делит высоту призмы, проходящую через точку F , пополам. Теорема доказана. Пример 5. В прямоугольный параллелепипед вписан шар радиуса 1. Найдите объем параллелепипеда. Решение Нарисуйте вид сверху. Или сбоку. Или спереди. Вы увидите одно и то же - круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом, а параллелепипед будет кубом. Длина, ширина и высота этого куба в два раза больше, чем радиус шара. АВ = 2 , а следовательно, объем куба равен 8. Ответ: 8. Пример 6. В правильной треугольной призме со стороной основания, равной , расположены два шара. Первый шар вписан в призму, а второй шар касается одного основания призмы, двух ее боковых граней и первого шара. Найти радиус второго шара. Решение
Пусть АВСА 1 В 1 С 1 - правильная призма и точки Р и Р 1 - центры ее оснований. Тогда центр шара О , вписанного в эту призму, является серединой отрезка РР 1 . Рассмотрим плоскость РВВ 1 . Поскольку призма правильная, то РВ лежит на отрезке BN , который является биссектрисой и высотой ΔАВС . Следовательно, плоскость и является биссекторной плоскостью двугранного угла при боковом ребре ВВ 1 . Поэтому любая точка этой плоскости равноудалена от боковых граней АА 1 ВВ 1 и СС 1 В 1 В . В частности, перпендикуляр ОК , опущенный из точки О на грань АСС 1 А 1 , лежит в плоскости РВВ 1 и равен отрезку ОР . Заметим, что KNPO - квадрат, сторона которого равна радиусу шара, вписанного в данную призму. Пусть О 1 - центр шара, касающегося вписанного шара с центром О и боковых граней АА 1 ВВ 1 и СС 1 В 1 В призмы. Тогда точка О 1 лежит плоскости РВВ 1 , а ее проекция Р 2 на плоскость АВС лежит на отрезке РВ . По условию сторона основания равна

Плоскость пересекает сферу всегда по окружности, которая может проецироваться на плоскость в виде эллипса ,окружности илиотрезка прямой линии (рис. 70).


Сечение сферы проецирующей плоскостью Ω П 2

Окружность сечения проецируется на фронтальную плоскость в отрезок прямой линии С 2 D 2 , а на горизонтальную плоскость проекций в эллипс, большая ось которого равна диаметру окружности сечения.

Для построения большой оси А 1 В 1 (горизонтальной проекции, определяем середину отрезкаС 2 D 2 , через точку (А 2 В 2) проводится параллель, находят горизонтальную проекцию этой параллели и по линиям связи определяют на ней точки осиА 1 иВ 1.

Точки 1 и 1, расположенные на экваторе, являются границей видимости на П 1 . Точки 2 и 2, расположенные на главном меридиане, являются границей видимости на П 3 .

Лекция № 6 аксонометрические проекции

1. Общие сведения. 2. Показатели искажения. 3. Виды аксонометрических проекций. 4. Построение окружности в аксонометрии.

1 Общие сведения

При выполнении технических чертежей часто бывает необходимым иметь более наглядные изображения предметов. Для построения таких изображений применяют аксонометрические проекции (аксонометрию).

Аксонометрия – греческое слово, сос­тоящее из двух слов ахсо n ось и metreo измеряю .

Способ аксонометрического проецирования состоит в том, что предмет вместе с осями коор­динат, к которым он отнесен в пространстве, проецируется на какую-либо плос­кость параллельными лучами. Эта плоскость называется плоскостью аксонометрических проекций или картинной плоскостью (рис. 71).

Направление проецирования не должно совпадать ни с одной из осей координат, тогда и изображение получается наглядным.

Кроме наглядности аксонометрические проекции допускают и измерение предмета по трем координатным направлениям.

Построение изображения предмета выполняется по каркасу характерных для предмета точек с учетом свойств параллельного проецирования: параллельные прямые остаются на аксонометрических проекциях параллельными, точки, принадлежащие линиям, на проекциях принадлежат аксонометрическим проекциям этих линий. Все измерения делаются только по осям или параллельно осям.Характерные точки строятся по координатам.

К – аксонометрическая (картинная) плоскость;

S – направление проецирования.

2 Показатели искажения

Для возможности использования метода координат в аксонометрии вводятся показатели искажения по осям.

На рис. 72 изображена пространственная система координат, единичные отрезки е на осях координат и их проекция в направлении S на некоторую плоскость К , являющуюся аксонометрической плос­костью проекций. Проекции е х , е у , e z отрезка е на соответствующих аксонометрических осях в общем случае не равны отрезкуе и не равны между собой. Отрезкие х , е у , e z являютсяединицами измерения по аксонометрическим осям - аксоно­метрическими единицами (аксонометрическими масштабами).

Отношение длинны отреза в аксонометрических проекциях к истинной длине отрезка называют показателем искажения (коэффициентом искажения):

.

Зная величину коэффициента искажения можно построить аксонометрическое изображение точки по ее натуральным координатам, пользуясь следующими формулами:

Х 1 = К х Х; У 1 = К у У;

Z 1 = К z Z .

Показатели искажения связаны между собой соотношениями:

в прямоугольной аксонометрии:

К х 2 К у 2 К z 2 = 2,

в косоугольной аксонометрии:

К х 2 К у 2 К z 2 = 2 с tg 2 .

Cтраница 1


Сечение шара плоскостью, проходящей через центр, называется большим кругом. Радиус большого круга равен радиусу шара.  

Сечение шара плоскостью всегда представляет собой круг. На рис. 153 показан шар, пересеченный горизонтальной плоскостью R и фронтально-проектирующей плоскостью Q, заданных следами Rv и Qv. Он проектируется на плоскость Н также в виде круга, имеющего общий центр с очерком горизонтальной проекции шара. Для определения крайних точек t и t большой ог. Промежуточные точки эллипса, например / i и / 2, могут быть получены приемом, описанным при решении аналогичной задачи при построении точек, лежащих на поверхности шара.  

Сечение шара любой вертикальной плоскостью, проходящей через центр, дает большой круг, называемый меридианом.  

Сечение шара плоскостью, расположенной от центра шара на расстоянии, меньшем радиуса, есть круг.  

Сечение шара плоскостью представляет собой круг. Плоскость, проходящая через центр шара, пересекает его по кругу, диаметр которого равен диаметру шара. Для построения изображения усеченного шара строят проекции осей эллипса, а также точек эллипса, лежащих на очерковых образующих шара.  

Сечение шара плоскостью, перпендикулярной его радиусу, делит радиус пополам.  

Сечение шара, проходящее через ось конуса - большой круг шара, в который вписан ДЛВ5 (рис. 185), где [ ЛВ ] - диаметр основания конуса.  

Сечение шара плоскостью, проходящей через основание пирамиды, есть круг, в который вписан ДЛВС. Так как С 90, то центр этого круга О лежит на середине гипотенузы.  

Сечение шара плоскостью, проходящей через центр шара, называется большим кругом. Кйсательной плоскостью к сфере (шару) называется плоскость имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Для того чтобы плоскость была касательной к сфере, необходимо и достаточно, чтобы эта плоскость была перпендикулярна к радиусу сферы и проходила через его конец.  

Поэтому сечение шара, проходящее через его центр и касающееся основания пирамиды, будет являться кругом, вписанным в треугольник SEF, где SE и SF - апофемы боковых граней, a EF - высота ромба.  

Рассмотрим сечение шара, проходящее через ось усеченного конуса. В сечении мы получим круг, в который вписана трапеция ABCD.  

Каждое сечение шара плоскостью, проходящей через его центр, дает большой круг.  

О Сечение шара, проходящее через ось конуса - это большой круг шара, в который вписан Д ABS (рис. 339), где [ АВ ] - диаметр основания конуса.  

Теорема. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство. Пусть б -- секущая плоскость и О -- центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость б и обозначим через О" основание этого перпендикуляра.

Пусть X -- произвольная точка шара, принадлежащая плоскости б. По теореме Пифагора 0X2 = 00"2+О"Х2. Так как ОХ не больше радиуса R шара, то т. е. любая точка сечения шара плоскостью б находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом.

Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы -- большой окружностью.

Задачи

Задача 1 . Два сечения шара радиуса 10 см параллельными плоскостями имеют радиусы, равные 6 еж и 8 см. Найти расстояние между секущими плоскостями.

Решение. Находим расстояние каждой из параллельных плоскостей до центра шара:

в зависимости от того, лежит ли центр шара между плоскостями или нет, получаем два различных ответа к задаче:

Задача 2. Расстояние между центрами двух шаров равно d; радиусы их R1 и R2. Найти радиус окружности, по которой они пересекаются.

Решение. Искомый радиус служит высотой треугольника OMO1 (рис. 5). Площадь S треугольника ОМО2 находится по трем сторонам 001 = d, R1 R2 и искомый радиус равен r=2S/d. Прямая линия также может занимать по отношению к шару три существенно различных положения. Именно, она может пересечь поверхность шара в двух различных точках, не пересе­кать ее или иметь с ней одну общую точку. В последнем случае она будет называться касательной к шару

Задача 3 Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?