Второй закон термодинамики формулировка кратко. Законы термодинамики и их описание

В физике, так как она является точной наукой, большинство догм доказывается эмпирическим путем. Именно таким образом был выведен второй закон термодинамики, который сегодня изучается в каждой школе. Необратимость тепловых процессов - вот о чем он говорит. Стоит отметить, что на начальных этапах изучения такая трактовка куда более понятна.

Общие представления

Физическим принципом, который ограничивает направления различных процессов в термодинамических системах, является второй закон термодинамики. Определение данного термина было сформировано в 19 столетии, сначала Рудольфом Клаузисом, а затем Уильямом Томсоном (лордом Кельвином). В соответствии с двумя постулатами в мире не может существовать некий вечный двигатель второго рода. Нет и не будет такой установки, которая бы тепло, исходящее от всех вещей, живых существ и явлений, превращала в энергию для своей постоянной работы. Исходя из этого было выведено правило, что КПД не может равняться единице. Сравнить это можно с работой холодильника, где температура, допустим, будет равна абсолютному нулю. В таких условиях круговой обмен теплом исключен.

Формулировка Рудольфа Клаузиса

Первым озвучил второй закон термодинамики Р. Клаузис - немецкий физик-практик и математик. По его словам, круговой процесс, в котором результат достигается путем передачи теплоты от менее нагретого тела к более нагретому, невозможен. Иными словами, температура в полной или частичной мере может свободно переходить от более теплого тела к более охлажденному, но в обратном направлении этот процесс происходить не сможет. Это наглядным образом демонстрирует нам отсутствие цикличности, замкнутого круга. Такие понятия неприемлемы для термодинамики. Между телами просто происходит обмен теплом, и в результате этих действий не производится лишняя энергия.

Постулат, выведенный лордом Кельвином

Аналогичное определение второй закон термодинамики получил в трудах Томсона - британского физика и механика. Теоретически он звучит так: «Циклический процесс, единственным результатом которого могла бы быть работа, получаемая путем охлаждения теплого тела или резервуара, невозможен». Чтобы понять более ясно такую трактовку, представим себе некую машину (в соответствии с термодинамическим постулатом она существовать не может). Она периодически охлаждает резервуар с постоянно горячей водой, получая от этого тепловую энергию. За счет этой энергии машина поднимает различные грузы, как строительный кран. При этом в ней нет мотора, силовых установок и прочего механического наполнения. В точки зрения эмпирической физики такое невозможно.

Что общего?

Теперь рассмотрим, каким образом эти две трактовки объединяются и на что в принципе опирается второй закон термодинамики. Энтропия - та самая мера хаоса, которая увеличивается в процессе обмена теплом. Именно она является связующим элементом для описания Клаузиса и Кельвина. Но вернемся немного назад. Второе начало термодинамики гласит, что при обмене теплом энергия убывает (потому получение работы никак не возможно), но при этом мера хаоса увеличивается. Этот процесс необратимый, и часто его называют стихийным. В термодинамике энтропия постоянно приумножается, но ее уничтожение невозможно. Именно поэтому даже 100 процентов энергии, которые находятся в любом теле, не могут преобразоваться в работу.

Что такое мера хаоса?

Само понятие энтропии впервые было сформулировано устами Клаузиса. Оно применялось для определения меры необратимого процесса рассеивания энергии. Это была своего рода разница отклонения реального процесса от идеального. Энтропия в замкнутых системах, где любые процессы происходят циклично, имеет постоянную величину. Если же процесс необратимый (что непосредственно касается термодинамики), то энтропия всегда имеет положительное значение. Также стоит выделить, что мера хаоса порождается абсолютно всеми процессами, которые происходят во Вселенной. При постоянных показателях объема и энергии какого-либо тела или резервуара энтропия постоянно возрастает. Если данные показатели периодически меняются, то мера хаоса может уменьшиться за счет производимой работы, но ее полное уничтожение невозможно. При этом стоит отметить, что энтропия Вселенной не уменьшается. Она остается либо в норме, либо безвозвратно увеличивается.

Наглядный пример

Второй закон термодинамики можно объяснить на стандартном примере, который часто приводят школьникам. У нас есть два тела с различной температурой. Более нагретая субстанция будет отдавать свое тепло менее нагретой до тех пор, пока их температурные показатели не сравняются. В ходе данного процесса энтропия у первого, более теплого тела уменьшится на меньший показатель, нежели она увеличится у второго, более прохладного тела. В результате подобный самопроизвольный процесс создаст энтропию системы, показатель которой будет выше, чем суммарное значение энтропий двух тел в первоначальном положении. Иными словами, мера хаоса системы двух субстанций, полученная в результате обмена теплом, увеличилась.

Тепловая смерть Вселенной

Проводя свои расследования, Клаузис пришел к выводу, что каким бы открытым нам ни казалось пространство (наша планета, ее отдельные территории, акватории и т.д.), все это находится в космосе. Вселенная, в свою очередь, является огромнейшим замкнутым пространством, в рамках которого происходят макроскопические процессы. В силу того, что в замкнутой системе энтропия постоянно увеличивает свой показатель, наш мир близится к тому, что скоро в нем мера хаоса достигнет бесконечной величины. Это значит, что все процессы попросту прекратятся за счет того, что энергия исчерпает себя. Такая критическая точка, которой мы достигнем, возможно, в неком будущем, получила название тепловой смерти. Получается, что все наши действия (движения, ходьба, бег), все явления, которые происходят на планете (дуновение ветра, цунами, движения литосферных плит), - все это вызывает необратимое увеличение энтропии и исчерпывает энергию.

Опровержение теории

Судить обо всем космосе человек до сих пор не может. Мы видим лишь часть мира, в котором живем, и исследуем этот уголок, доказывая определенные законы и формируя на основе этого свои представления. Потому первое опровержение возможности тепловой смерти, которая основана на втором законе термодинамики, заключается в том, что Вселенная может и не быть замкнутой системой. Доподлинно известно, что 85 процентов космоса состоит из антиматерии, свойства которой никому неизвестны. Второе опровержение заключается в том, что наш космос, даже если и замкнут, является сплошной флуктуацией. Из-за различных колебаний и смен размеров, масс, показателей энергии и температуры энтропия не увеличивается (в суммарном, вселенском значении) и не уменьшается. Следовательно, мы и так пребываем в состоянии термодинамического равновесия, или же, словами Клаузиса, в состоянии тепловой смерти.

Подводим итоги

Второй закон термодинамики неразрывно связан с развитием точных наук. Он был открыт на заре научно-технического прогресса и стал, можно сказать, отправной точкой для дальнейших работ ученых в области математики, физики и астрономии. Стоит отметить, что все это мы представляем сугубо в земных условиях. Вполне вероятно, что в другой среде, где гравитационные поля имеют иную силу, термодинамика будет работать по совсем другой схеме.

Существует несколько формулировок второго закона термодинамики, авторами которых являются немецкий физик, механик и математик Рудольф Клаузиус и британский физик и механик Уильям Томсон, лорд Кельвин. Внешне они различаются, но суть их одинакова.

Постулат Клаузиуса

Рудольф Юлиус Эммануэль Клаузиус

Второй закон термодинамики, как и первый, также выведен опытным путём. Автором первой формулировки второго закона термодинамики считается немецкий физик, механик и математик Рудольф Клаузиус.

«Теплота сама собой не может переходить от тела холодного к телу горячему ». Это утверждение, которое Клазиус назвал «тепловой аксиомой », было сформулировано в 1850 г. в работе «О движущей силе теплоты и о законах, которые можно отсюда получить для теории теплоты». «Само собой теплота передаётся лишь от тела с более высокой температурой к телу с меньшей температурой. В обратном направлении самопроизвольная передача теплоты невозможна». Таков смысл постулата Клаузиуса , определяющего суть второго закона термодинамики.

Обратимые и необратимые процессы

Первый закон термодинамики показывает количественную связь между теплотой, полученной системой, изменением её внутренней энергии и работой, произведённой системой над внешними телами. Но он не рассматривает направление передачи теплоты. И можно предположить, что теплота может передаваться как от горячего тела к холодному, так и наоборот. Между тем, в действительности это не так. Если два тела находятся в контакте, то теплота всегда передаётся от более нагретого тела к менее нагретому. Причём этот процесс происходит сам по себе. При этом во внешних телах, окружающих контактирующие тела, никаких изменений не возникает. Такой процесс, который происходит без совершения работы извне (без вмешательства внешних сил), называется самопроизвольным . Он может быть обратимым и необратимым .

Самопроизвольно остывая, горячее тело передаёт свою теплоту окружающим его более холодным телам. И никогда само собой холодное тело не станет горячим. Термодинамическая система в этом случае не может возвратиться в первоначальное состояние. Такой процесс называется необратимым . Необратимые процессы протекают только в одном направлении. Практически все самопроизвольные процессы в природе необратимы, как необратимо время.

Обратимым называется термодинамический процесс, при котором система переходит из одного состояния в другое, но может вернуться в исходное состояние, пройдя в обратной последовательности через промежуточные равновесные состояния. При этом все параметры системы восстанавливаются до первоначального состояния. Обратимые процессы дают наибольшую работу. Однако в реальности их нельзя осуществить, к ним можно только приблизиться, так как протекают они бесконечно медленно. На практике такой процесс состоит из непрерывных последовательных состояний равновесия и называется квазистатическим . Все квазистатические процессы являются обратимыми.

Постулат Томсона (Кельвина)

Уильм Томсон, лорд Кельвин

Важнейшая задача термодинамики - получение с помощью тепла наибольшего количества работы. Работа легко превращается в теплоту полностью безо всякой компенсации, например, с помощью трения. Но обратный процесс превращения теплоты в работу происходит не полностью и невозможен без получения дополнительной энергии извне.

Нужно сказать, что передача теплоты от более холодного тела к более тёплому возможна. Такой процесс происходит, например, в нашем домашнем холодильнике. Но он не может быть самопроизвольным. Для того чтобы он протекал, необходимо наличие компрессора, который будет такой воздух перегонять. То есть, для обратного процесса (охлаждения) требуется подвод энергии извне. «Невозможен переход теплоты от тела с более низкой температурой без компенсации ».

В 1851 г. другую формулировку второго закона дал британский физик и механик Уильям Томсон, лорд Кельвин. Постулат Томсона (Кельвина) гласит: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара » . То есть, нельзя создать циклически работающий двигатель, в результате действия которого производилась бы положительная работа за счет его взаимодействия лишь с одним источником теплоты. Ведь если бы это было возможно, тепловой двигатель мог бы работать, используя, например, энергию Мирового океана и полностью превращая её в механическую работу. В результате этого происходило бы охлаждение океана за счёт уменьшения энергии. Но как только его температура оказалась бы ниже температуры окружающей среды, должен был бы происходить процесс самопроизвольной передачи тепла от более холодного тела к более горячему. А такой процесс невозможен. Следовательно, для работы теплового двигателя необходимо хотя бы два источника теплоты, имеющих разную температуру.

Вечный двигатель второго рода

В тепловых двигателях теплота превращается в полезную работу только при переходе от нагретого тела к холодному. Чтобы такой двигатель функционировал, в нём создаётся разность температур между теплоотдатчиком (нагревателем) и теплоприёмником (холодильником). Нагреватель передаёт теплоту рабочему телу (например, газу). Рабочее тело расширяется и совершает работу. При этом не вся теплота превращается в работу. Часть её передаётся холодильнику, а часть, например, просто уходит в атмосферу. Затем, чтобы вернуть параметры рабочего тела к первоначальным значениям и начать цикл сначала, рабочее тело требуется нагреть, то есть от холодильника необходимо отнять теплоту и передать её нагревателю. Это означает, что нужно передать теплоту от холодного тела к более тёплому. И если бы этот процесс можно было осуществить без подвода энергии извне, мы получили бы вечный двигатель второго рода. Но так как, согласно второму закону термодинамики, сделать это невозможно, то невозможно и создать вечный двигатель второго рода, который полностью превращал бы теплоту в работу.

Эквивалентные формулировки второго закона термодинамики:

  1. Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой.
  2. Невозможно создать вечный двигатель второго рода .

Принцип Карно

Николя Леонар Сади Карно

Но если невозможно создать вечный двигатель, то можно организовать цикл работы теплового двигателя таким образом, чтобы КПД (коэффициент полезного действия) был максимальным.

В 1824 г., задолго до того как Клаузиус и Томсон сформулировали свои постулаты, давшие определения второго закона термодинамики, французский физик и математик Николя Леонар Сади Карно опубликовал свою работу «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В термодинамике её считают основополагающей. Учёный сделал анализ существовавших в то время паровых машин, КПД которых был всего лишь 2%, и описáл работу идеальной тепловой машины.

В водяном двигателе вода совершает работу, падая с высоту вниз. По аналогии Карно предположил, что и теплота может совершать работу, переходя от горячего тела к более холодному. Это означает, что для того чтобы тепловая машина работала, в ней должно быть 2 источника тепла, имеющих разную температуру. Это утверждение называют принципом Карно . А цикл работы тепловой машины, созданной учёным, получил название цикла Карно .

Карно придумал идеальную тепловую машину, которая могла совершать максимально возможную работу за счёт подводимой к ней теплоты.

Тепловая машина, описанная Карно, состоит из нагревателя, имеющего температуру Т Н , рабочего тела и холодильника с температурой Т Х .

Цикл Карно является круговым обратимым процессом и включает в себя 4 стадии - 2 изотермические и 2 адиабатические.

Первая стадия А→Б изотермическая. Она проходит при одинаковой температуре нагревателя и рабочего тела Т Н . Во время контакта количество теплоты Q H передаётся от нагревателя рабочему телу (газу в цилиндре). Газ изотермически расширяется и совершает механическую работу.

Для того, чтобы процесс был циклическим (непрерывным), газ нужно вернуть к исходным параметрам.

На второй стадии цикла Б→В рабочее тело и нагреватель разъединяются. Газ продолжается расширяться адиабатически, не обмениваясь теплом с окружающей средой. При этом его температура снижается до температуры холодильника Т Х , и он продолжает совершать работу.

На третьей стадии В→Г рабочее тело, имея температуру Т Х , находится в контакте с холодильником. Под действием внешней силы оно изотермически сжимается и отдаёт теплоту величиной Q Х холодильнику. Над ним совершается работа.

На четвёртой стадии Г→А рабочее тело разъединятся с холодильником. Под действием внешней силы оно адиабатически сжимается. Над ним совершается работа. Его температура становится равной температуре нагревателя Т Н .

Рабочее тело возвращается в первоначальное состояние. Круговой процесс заканчивается. Начинается новый цикл.

Коэффициент полезного действия теловой машины, работающей по циклу Карно, равен:

КПД такой машины не зависит от её устройства. Он зависит только от разности температур нагревателя и холодильника. И если температура холодильника равна абсолютному нулю, то КПД будет равен 100%. До сих пор никто не смог придумать ничего лучшего.

К сожалению, на практике такую машину построить невозможно. Реальные обратимые термодинамические процессы могут лишь приближаться к идеальным с той или иной степенью точности. Кроме того, в реальной тепловой машине всегда будут тепловые потери. Поэтому её КПД будет ниже КПД идеального теплового двигателя, работающего по циклу Карно.

На основе цикла Карно построены различные технические устройства.

Если цикл Карно провести наоборот, то получится холодильная машина. Ведь рабочее тело сначала заберёт тепло от холодильника, затем превратит в тепло работу, затраченную на создание цикла, а потом отдаст это тепло нагревателю. По такому принципу работают холодильники.

Обратный цикл Карно лежит также в основе тепловых насосов. Такие насосы переносят энергию от источников с низкой температурой к потребителю с более высокой температурой. Но, в отличие от холодильника, в котором отбираемая теплота выбрасывается в окружающую среду, в тепловом насосе она передаётся потребителю.

Как генерируется энергия, как она преобразуется из одной формы в другую и что происходит с энергией в замкнутой системе? На все эти вопросы помогут дать ответ законы термодинамики. Подробнее сегодня будет рассмотрен второй закон термодинамики.

Законы в повседневной жизни

Законы управляют повседневной жизнью. В дорожных законах говорится, что нужно остановиться на знаках остановки. Правительственные требуют предоставить часть своей зарплаты государству и федеральному правительству. Даже научные применимы к повседневной жизни. Например, закон силы тяжести предсказывает довольно плохой результат для тех, кто пытается летать. Другой набор научных законов, которые влияют на повседневную жизнь, - это законы термодинамики. Итак, можно привести ряд примеров, чтобы увидеть, как они влияют на повседневную жизнь.

Первый закон термодинамики

Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена, но можно преобразовать ее из одной формы в другую. Это также иногда называют законом сохранения энергии. Итак, как это относится к повседневной жизни? Ну, взять, к примеру, компьютер, который вы используете сейчас. Он питается энергией, но откуда эта энергия? Первый закон термодинамики говорит нам, что эта энергия не могла появиться из-под воздуха, поэтому она откуда-то появилась.

Можно отследить эту энергию. Компьютер питается от электричества, но откуда это электричество? Правильно, с электростанции или гидроэлектростанции. Если рассматривать вторую, то она будет связана с плотиной, которая сдерживает реку. У реки есть связь с кинетической энергией, а это означает, что река течет. Плотина превращает эту кинетическую энергию в потенциальную энергию.

Как работает гидроэлектростанция? Вода используется для вращения турбины. При вращении турбины приводится в действие генератор, который будет создавать электричество. Это электричество может быть проложено полностью в проводах от электростанции до вашего дома, чтобы при подключении шнура питания к электрической розетке электричество проникало в ваш компьютер, чтобы он мог работать.

Что произошло здесь? Уже было определенное количество энергии, которая была связана с водой в реке как кинетическая энергия. Потом она превратилась в потенциальную энергию. Затем плотина приняла эту потенциальную энергию и превратила ее в электричество, которое затем смогло попасть в ваш дом и привести в действие компьютер.

Второй закон термодинамики

Изучив этот закон, можно понять, как работает энергия и почему все движется к возможному хаосу и беспорядку. Второй закон термодинамики еще называют законом энтропии. Вы когда-нибудь задумывались, как возникла Вселенная? Согласно Теории Большого Взрыва, до того, как зародилось все вокруг, вместе собралось огромное количество энергии. После Большого Взрыва появилась Вселенная. Все это хорошо, только что это была за энергия? В начале времени вся энергия во Вселенной содержалась в одном относительно небольшом месте. Эта интенсивная концентрация представляла собой огромное количество того, что называется потенциальной энергией. Со временем она распространилась по огромному пространству нашей Вселенной.

В гораздо меньших масштабах резервуар воды, удерживаемый плотиной, содержит потенциальную энергию, так как ее расположение дает возможность протекать через плотину. В каждом случае запасенная энергия, однажды выпущенная, распространяется и делает это без каких-либо прилагаемых усилий. Другими словами, высвобождение потенциальной энергии является спонтанным процессом, который возникает без необходимости в дополнительных ресурсах. По мере того, как энергия распространяется, часть ее преобразуется в полезную и выполняет определенную работу. Остальная преобразуется в непригодную, просто называемую теплотой.

Поскольку Вселенная продолжает распространяться, она содержит все менее и менее полезную энергию. Если менее полезная доступна, меньше работы может быть сделано. Так как вода течет через плотину, она также содержит менее полезную энергию. Это уменьшение полезной энергии с течением времени называется энтропией, где энтропия - это количество неиспользуемой энергии в системе, а система - это просто совокупность объектов, составляющих целое.

Энтропия также может упоминаться как количество случайностей или хаоса в организации без организации. По мере того как полезная энергия уменьшается с течением времени, дезорганизация и хаос увеличиваются. Таким образом, по мере освобождения накопленной потенциальной энергии не все это преобразуется в полезную. Все системы испытывают это увеличение энтропии с течением времени. Это очень важно понять, и это явление называют вторым законом термодинамики.

Энтропия: случайность или дефект

Как вы, возможно, догадались, второй закон следует за первым, который обычно называют законом сохранения энергии, и он утверждает, что энергия не может быть создана и ее нельзя уничтожить. Другими словами, количество энергии во Вселенной или любой системе является постоянным. Второй закон термодинамики обычно называют законом энтропии, и он считает, что с течением времени энергия становится менее полезной, а качество ее уменьшается со временем. Энтропия - это степень случайности или дефектов, которые имеет система. Если система очень неупорядоченная, то она обладает большой энтропией. Если в системе много неисправностей, то энтропия низкая.

Говоря простыми словами, второй закон термодинамики гласит, что энтропия системы не может со временем уменьшаться. Это означает, что в природе вещи переходят от состояния порядка к состоянию беспорядка. И это необратимо. Система никогда не станет более упорядоченной сама по себе. Другими словами, в природе энтропия системы всегда увеличивается. Один из способов подумать об этом - это ваш дом. Если вы его никогда не будете убирать и пылесосить, то довольно скоро у вас будет ужасный бардак. Энтропия увеличилась! Чтобы уменьшить ее, необходимо применять энергию для использования пылесоса и швабры, чтобы очистить от пыли поверхность. Дом сам себя не уберет.

Что представляет собой второй закон термодинамики? Формулировка простыми словами гласит, что при изменении энергии из одной формы в другую форму, материя либо движется свободно, либо энтропия (беспорядок) в замкнутой системе увеличивается. Различия в температуре, давлении и плотности имеют тенденцию выравниваться горизонтально через некоторое время. Из-за силы тяжести плотность и давление не выравниваются вертикально. Плотность и давление на дне будут больше, чем сверху. Энтропия - это мера распространения материи и энергии везде, где у нее есть доступ. Наиболее распространенная формулировка второго закона термодинамики в основном связана с Рудольфом Клаузиусом, который говорил:

Невозможно построить устройство, которое не производит другого эффекта, чем перенос тепла из тела с более низкой температурой в тело с более высокой температурой.

Другими словами, все пытается поддерживать ту же температуру с течением времени. Существует много формулировок второго закона термодинамики, в которых используются разные термины, но все они означают одно и то же. Другое заявление Клаузиуса:

Тепло само по себе не происходит от холодного до более горячего тела.

Второй закон применим только к крупным системам. Он касается вероятного поведения системы, в которой нет энергии или материи. Чем больше система, тем более вероятен второй закон.

Еще одна формулировка закона:

Полная энтропия всегда увеличивается в самопроизвольном процессе.

Увеличение энтропии ΔS при протекании процесса должно превышать или быть равным отношению количества теплоты Q, переданного системе, к температуре Т, при которой теплота передается.

Термодинамическая система

В общем смысле формулировка второго закона термодинамики простыми словами гласит, что температурные различия между системами, находящимися в контакте друг с другом, имеют тенденцию к выравниванию и что работа может быть получена из этих неравновесных различий. Но при этом происходит потеря тепловой энергии, а энтропия увеличивается. Различия давления, плотности и температуры в имеют тенденцию выравниваться, если им предоставляется возможность; плотность и давление, но не температура, зависят от силы тяжести. Тепловой двигатель представляет собой механическое устройство, которое обеспечивает полезную работу из-за разницы в температуре двух тел.

Термодинамическая система - это та, которая взаимодействует и обменивается энергией с областью вокруг нее. Обмен и передача должны произойти, по крайней мере, двумя способами. Один путь должен быть передачей тепла. Если термодинамическая система «находится в равновесии», она не может изменять свое состояние или статус без взаимодействия с окружающей средой. Проще говоря, если вы находитесь в равновесии, вы «счастливая система», вы ничего не можете сделать. Если вы что-то захотите сделать, вы должны взаимодействовать с окружающим миром.

Второй закон термодинамики: необратимость процессов

Невозможно иметь циклический (повторяющийся) процесс, который полностью преобразует тепло в работу. Также невозможно иметь процесс, который переносит тепло от холодных объектов на теплые объекты без использования работы. Некоторое количество энергии в реакции всегда теряется для нагревания. Кроме того, система не может преобразовать всю свою энергию в рабочую энергию. Вторая часть закона более очевидна.

Холодное тело не может нагревать теплое тело. Тепло естественным образом стремится течь от более теплых до более прохладных областей. Если тепло перейдет от более прохладного к более теплым, это противоречит тому, что является «естественным», поэтому система должна выполнить некоторую работу, чтобы это произошло. в природе - второй закон термодинамики. Это, пожалуй, самый известный (по крайней мере, среди ученых) и важный закон всей науки. Одна из его формулировок:

Энтропия Вселенной стремится к максимуму.

Другими словами, энтропия либо остается неизменной, либо становится больше, энтропия Вселенной никогда не может снизиться. Проблема в том, что это всегда верно. Если взять флакон духов и распылить его в комнате, то скоро ароматные атомы заполнят все пространство, и этот процесс является необратимым.

Взаимосвязи в термодинамике

В законах термодинамики описываются взаимосвязи между тепловой энергией или теплом и другими формами энергии, и как энергия влияет на материю. Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена; общее количество энергии во Вселенной остается неизменным. Второй закон термодинамики посвящен качеству энергии. В нем говорится, что по мере передачи или преобразования энергии все больше и больше теряется полезной энергии. Второй закон также гласит, что существует естественная тенденция превращения любой изолированной системы в более неупорядоченное состояние.

Даже когда порядок увеличивается в определенном месте, когда вы принимаете во внимание всю систему, включая окружающую среду, всегда наблюдается увеличение энтропии. В другом примере кристаллы могут образовываться из раствора соли, когда вода выпаривается. Кристаллы более упорядочены, чем молекулы соли в растворе; однако испаренная вода гораздо более беспорядочна, чем жидкая вода. Процесс, взятый в целом, приводит к чистому увеличению беспорядка.

Работа и энергия

Во втором законе объясняется, что невозможно преобразовать тепловую энергию в механическую энергию со 100-процентной эффективностью. Можно привести пример с автомобилем. После процесса нагрева газа, чтобы увеличить его давление для привода поршня, в газе всегда остается некоторое количество тепла, которое нельзя использовать для выполнения каких-либо дополнительных работ. Это отработанное тепло должно быть отброшено путем его передачи в радиатор. В случае с автомобильным двигателем это делается путем извлечения отработанного топлива и воздушной смеси в атмосферу.

Кроме того, любое устройство с подвижными частями создает трение, которое преобразует механическую энергию в тепло, которое обычно непригодно и должно быть удалено из системы путем переноса его в радиатор. Когда горячее и холодное тело контактируют друг с другом, тепловая энергия будет поступать из горячего тела в холодное тело до тех пор, пока они не достигнут теплового равновесия. Тем не менее, тепло никогда не вернется в другую сторону; разница температур двух тел никогда не будет спонтанно увеличиваться. Перемещение тепла от холодного тела к горячему телу требует работы, которую должен выполнять внешний источник энергии, такой как тепловой насос.

Судьба Вселенной

Второй закон также предсказывает конец Вселенной. Это конечный уровень беспорядка, если везде будет постоянное тепловое равновесие, никакая работа не может быть выполнена, и вся энергия будет заканчиваться как случайное движение атомов и молекул. По современным данным, Метагалактика - это расширяющаяся нестационарная система, о тепловой смерти Вселенной и речи быть не может. Тепловая смерть - это состояние теплового равновесия, при котором прекращаются все процессы.

Это положение ошибочно, так как второй закон термодинамики применяется только к замкнутым системам. А Вселенная, как известно, безгранична. Однако сам термин «тепловая смерть Вселенной» иногда используется для обозначения сценария будущего развития Вселенной, согласно которому она так и будет расширяться до бесконечности во тьму пространства, пока не обратится в рассеянный холодный прах.


Министерство образования и науки Российской Федерации

Государственной образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Кафедра Технологии пищевых продуктов и биотехнологии (ТППиБТ)

Реферат

по дисциплине «Техническая термодинамика и теплотехника»

II -ой закон термодинамики или «Тепловая смерть Вселенной»

Выполнил:

студент 3 курса

Ивлев Павел Андреевич

Руководитель:

к т н, доцент, кафедры ПиАХТ

Маркичев Николай Аркадьевич

Иваново 2010 г.

Введение__________________________________________________________________ 3

Часть 1. Второй закон термодинамики.

1.1. Второй закон термодинамики. Характеристика и формулировка._______________4

Часть 2. Энтропия

2.1. Понятие энтропии.______________________________________________________5

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.______________5

2.3 Возможность энтропии во Вселенной.______________________________________6

Часть 3. Теория «тепловой смерти» Вселенной

3.1. Появление идеи Теории «тепловой смерти» Вселенной._______________________8

3.2. Взгляд на Теорию «тепловой смерти» Вселенной из ХХ века.__________________9

3.3 «За» и «против» Теории «тепловой смерти» Вселенной_______________________10

Заключение_______________________________________________________________16

Список, использованной в работе литературы __________________________________17

Введение:

В данной работе поднимаеться проблема о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти», причиной которой являеться Второй закон термодинамики и истекающие из него выводы.

Часть1. Второй закон термодинамики

      Второй закон термодинамики. Характеристика и формулировка:

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических поцессов.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Он гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют формулировоки:

- передача теплоты от холодного источника к горячему невозможна без затраты работы;

- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

- природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки:

невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника.

Часть 2. Энтропия

2.1 Понятие энтропии.

Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией , определяющей меру обесценения энергии.

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:

.

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

Рисунок 1. Необратимый круговой термодинамический процесс

Пусть процесс 1-2 будет необратимым, а 2-1 процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид

Так как процесс 2-1 является обратимым, тогда

Подстановка этой формулы в неравенство (1) позволяет получить выражение

Сравнение выражений (1) и (2) позволяет записать следующее неравенство

в котором знак равенства имеет место в случае, если процесс 1-2 является обратимым, а знак больше, если процесс 1-2 - необратимый.

Неравенство (3) может быть также записано и в дифференциальной форме

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой, то выражение (4) примет вид

или в интегральной форме

Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом:

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

2.3 Возможность энтропии во Вселенной

В адиабтически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

С законом возрастания энтропии непосредственно связан парадокс, сформулированный в 1852 году Томсоном (лордом Кельвином) и названый им гипотезой тепловой смерти Вселенной. Подробный анализ этой гипотезы был выполнен Клаузиусом, который считал правомерным распространение на всю Вселенную закона возрастания энтропии. Действительно, если рассмотреть Вселенную как адиабатически изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Часть 3. Теория «тепловой смерти» Вселенной.

Тепловая смерть Вселенной (Т.С.В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. ... , «Аналитики» (I и II ) и др.; 3) ... закон исключенного тетьего (А или не – А, т.е. или А истинно, или ... очки" ... тепловой смерти Вселенной . Неуничтожимость материи нельзя понимать только в количественном отношении. Законы ... законы Кеплера, законы термодинамики , законы ...

  • Коцепции физики

    Реферат >> Физика

    Гидростатика Архимеда (III- II в. до н.э.) ... XIII веке очков , но... или начал, являющихся обобщением результатов многочисленных наблюдений и экспериментов. б) Первое начало термодинамики (закон ... формированию концепции "тепловой смерти" вселенной . Ее суть...

  • Первый закон термодинамики - один из самых общих и фундаментальных законов природы. Не известно ни одного процесса, где хоть

    в какой-то мере наблюдалось бы его нарушение. Если какой-либо процесс запрещен первым законом, то можно быть абсолютно уверенным в том, что он никогда не произойдет. Однако этот закон не дает никаких указаний о том, в каком направлении развиваются процессы, удовлетворяющие принципу сохранения энергии.

    Поясним это примерами.

    Направление тепловых процессов. Первый закон термодинамики ничего не говорит о том, в каком направлении происходит теплообмен между приведенными в тепловой контакт телами, находящимися при разных температурах. Как уже обсуждалось выше, теплообмен происходит так, что температуры выравниваются и вся система стремится к состоянию теплового равновесия. Но первый закон не был бы нарушен, если бы, наоборот, передача теплоты происходила от тела с низкой температурой к телу с более высокой при условии, что полный запас внутренней энергии оставался бы неизменным. Однако повседневный опыт показывает, что само собой это никогда не происходит.

    Другой пример: при падении камня с некоторой высоты вся кинетическая энергия его поступательного движения исчезает при ударе о землю, но при этом увеличивается внутренняя энергия самого камня и окружающих его тел, так что закон сохранения энергии, разумеется, не оказывается нарушенным. Но первому закону термодинамики не противоречил бы и обратный процесс, при котором к лежащему на земле камню перешло бы от окружающих предметов некоторое количество теплоты, в результате чего камень поднялся бы на некоторую высоту. Однако никто никогда не наблюдал таких самопроизвольно подскакивающих камней.

    Неравноценность разных видов энергии. Вдумываясь в эти и другие подобные примеры, мы приходим к выводу, что первый закон термодинамики не накладывает никаких ограничений на направление превращений энергии из одного вида в другой и на направление перехода теплоты между телами, требуя только сохранения полного запаса энергии в замкнутых системах. Между тем опыт показывает, что разные виды энергии не равноценны в отношении способности превращаться в другие виды.

    Механическую энергию можно целиком превратить во внутреннюю энергию любого тела независимо от того, какова была его температура. Действительно, любое тело можно нагреть трением, увеличивая его внутреннюю энергию на величину, равную совершенной работе. Точно так же электрическая энергия может быть целиком превращена во внутреннюю, например при прохождении электрического тока через сопротивление.

    Для обратных превращений внутренней энергии в другие виды существуют определенные ограничения, состоящие в том, что запас внутренней энергии ни при каких условиях не может превратиться

    целиком в другие виды энергии. С отмеченными особенностями энергетических превращений связано направление протекания процессов в природе. Второй закон термодинамики, отражающий направленность естественных процессов и налагающий ограничения на возможные направления энергетических превращений в макроскопических системах, представляет собой, как и всякий фундаментальный закон, обобщение большого числа опытных фактов.

    Чтобы яснее представить себе физическое содержание второго закона термодинамики, рассмотрим подробнее вопрос об обратимости тепловых процессов.

    Обратимые и необратимые процессы. Если достаточно медленно изменять условия так, чтобы при этом скорость протекающего в рассматриваемой системе процесса была значительно меньше скорости релаксации, то такой процесс будет физически представлять собой цепочку близких друг к другу равновесных состояний. Поэтому такой процесс описывается теми же самыми макроскопическими параметрами, что и состояние равновесия. Эти медленные процессы называются равновесными или квазистатическими. При таких процессах систему можно характеризовать такими параметрами, как давление, температура и т. д. Реальные процессы являются неравновесными и могут считаться равновесными с большей или меньшей точностью.

    Рассмотрим следующие примеры.

    Пусть газ находится в цилиндрическом сосуде, закрытом поршнем. Если выдвигать поршень с конечной скоростью, то расширение газа будет необратимым процессом. Действительно, как только поршень будет выдвинут, давление газа непосредственно у поршня будет меньше, чем в других частях цилиндра. Такой процесс нельзя провести обратимо через те же промежуточные состояния, так как при вдвигании поршня обратно с конечной скоростью вблизи поршня будет происходить не разрежение газа, а его сжатие. Таким образом, быстрое расширение или сжатие газа дает пример необратимого процесса.

    Чтобы расширить газ строго обратимым образом, нужно выдвигать поршень бесконечно медленно. При этом давление газа будет в каждый момент во всем объеме одинаковым, состояние газа будет зависеть от положения поршня, а не от направления его движения, и процесс будет обратимым.

    Наиболее ярко необратимость процесса расширения газа проявляется тогда, когда расширение происходит в пустоту без совершения механической работы.

    Необратимыми являются все процессы, сопровождающиеся теплообменом между телами, имеющими разные температуры. Необратимость такого теплообмена особенно отчетливо видна на примере выравнивания температур тел, приведенных в соприкосновение.

    Необратимыми являются процессы, при которых механическая энергия переходит во внутреннюю при наличии трения, о чем часто говорят как о выделении теплоты благодаря трению. В отсутствие трения все механические процессы протекали бы обратимо.

    Таким образом, равновесные обратимые процессы являются абстракцией, и на практике из-за существования трения и теплообмена не встречаются. Однако исследование равновесных процессов в термодинамике дает возможность указать, как следует проводить процессы в реальных системах, чтобы получить наилучшие результаты.

    Различные формулировки второго закона термодинамики. Исторически открытие второго закона термодинамики было связано с изучением вопроса о максимальном коэффициенте полезного действия тепловых машин, проведенным французским ученым Сади Карно. Позднее Р. Клаузиус и У. Томсон (лорд Кельвин) предложили различные по виду, но эквивалентные формулировки второго закона термодинамики.

    Согласно формулировке Клаузиуса, невозможен процесс, единственным результатом которого был бы переход теплоты от тела с более низкой температурой к телу с более высокой температурой.

    Томсон сформулировал второй закон термодинамики следующим образом: невозможен периодический процесс, единственным конечным результатом которого было бы совершение работы за счет теплоты, взятой от одного какого-то тела.

    Выражение «единственным результатом» в этих формулировках означает, что никаких других изменений, кроме указанных, ни в рассматриваемых системах, ни в окружающих их телах не происходит. Условная схема такого рода процесса, запрещенного постулатом Клаузиуса, показана на рис. 56, а процесса, запрещенного постулатом Томсона, - на рис. 57.

    В формулировке Томсона второй закон термодинамики накладывает ограничения на превращение внутренней энергии в механическую. Из формулировки Томсона следует, что невозможно построить машину, которая совершала бы работу только лишь за счет получения теплоты из окружающей среды. Такая гипотетическая машина получила название вечного двигателя второго рода, так как вследствие неограниченности запасов внутренней энергии в земле, океане, атмосфере такая машина была бы для всех практических целей эквивалентна вечному двигателю.

    Вечный двигатель второго рода не находится в противоречии с первым законом термодинамики, в отличие от вечного двигателя первого рода, т. е. устройства для совершения работы вообще без использования источника энергии.

    Эквивалентность формулировок Клаузиуса и Томсона. Эквивалентность формулировок второго закона термодинамики,

    предложенных Клаузиусом и Томсоном, устанавливается простыми рассуждениями.

    Предположим, что постулат Томсона несправедлив. Тогда можно осуществить такой процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой от единственного источника с температурой Т. Эту работу можно было бы, например путем трения, снова целиком превратить в теплоту, передаваемую телу, температура которого выше, чем Т. Единственным результатом такого составного процесса был бы переход теплоты от тела с температурой Т к телу с более высокой температурой. Но это противоречило бы постулату Клаузиуса. Итак, постулат Клаузиуса не может быть справедливым, если неверен постулат Томсона.

    Предположим теперь, что, наоборот, несправедлив постулат Клаузиуса, и покажем, что при этом постулат Томсона также не может выполняться. Построим обычную тепловую машину, которая будет работать, получая некоторое количество теплоты от нагревателя, отдавая холодильнику и превращая разность в работу (рис. 58).

    Поскольку постулат Клаузиуса предполагается неверным, можно осуществить процесс, единственным результатом которого будет переход количества теплоты, равного от холодильника к нагревателю. Схематически это показано в правой части рис. 58.

    Рис. 56. Принципиальная схема гипотетического устройства, в котором нарушается постулат Клаузиуса

    Рис. 57. Принципиальная схема гипотетического устройства, в котором нарушается постулат Томсона

    Рис. 58. Комбинируя с тепловой машиной устройство, изображенное на рис. 56, в котором нарушается постулат Клаузиуса, получаем систему, в которой нарушается постулат Томсона

    В результате нагреватель будет отдавать рабочему телу тепловой машины количество теплоты , и получать при процессе, противоречащем постулату Клаузиуса, количество теплоты так что в целом он будет отдавать количество теплоты, равное Именно такое количество

    теплоты машина превращает в работу. В холодильнике в целом никаких изменений вообще не происходит, ибо он отдает и получает одно и то же количество теплоты Теперь видно, что, комбинируя действие тепловой машины и процесс, противоречащий постулату Клаузиуса, можно получить процесс, противоречащий постулату Томсона.

    Таким образом, постулаты Клаузиуса и Томсона либо оба верны, либо оба неверны, и в этом смысле они эквивалентны. Их справедливость для макроскопических систем подтверждается всеми имеющимися экспериментальными фактами.

    Принцип Каратеодори. Физическое содержание второго закона термодинамики в формулировках Клаузиуса и Томсона выражается в виде утверждения о невозможности конкретных тепловых процессов. Но можно дать и такую формулировку, которая не конкретизирует вида процесса, невозможность которого утверждается этим законом. Такая формулировка называется принципом Каратеодори. Согласно этому принципу вблизи каждого равновесного состояния любой термодинамической системы существуют другие равновесные состояния, недостижимые из первого адиабатическим путем.

    Покажем эквивалентность формулировки Томсона и принципа Каратеодори. Пусть произвольная термодинамическая система квазистатически переходит из некоторого состояния 1 в близкое состояние 2, получая некоторое количество теплоты и совершая работу Тогда в соответствии с первым законом термодинамики

    Вернем систему адиабатически из состояния 2 в состояние Тогда в таком обратном процессе теплообмен отсутствует, и первый закон термодинамики дает

    где - совершаемая системой работа. Складывая (1) и (2), получаем

    Соотношение (3) показывает, что в таком циклическом процессе система, возвратившись в исходное состояние, превратила в работу всю полученную теплоту. Но это невозможно согласно второму закону термодинамики в формулировке Томсона. Значит, такой циклический процесс неосуществим. Первый его этап всегда возможен: на этом этапе к системе просто подводится теплота, и никаких других условий не накладывается. Поэтому невозможным здесь является только второй этап, когда по условию система должна возвращаться в исходное состояние адиабатически. Другими словами,

    состояние адиабатически недостижимо из близкого к нему состояния 2.

    Принцип адиабатической недостижимости означает, что практически все реальные физические процессы происходят с теплообменом: адиабатические процессы - это редкое исключение. Рядом с каждым равновесным состоянием есть множество других, переход в которые обязательно требует теплообмена, и лишь в немногие из них можно попасть адиабатически.

    На основе приведенных формулировок второго закона термодинамики можно получить результаты Карно для максимально возможного коэффициента полезного действия тепловых машин. Для тепловой машины, совершающей цикл между нагревателем с фиксированной температурой и холодильником с температурой коэффициент полезного действия не может превышать значения

    Наибольшее значение определяемое формулой (4), достигается у тепловой машины, совершающей обратимый цикл, независимо от того, что используется в качестве рабочего тела. Это утверждение, называемое обычно теоремой Карно, будет доказано ниже.

    Цикл является обратимым, если он состоит из обратимых процессов, т. е. таких, которые можно провести в любом направлении через одну и ту же цепочку равновесных состояний.

    Рис. 59. Цикл Карно на -диаграмме идеального газа

    Единственным обратимым циклическим процессом, который можно осуществить между нагревателем и холодильником с фиксированными температурами, является так называемый цикл Карно, состоящий из двух изотерм и двух адиабат. Для идеального газа такой цикл изображен на рис. 59. На участке 1-2 газ имеет температуру, равную температуре нагревателя и изотермически расширяется, получая количество теплоты от нагревателя. При этом газ совершает положительную работу, равную полученной теплоте. На участке 2-3 газ расширяется адиабатически, и при этом его температура понижается от до значения, равного температуре холодильника Совершаемая газом на этом участке работа равна убыли его внутренней энергии. На следующем участке 3-4 газ изотермически сжимают. При этом он отдает холодильнику количество теплоты равное совершаемой над ним при сжатии работе. На участке 4-1 газ адиабатически сжимают до тех пор, пока его

    температура не повысится до значения Увеличение внутренней энергии газа при этом равно работе внешних сил, совершаемой при сжатии газа.

    Цикл Карно является единственным замкнутым процессом, который можно осуществить обратимым образом. В самом деле, адиабатические процессы обратимы, если их проводить достаточно медленно, т. е. квазистатически. Изотермические процессы - это единственные процессы с теплообменом, которые могут быть проведены обратимым образом. При любом другом процессе температура рабочего тела изменяется и, согласно второму закону термодинамики, теплообмен с нагревателем или холодильником не может быть обратимым: обмен теплотой при наличии конечной разности температур носит характер приближения к тепловому равновесию и не является равновесным процессом.

    Разумеется, обмен теплотой в отсутствие разности температур происходит бесконечно медленно. Поэтому обратимый цикл Карно продолжается бесконечно долго и мощность тепловой машины при максимально возможном КПД, определяемом формулой (4), стремится к нулю. Процессы в любой реальной машине обязательно содержат необратимые звенья, и, следовательно, ее КПД всегда меньше теоретического предела (4).

    Условия получения максимальной работы. Преобразование внутренней энергии в механическую, как следует из второго закона термодинамики, не может быть произведено полностью. Для того чтобы превратить в механическую энергию максимально возможную часть внутренней энергии, необходимо использовать исключительно обратимые процессы. Для иллюстрации рассмотрим следующий пример. Пусть имеется некоторое тело, не находящееся в состоянии теплового равновесия с окружающей средой, например идеальный газ в цилиндре с поршнем, имеющий температуру более высокую, чем температура окружающей среды Т (рис. 60). Каким образом можно получить наибольшую работу при условии, что в конечном состоянии газ должен занимать тот же объем, что и в начальном?

    Рис. 60. К получению максимальной работы

    Если бы температура газа была равна температуре окружающей среды, т. е. газ находился бы в тепловом равновесии с окружением, то никакой работы вообще получить было бы невозможно. Превращение внутренней энергии в механическую может происходить только в том случае, когда начальное состояние всей системы не является равновесным.

    Но при неравновесном начальном состоянии переход системы в состояние равновесия не обязательно сопровождается превращением внутренней энергии в механическую. Если просто привести газ в

    тепловой контакт с окружающей средой, не давая ему расширяться, то газ остынет и никакой работы при этом совершено не будет. Поэтому для возможности совершения работы необходимо предоставить газу возможность расширяться, имея в виду, что потом его придется сжать, так как по условию в конечном состоянии газ должен занимать тот же объем, что и в начальном.

    Для получения максимальной работы переход из начального состояния в конечное должен быть произведен обратимо. А это можно сделать, только используя адиабатические и изотермические процессы. Итак, газ следует адиабатически расширять до тех пор, пока его температура не станет равна температуре окружающей среды Т, а затем изотермически сжать при этой температуре до исходного объема (рис. 61). Совершаемая газом при адиабатическом расширении 1-2 работа, как видно из рисунка, больше той работы, которую придется совершить над газом при изотермическом сжатии 2-3. Максимальная работа, которую можно получить при переходе газа из состояния 1 в состояние 3, равна площади заштрихованного на рис. 61 криволинейного треугольника 1-2-3.

    Изученные закономерности действия обратимого теплового двигателя позволяют рассмотреть принципы функционирования холодильной машины и теплового насоса. В холодильной машине все процессы происходят в обратном (по сравнению с тепловым двигателем) направлении (рис. 62). За счет совершения механической работы А от резервуара с более низкой температурой отнимается некоторое количество теплоты При этом резервуару с более высокой температурой роль которого выполняет обычно окружающая среда, передается количество теплоты равное сумме Вследствие обратимости рассматриваемой машины для нее справедливо соотношение

    которое в соответствии с (4) можно рассматривать как коэффициент полезного действия соответствующей тепловой машины.

    Для холодильной машины наибольший интерес представляет количество теплоты отнимаемое от охлаждаемого резервуара. Из (5) для имеем

    График зависимости от температуры окружающей среды (для обратимого процесса) изображен на рис. 63. Видно, что при отнимаемая теплота Но при малой разности температур отношение может принимать большие значения. Другими словами, эффективность холодильной машины при близких

    значениях может быть весьма велика, так как количество теплоты отнимаемое от охлаждаемых тел, может значительно превышать работу А, которую в реальных холодильных машинах совершает компрессор, приводимый в действие электродвигателем.

    В технической термодинамике для характеристики холодильной машины используется так называемый холодильный коэффициент определяемый как отношение количества теплоты взятого от охлаждаемых тел, к работе внешних сил

    В отличие от теплового двигателя (4), холодильный коэффициент может принимать значения, большие единицы.

    Рис. 61. Процесс получения максимальной работы на -диаграмме

    Рис. 62. Принципиальная схема холодильной машины

    В реальных промышленных и бытовых установках и более. Как видно из (7), холодильный коэффициент тем больше, чем меньше различаются температуры окружающей среды и охлаждаемого тела.

    Рассмотрим теперь работу теплового насоса, т. е. холодильной машины, работающей с целью нагревания горячего резервуара (отапливаемого помещения) за счет теплоты, отнятой от холодного резервуара (окружающей среды). Принципиальная схема теплового насоса идентична схеме холодильной машины (см. рис. 62). В отличие от холодильной машины для теплового насоса практический интерес представляет не - количество теплоты, получаемое нагреваемым телом: Для аналогично (6) имеем

    В технической термодинамике для характеристики эффективности тепловых насосов вводится так называемый отопительный коэффициент еотоп, равный

    Приведенные формулы (7) и (9) справедливы для обратимых машин. Для реальных машин, где процессы полностью или частично необратимы, эти формулы дают оценку холодильного и отопительного коэффициентов.

    Итак, при использовании теплового насоса отапливаемое помещение получает больше теплоты, чем при непосредственном отапливании. На это обстоятельство еще в обратил внимание У. Томсон, предложив идею так называемого динамического отопления, заключающуюся в следующем. Теплота, получаемая при сжигании топлива, используется не для непосредственного обогревания помещения, а направляется в тепловой двигатель для получения механической работы. С помощью этой работы приводится в действие тепловой насос, который и обогревает помещение. При малой разности температур окружающей среды и отапливаемого помещения последнее получает теплоты заметно больше, чем ее выделяется при сжигании топлива. Это может показаться парадоксальным.

    В действительности никакого парадокса в тепловом насосе и динамическом отоплении нет, что становится совершенно ясным, если воспользоваться понятием качества внутренней энергии. Под качеством внутренней энергии понимается ее способность превращаться в другие виды. В этом смысле наивысшим качеством характеризуется энергия в механической или электромагнитной формах, так как ее можно полностью превратить во внутреннюю при любой температуре. Что касается внутренней энергии, то ее качество тем выше, чем выше температура тела, в котором она запасена. Всякий естественно идущий необратимый процесс, например переход теплоты к телу с более низкой температурой, ведет к обесцениванию внутренней энергии, к снижению ее качества. В обратимых процессах снижения качества энергии не происходит, поскольку все энергетические превращения могут идти в обратном направлении.

    При обычном способе отапливания вся теплота, выделяющаяся при сжигании топлива при нагревании спирали электрическим током или получаемая от горячего резервуара и т. п., переходит в помещение в виде такого же количества теплоты, но при более низкой температуре, что представляет собой качественное обесценивание внутренней энергии. Тепловой насос или система динамического отопления устраняют непосредственный необратимый теплообмен между телами с разными температурами.

    При работе теплового насоса или системы динамического отопления происходит повышение качества внутренней энергии, передаваемой отапливаемому помещению из окружающей среды. При малой разности температур, когда качество этой энергии существенно не увеличивается, ее количество становится больше, чем и объясняется высокая эффективность работы теплового насоса и динамического отопления в целом.

    Приведите примеры явлений, которые удовлетворяют закону сохранения энергии, но тем не менее никогда не наблюдаются в природе.

    В чем проявляется неравноценность разных видов энергии? Проиллюстрируйте эту неравноценность на примерах.

    Что такое обратимый тепловой процесс? Приведите примеры обратимых и необратимых процессов.

    Каким требованиям должна удовлетворять физическая система, чтобы механические процессы в ней протекали обратимо? Поясните, почему трение и диссипация механической энергии делают все процессы необратимыми.

    Приведите различные формулировки второго закона термодинамики. Докажите эквивалентность формулировок Клаузиуса и Томсона.

    Что означает принцип Каратеодори применительно к идеальному газу? Поясните ответ, используя -диаграмму для изображения его состояния.

    Покажите, что физический смысл второго закона термодинамики заключается в установлении неразрывной связи между необратимостью реальных процессов в природе и теплообменом.

    Сформулируйте условия, при которых коэффициент полезного действия теплового двигателя, работающего по обратимому циклу, был бы близким к единице.

    Покажите, что цикл Карно - это единственный обратимый циклический процесс для двигателя, использующего два тепловых резервуара с фиксированными температурами.

    При обсуждении условий получения максимальной работы не учитывалось атмосферное давление, действующее на поршень снаружи. Как учет этого давления скажется на приведенных рассуждениях и на результате?

    Газ в цилиндре, закрытом поршнем, имеет такую же температуру, что и окружающий воздух, но более высокое (или более низкое) давление, чем давление в атмосфере. Какие процессы следует провести с газом, чтобы получить максимальную полезную работу за счет неравновесности системы? Изобразите эти процессы на -диаграмме, считая газ в цилиндре идеальным.

    Газ в цилиндре, закрытом поршнем, имеет такое же давление, как и окружающий воздух, но более высокую (или более низкую) температуру. Какие процессы следует провести с газом, чтобы получить максимальную полезную работу за счет неравновесности системы? Изобразите их на -диаграмме.

    Рассмотрите две различные схемы динамического отопления, в которых тепловая машина отдает теплоту либо окружающей среде, либо отапливаемому помещению. Покажите, что в случае, когда все процессы обратимы, обе схемы имеют одинаковую эффективность. Какая схема окажется эффективнее в реальной системе, когда процессы нельзя считать полностью обратимыми?