Телескоп уэбба когда запуск. Замена "хаббла" будет запущена в космос на европейской ракете-носителе. Космический аппарат: системы сборки и управления

Космический телескоп им. Джеймса Уэбба, запуск которого должен состояться в 2020 году, будет исследовать космос, чтобы раскрыть историю вселенной от Большого Взрыва до момента формирования планет. Перед ним стоит четыре исследовательских задачи: изучение первого света во вселенной, исследование появления галактик в ранней вселенной, наблюдение за рождением звезд и протопланетных систем, а также поиск экзопланет (включая поиск внеземной жизни).

Космический телескоп им. Джеймса Уэбба (JWST) будет запущен с помощью ракета-носителя Ариан-5 из Французской Гвианы, после чего потребуется 30 дней, чтобы пролететь более миллиона километров в место его постоянной дислокации: в точку Лагранжа (L2), или гравитационно стабильное положение в пространстве, где он и будет вращаться. Это достаточно популярное место, в котором располагаются несколько других космических телескопов, в том числе телескоп Гершеля и космическая обсерватория Планка.

Ожидается, что мощный космический телескоп стоимостью 8,8 млрд. долларов сможет получить удивительные фотографии небесных объектов, как и его предшественник, космический телескоп Хаббл. К счастью для астрономов, «Хаббл» остается в хорошем состоянии, и вполне вероятно, что два телескопа будут работать вместе первые несколько лет. JWST также исследует экзопланеты, которые были обнаружены космическим телескопом Кеплер или при помощи наблюдений в реальном времени с наземных телескопов.

Задачи, стоящие перед телескопом

Научная программа для JWST в основном разделена на четыре области:

  • Первый свет и реионизация : это относится к ранним этапам развития вселенной после того, как Большой взрыв создал ее такой, какой мы ее знаем. На первых этапах после Большого взрыва вселенная была морем частиц (таких как электроны, протоны и нейтроны), и в ней не существовало света до того, пока вселенная не остыла настолько, чтобы эти частицы начали объединяться. Еще одна вещь, которую JWST будет изучать - это то, что произошло после образования первых звезд; этот отрезок истории называется «эпохой реионизации», потому что он относится к тому времени, когда нейтральный водород был повторно ионизирован (снова заряжен электрическим зарядом) излучением от этих первых звезд.
  • Образование галактик : взгляд на галактики - полезный способ увидеть, как материя организована в гигантских масштабах, что, в свою очередь, дает нам подсказки о том, как эволюционировала вселенная. Спиральные и эллиптические галактики, которые мы видим сегодня, на самом деле эволюционировали из разных форм в течение миллиардов лет, и одна из целей JWST состоит в том, чтобы взглянуть на самые ранние галактики, чтобы лучше понять эту эволюцию. Ученые также пытаются выяснить, как мы получили то разнообразие галактик, которое наблюдаем сегодня, и какие существуют способы образования галактик.
  • Рождение звезд и протопланетных систем : «Столпы творения», или туманность Орла - одно из самых известных мест рождения звезд. Звезды появляются в облаках газа, и по мере того, как они растут, радиационное давление, которое они оказывают, сдувает с них часть газа (который может снова использоваться для образования других звезд, если он не слишком широко рассеялся). Однако трудно что-либо видеть внутри газа. Инфракрасные «глаза» JWST смогут увидеть источники тепла, включая звезды, рождающиеся в этих облаках.
  • Планеты и происхождение жизни : в последнее десятилетие было найдено огромное количество экзопланет, обнаруженных в том числе и с помощью космического телескопа Кеплер. Мощные датчики JWST смогут исследовать эти планеты более подробно, включая (в некоторых случаях) визуализацию их атмосферы. Понимание атмосферы и условий образования планет могут помочь ученым лучше предсказывать, пригодны ли те или иные планеты для жизни, или нет.
Инструменты на борту


JWST будет оснащен четырьмя научными инструментами:

  • Камера ближнего инфракрасного излучения (NIRCam) : эта инфракрасная камера, предоставленная Университетом Аризоны, обнаружит свет от звезд в соседних галактиках и от удаленных звезд Млечного Пути. Она также будет искать свет от звезд и галактик, которые сформировались в начале жизни вселенной. NIRCam будет оснащаться коронографами, которые могут блокировать свет яркого объекта (например, звезды), что сделает тусклые объекты вблизи этих звезд (например, планет) видимыми.
  • Спектрограф ближнего инфракрасного диапазона (NIRSpec) : NIRSpec будет наблюдать до 100 объектов одновременно, ища первые галактики, образовавшиеся после Большого Взрыва. NIRSpec был предоставлен Европейским космическим агентством при содействии Центра космических полетов имени Годдара.
  • Спектрограф среднего инфракрасного диапазона (MIRI) : MIRI создаст удивительные космические фотографии дальних небесных объектов, как это сейчас делает Хаббл. Спектрограф позволит ученым собрать больше физических подробностей о дальних объектах во вселенной. MIRI обнаружит отдаленные галактики, слабые кометы, образующиеся звезды и объекты в поясе Койпера. MIRI был спроектирован Европейским консорциумом совместно с Европейским космическим агентством и Лабораторией реактивного движения НАСА.
  • Датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (FGS/NIRISS) : этот инструмент, созданный в Канадском космическом агентстве, больше похож на два прибора в одном. Компонент FGS отвечает за то, чтобы JWST смотрел точно в правильном направлении во время своих научных исследований. NIRISS будет искать следы первого света во вселенной, а также исследовать экзопланеты.
Телескоп к тому же будет иметь солнцезащитный козырек и зеркало диаметром 21,3 фута (6,5 метров) - это самое большое зеркало, которое будет отправлено в космос. Эти компоненты не поместятся разложенном виде в ракету, запускающую JWST, поэтому они оба будут разворачиваться, как только телескоп окажется в космосе.

История JWST

JWST имеет долгую историю развития. Еще в 2011 году затраты на него превысили предполагаемые в четыре раза, что повлияло на бюджет НАСА для астрономических исследований и, в свою очередь, заставило агентство выйти из некоторых совместных миссий с ЕКА (Европейским космическим агентством).

Когда Хаббл только готовили к космической миссии, уже планировался телескоп-преемник. После запуска Хаббла НАСА приступила к «более быстрой, лучшей и дешевой» эре, которая предполагает использовать миниатюризацию электроники и команды тигров (tiger teams - команды экспертов по определению слабых мест системы - прим. перев. ) для сокращения расходов на космические миссии.

Это вызвало переформулировку ранних характеристик нового телескопа во что-то, что назвали Космическим телескопом следующего поколения (NGST). Первая версия NGST предполагала 8-метровое зеркало, а место дислокации телескопа - точка Лагранжа L2. NGST был переименован в Космический телескоп Джеймса Вебба в 2002 году в честь второго руководителя НАСА. По оценкам, стоимость проекта в 2005 году не должна была превышать 4,5 млрд. долларов, но в последующие годы все же произошел перерасход средств.

В 2010 году независимая экспертная группа, ответственная на JWST, предупредила, что стоимость телескопа будет существенно превышать запланированную. Они также отметили, что после подтверждения проекта НАСА в 2008 году рост затрат и задержки с расписанием были «связаны с бюджетированием и управленческими программами, а не с техническими характеристиками». Среди проблем, упомянутых в обзоре, были плохие процедуры оценки и базовый бюджет, который был слишком низким. Группа предположила, чтобы самая ранняя дата запуска - это 2015 год.

Около 2010 года НАСА и Европейское космическое агентство сотрудничали в нескольких крупномасштабных миссиях, включая ExoMars и создание рентгеновского телескопа Athena. Однако к 2011 году ЕКА заявила, что быстрее будет продвигаться вперед в этих миссиях самостоятельно. НАСА сократило также свои другие программы, чтобы обеспечить материально разработку JWST, в том числе вышла из программы ExoMars. Кроме того, опрос Национального научного фонда США в 2010 году, который проводится каждые десять лет и устанавливает приоритетные астрономические программы, оценил совместные миссии с ЕКА ниже, чем другие инициативы.

К 2011 году JWST стоил уже 8,7 млрд. долларов, из-за чего проект был на грани закрытия из-за перерасхода средств. И хотя финансирование миссии было продолжено, в НАСА признали, что вынуждены были серьезно ограничить другие миссии. Повышенная бдительность по программе продолжалась в течение нескольких лет, и в 2015 году НАСА заявила, что работа над телескопом идет полным ходом, а запуск ожидается в 2018 году.

Однако в сентябре NASA объявило, что запуск был перенесен с октября 2018 года на весну 2019 года, ссылаясь на вопросы интеграции космических аппаратов. «Изменение сроков запуска не указывает на проблемы с оборудованием или техническими характеристиками», - говорится в заявлении Томаса Зурбухена, ассоциированного администратора Управления научными миссиями НАСА. «Скорее, интеграция различных элементов космического аппарата занимает больше времени, чем ожидалось».

В марте 2018 года НАСА объявило, что дата запуска снова переносится, теперь уже на май 2020 года, из-за необходимости более тщательного тестирования сложных систем телескопа. Задержка запуска не является единственной неутешительной новостью для космического телескопа. Его стоимость, которая уже превышает 8,8 млрд. долларов, может еще увеличиться, как сообщили 27 марта официальные лица НАСА.

«Теперь все технические нюансы решены, но все еще остаются некоторые моменты, выявленные при тестировании узлов телескопа, и они побуждают нас предпринять необходимые шаги, чтобы решить их и завершить эту амбициозную и сложную обсерватории», - сказал исполняющий обязанности администратора НАСА Роберт Лайтфут в своем заявлении.

Джеймс Уэбб

JWST назван в честь второго руководителя НАСА Джеймса Уэбба. Он взял на себя ответственность за космическое агентство с 1961 по 1968 год, и ушел на пенсию всего за несколько месяцев до того, как НАСА совершило первую высадку человека на Луну.

Хотя пребывания Уэбба в качестве администратора НАСА наиболее тесно связано с программой Аполлон, он также считается лидером в области космической науки. Даже во времена великих политических потрясений, Уэбб ставил основной целью НАСА продвижение науки, считая, что запуск большого космического телескопа должен быть одной из ключевых целей космического агентства. NASA запустило более 75 миссий, направленных на изучение космоса, под руководством Уэбба, в том числе миссии по изучению Солнца, звезд и галактик, а также космического пространства сразу за земной атмосферой.

Уэбб будет вглядываться в ближний и средний инфракрасный спектр, чему поспособствует его положение в точке L2 за луной и солнечные щиты, которые блокируют навязчивый свет Солнца, Земли и Луны, благоприятно влияя на охлаждение аппарата. Ученые надеются увидеть самые первые звезды Вселенной, образование и столкновение юных галактик, рождение звезд в протопланетарных системах - в которых, возможно, содержатся химические компоненты жизни.

Эти первые звезды могут хранить ключ к пониманию структуры Вселенной. Теоретически, где и как они формируются, напрямую связано с первыми моделями темной материи - невидимой таинственной субстации, которую обнаруживают по гравитационному воздействию - а их циклы жизни и смерти вызывают обратную связь, повлиявшую на формирование первых галактик. И поскольку сверхмассивные звезды с коротким периодом жизни примерно в 30-300 раз тяжелее нашего Солнца по массе (и в миллионы раз ярче), эти первые звезды могли бы взорваться в виде сверхновых, а после коллапсировать и образовать черные дыры, которые постепенно заняли центры большинства массивных галактик.

Видеть все это - безусловно, подвиг для инструментов, которые мы делали до сих пор. Благодаря новым инструментам, а также космическим аппаратам, мы сможем увидеть еще больше.

Экскурсия по космическому телескопу Джеймса Уэбба

Уэбб выглядит как ромбовидный плот, оснащенный толстой изогнутой мачтой и парусом - если бы его строили гигантские пчелы, питающиеся бериллием. Направленный нижней частью к Солнцу, снизу «плот» состоит из щита - слоев каптона, разделенных щелями. Каждый слой разделен вакуумной щелью для эффективного охлаждения, а вместе они защищают основной отражатель и инструменты.

Каптон - это очень тонкая (представьте человеческий волос) полимерная пленка производства DuPont, которая способна поддерживать стабильные механические свойства в условиях экстремального тепла и вибрации. Если вы захотите, вы сможете вскипятить воду на одной стороне щита и сохранить азот в жидком состоянии на другой. Складывается он тоже довольно хорошо, что важно для запуска.

Судовой «киль» состоит из структуры, которая хранит солнечный щит во время запуска и солнечные батареи для обеспечения питания аппарата. В центре находится короб, который содержит все важные функции поддержки, за счет которых работает Уэбб, включая электроэнергию, управление ориентацией, связь, командование, обработку данных и тепловой контроль. Антенна украшает внешний вид короба и помогает убедиться, что все ориентировано в нужном направлении. На одном из концов теплового щита, перпендикулярно к нему, находится триммер момента, который компенсирует давление, оказываемое фотонами на аппарат.

На космической стороне щита находится «парус», гигантское зеркало Уэбба, часть оптического оснащения и короб с оборудованием. 18 шестиугольных бериллиевых секций развернутся после запуска, чтобы стать одним большим главным зеркалом на 6,5 метра в поперечнике.

Напротив этого зеркала, удерживаемого на месте тремя опорами, находится вторичное зеркало, которое фокусирует свет от главного зеркала в кормовой оптической подсистеме, клиновидной коробке, выступающей из центра основного зеркала. Эта структура отклоняет рассеянный свет и направляет свет от вторичного зеркала к инструментам, размещенным в задней части «мачты», которая также поддерживает сегментированную структуру основного зеркала.

После того как аппарат завершит свой шестимесячный период ввода в эксплуатацию, он проработает 5-10 лет, а может, и больше, в зависимости от расхода топлива, однако его местоположение будет слишком далеко, чтобы его можно было починить. На самом деле, Хаббл и являются своего рода исключениями в этом плане. Но, как у Хаббла и других общих обсерваторий, миссией Уэбба будет работа с проектами ученых всего мира, отбираемых на конкурсной основе. Затем результаты будут находить свой путь в исследованиях и данных, доступных в Интернете.

Давайте внимательнее посмотрим на инструменты, которые делают все эти исследования возможными.

Инструменты: за пределами поля зрения


Хотя он и видит что-то в визуальном диапазоне (красного и золотого света), Уэбб является фундаментально большим инфракрасным телескопом.

Его основной тепловизор, камера ближнего инфракрасного спектра NIRCam, видит в диапазоне 0,6-5,0 микрон (ближний инфракрасный). Она сможет обнаружить инфракрасный свет рождения самых первых звезд и галактик, провести обследования близлежащих галактик и местных объектов, снующих через пояс Койпера - просторов ледяных тел, вращающихся за орбитой Нептуна, в которых также умещаются Плутон и другие карликовые планеты.

NIRCam также оснащена коронографом, который позволит камере наблюдать за тонким гало, окружающим яркие звезды, блокируя их ослепительный свет - необходимый инструмент для выявления экзопланет.

Ближний инфракрасный спектрограф работает в том же диапазоне длин волн, что и NIRCam. Как и другие спектрографы, он анализирует физические свойства объектов типа звезд, разделяя излучаемый ими свет на спектры, структура которого меняется в зависимости от температуры, массы и химического состава объекта.

NIRSpec будет изучать тысячи древних галактик с таким слабым излучением, что одному спектрографу понадобятся сотни часов на эту работу. Чтобы упростить эту сложнейшую задачу, спектрограф оснащается замечательным устройством: сеткой из 62 000 отдельных жалюзи, каждое из которых размером примерно 100 на 200 микрон (шириной в несколько человеческих волос) и каждое из которых можно открывать и закрывать, блокируя свет более ярких звезд. Благодаря этому массиву, NIRSpec станет первым космическим спектрографом, который сможет наблюдать за сотней разных объектов одновременно.

Fine Guidance Sensor и бесщелевой спектрограф (FGS-NIRISS) - это, по сути, два сенсора, упакованных вместе. NIRISS включает в себя четыре режима, каждый из которых связан с разной длиной волн. Они варьируются от бесщелевой спектроскопии, которая создает спектр с помощью призмы и решетки под названием «гризма», что в сумме создает интерференционные картины, позволяющие выявить экзопланетарный свет на фоне света звезды.

FGS - это чувствительная и немигающая камера, которая делает навигационные снимки и передает их на системы ориентации, которые удерживают телескоп в правильном направлении.

Последний инструмент Уэбба расширяет ассортимент от ближнего инфракрасного до среднего инфракрасного спектра, что удобно для наблюдения за объектами с красным смещением, а также планетами, кометами, астероидами, нагретой солнцем пыли и протопланетарными дисками. Будучи камерой и спектрографом одновременно, этот инструмент MIRI покрывает широчайший диапазон длин волн, в 5-28 микрон. Его широкополосная камера сможет делать больше видов снимков, за которые мы любим Хаббл.

Также инфракрасные наблюдения имеют важные значения для понимания Вселенной. Пыль и газ могут блокировать видимый свет звезд в звездных яслях, но инфракрасный - нет. Более того, по мере расширения Вселенной и разбегания галактик, их свет «вытягивается» и становится красным смещением, уходя в длинноволновой спектр электромагнитных волн вроде инфракрасного. Чем дальше галактика, тем быстрее она удаляется и тем большее значение приобретает ее красное смещение - вот в чем ценность телескопа Уэбба.

Инфракрасный спектр также может предоставить большой объем информации об атмосферах экзопланет и о том, содержат ли они молекулярные компоненты, связанные с жизнью. На Земле мы называем водяной пар, метан и диоксид углерода «парниковыми газами», потому что они поглощают тепло. Поскольку эта тенденция справедлива везде, ученые могут использовать Уэбб для обнаружения знакомых веществ в атмосферах далеких миров, наблюдая за моделями поглощения веществ с помощью спектрографов.

Вы могли поближе познакомиться с телескопом Хаббл. А это нас ждет в ближайшем будущем!=)


Космический телескоп имени Джеймса Уэбба - орбитальная инфракрасная обсерватория, которая предположительно заменит космический телескоп «Хаббл».

Первоначально назван «Космический телескоп нового поколения». В 2002 году переименован в честь второго руководителя НАСА Джеймса Уэбба (1902-1992), возглавлявшего агентство в 1961-1968 годах.

«Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре (диаметр зеркала «Хаббла» - 2,4 метра) и солнечным щитом размером с теннисный корт.

Будет размещён в точке Лагранжа L2 системы Солнце - Земля.


Точка L2 в системе Солнце - Земля является идеальным местом для строительства орбитальных космических обсерваторий и телескопов. Поскольку объект в точке L2 способен длительное время сохранять свою ориентацию относительно Солнца и Земли, производить его экранирование и калибровку становится гораздо проще. Однако эта точка расположена немного дальше земной тени (в области полутени), так что солнечная радиация блокируется не полностью. В этой точке уже находятся аппараты американского и европейского космических агентств - WMAP, «Планк», «Гершель» и Gaia, а в 2018 должен присоединиться «Джеймс Уэбб».

Проект представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств.

Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» в 2018 году.

Модель ракеты в музее авиации и космоса, Франция

Первичными задачами JWST являются: обнаружение света первых звёзд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной (период истории Вселенной между 150 млн лет и 800 млн лет после Большого Взрыва) и что её вызвало.

Телескоп должен оказаться в состоянии обнаружить относительно небольшие планеты – в несколько раз больше Земли – что не может сделать «Хаббл». Кроме того, «Вебб» будет иметь более высокую чувствительность к атмосферам близких к Земле звезд. Телескоп сможет дать снимки крупным планом планет Солнечной системы, от Марса и далее. Большая яркость Венеры и Меркурия лежит за пределами оптики телескопа.

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет (в два раза дальше, чем Сириус). В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря JWST ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет (что будет являться недостижимым показателем ни для одного наземного и орбитального телескопа вплоть до начала 2020-х годов, когда в строй будет введен Европейский чрезвычайно большой телескоп с диаметром зеркала в 39,3 м).

Изготовление оптической системы

Проблемы

Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6,5 метра, чтобы измерить свет от самых далёких галактик. Простое изготовление зеркала подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади.

Разработка и испытания

НАСА приступили к исследованию новых способов создания зеркала для телескопа. Для этого была создана программа Advanced Mirror System Demonstrator, по сути являющаяся 4-летним сотрудничеством между НАСА, Национальным управлением военно-космической разведки США и Военно-воздушными силами США. На основе исследований были построены и испытаны два тестовых зеркала. Одно из них было сделано из бериллия компанией Ball Aerospace & Technologies, другое - построено фирмой Kodak (ныне - ITT) из специального стекла.


Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе

Группа экспертов протестировала оба зеркала, чтобы определить, насколько хорошо они выполняют свою задачу, сколько стоят и насколько легко (или трудно) было бы построить полноразмерное, 6,5-метровое зеркало. Эксперты рекомендовали зеркало из бериллия для телескопа Джеймса Уэбба по нескольким причинам, одна из которых - бериллий сохраняет свою форму при криогенных температурах. На основе рекомендаций экспертов компания Northrop Grumman выбрала зеркало из бериллия, и Центр космических полётов Годдарда утвердил это решение.

Также было решено сделать зеркало не цельным, а из сегментов, которые будут раздвинуты на орбите, так как габариты цельного зеркала не позволили бы его разместить в ракете-носителе Ариан-5. Размер каждого из 18 шестигранных сегментов зеркала составляет 1,32 метра от грани до грани, а масса сегмента - 20 кг.

Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Симметрия же хороша тем, что нужно только 3 разные оптические настройки для 18 сегментов, 6 сегментов на каждую. Наконец, желательно, чтобы зеркало имело форму близкую к круговой для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, даст вытянутое изображение, а квадратное пошлёт много света из центральной области.

После запуска и сопутствующих ему вибраций массив зеркал должен быть развернут в то, что конструкторы называют «предварительным положением». Этот процесс предполагает освобождение каждого из 18 сегментов основного зеркала от пусковых захватов. Каждый сегмент имеет компьютерное управление положением с шестью степенями свободы, кроме того, компьютер управляет выдвижением/втягиванием центральной точки каждого зеркала для изменения радиуса кривизны поверхности. Каждое зеркало обладает своей системой приводов для осуществления этих движений. После того как положение зеркал будет разблокировано, приводы должны выровнять их положение по линии «фронта волны» с допуском в 20 нанометров (1/5000 толщины волоса).

Производство

Для зеркала «Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1,3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента.


Процесс формирования зеркала начинается с вырезания излишков материала на оборотной стороне бериллиевой заготовки таким образом, что остаётся тонкая рёберная структура. Передняя же сторона каждой заготовки сглаживается с учётом положения сегмента в большом зеркале.


Затем поверхность каждого зеркала стачивается для придания формы близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку.

По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах.

Оборудование

JWST будет иметь следующие научные инструменты для проведения исследования космоса:

Камера ближнего инфракрасного диапазона (Near-Infrared Camera);

Камера ближнего инфракрасного диапазона является основным блоком формирования изображения «Уэбба» и будет состоять из массива ртутно-кадмиево-теллуровых детекторов. Рабочий диапазон прибора составляет от 0,6 до 5 мкм.

Прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument);

Прибор для работы в среднем диапазоне инфракрасного излучения состоит из камеры и спектрографа, которые «видят» свет в среднем диапазоне инфракрасного излучения 5-28 мкм.

Спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph);

Спектрограф ближнего инфракрасного диапазона будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов, например, температуру и массу, так и о их химическом составе. NIRSpec способен делать спектроскопию среднего разрешения в диапазоне длин волн 1-5 мкм и низкого разрешения с длиной волны 0,6-5 мкм.

Датчик точного наведения c устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом (Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph).

Если удастся удержать график постройки, то новый телескоп войдет в строй до прекращения работы космического телескопа «Хаббл». «Перспектива одновременной работы «Хаббла» и «Вебба» очень интересна, так как их возможности во многих отношениях дополняют друг друга», — говорит Джон Гарднер, Центр космических полетов имени Годдарда.

Интересный обзор фотографий собран на этом сайте!

Некоторая информация взята с сайта http://sci-lib.com

МОСКВА, 17 дек - РИА Новости. Орбитальная обсерватория "Джеймс Уэбб" будет отправлена в космос на борту европейской ракеты-носителе Ariane 5, который отправится в околоземное пространство предположительно в октябре 2018 года с космодрома Куру, сообщает пресс-служба ЕКА.

Сегодня, по словам генерального директора ЕКА, Йохана-Дитриха Вернера, и директора программы JWST в НАСА, Эрика Смита, европейское и американское космические агентства подписали с компанией Arianespace соглашение, согласно которому "Джеймс Уэбб" будет отправлен в космос на борту европейского ракетоносителя.

Новый телескоп "Джеймс Уэбб" (James Webb Space Telescope, JWST) является официальной заменой для орбитального телескопа "Хаббл", который проработал на орбите уже 25 лет. Изначально новый аппарат планировалось запустить в 2014 году, но значительное превышение затрат на него и отставание от графика вынудили НАСА перенести предполагаемую дату старта миссии сначала на сентябрь 2015 года, а затем - на октябрь 2018 года.

В конструкцию "Джеймса Уэбба" входят огромное зеркало диаметром 6,5 метра (диаметр зеркала Хаббла - 2,4 метра) и солнцезащитный щит размером с теннисный корт. Зеркало и щит из-за своих габаритов будут доставлены на ракету-носитель в сложенном виде, а затем раскроются после вывода телескопа в открытый космос. Большие габариты телескопа и щита, как отмечают в ЕКА, обусловили выбор Ariane 5 в качестве системы по его выводу в космос.

Ученые: первые звезды Вселенной жили в тесных и суперярких семьях Крупные и крайне яркие звезды, вспыхнувшие в первые мгновения жизни Вселенной, не были одиночками, как считалось ранее, и обитали в тесных звездных семьях, совокупная яркость которых могла в сотни миллионов раз превышать силу свечения Солнца.

Сейчас сборка телескопа вышла на финальную стадию, и инженеры компании "Локхид Мартин", отвечающей за его создание, устанавливают шестигранные зеркала "Джеймса Уэбба", полировка которых была завершена уже четыре года назад. На текущий момент специалисты НАСА и аэрокосмической компании установили пять из 18 шестиугольных элементов главного зеркала телескопа, а также установили часть вторичных зеркал и научных приборов.

Основное различие между "Хабблом" и "Джеймсом Уэббом" заключается в диапазонах работы: приборы "Хаббла" собирают информацию в инфракрасных лучах, в видимом свете и в ультрафиолете, а "Джеймс Уэбб" будет работать преимущественно в инфракрасном диапазоне. В связи с этим новый телескоп можно считать также преемником крупнейшей в мире инфракрасной обсерватории космического базирования "Спитцер", запущенной НАСА 25 августа 2003 года.

Телескоп будет находиться в космическом пространстве в точке Лагранжа L2, отстоящей от нашей планеты на 1,5 млн км. В ней Земля почти полностью заслоняет солнечный свет, при этом не мешая наблюдениям, поскольку обращена к L2 неосвещенной стороной. Гравитационные силы Земли и Солнца обеспечат относительную неподвижность телескопа относительно этих двух небесных тел.

Небольшие изменения местоположения "Джеймса Уэбба", предотвращающие его уход из зоны радиационной безопасности, будут выполняться с помощью коррекционных двигателей. Нахождение в земной тени позволит телескопу работать без искусственного охлаждения.

Лично я пришел к выводу, что телескоп James Webb несет слишком много изобретений, слишком много риска и является проектом за гранью разумного. - таковы прямые слова руководителя независимой контрольной комиссии Тома Янга на заседании комитета по астрономии и астрофизике совета по космическим исследованиям Национальной академии наук США 29 октября. Впрочем, он тут же уточнил, что не является противником телескопа и не сомневается, что проект может быть завершен успешно. Действительно, положение дел вызывает противоречивые чувства - с одной стороны, это интереснейший проект, который должен дать науке новые возможности, с другой - превышения сроков и стоимости достигли воистину астрономических величин. В целом история проекта заставляет задуматься о своевременности воплощения технологий и критериях, когда лучше остановиться. Ну и, наконец, уроки «Джеймса Уэбба» категорически необходимо усвоить, начиная гораздо больший проект окололунной орбитальной станции.

Фото NASA/Desiree Stover

Чтобы комментарий Янга был более понятен, стоит пояснить контекст. В 2010 году, когда проект телескопа «Джеймс Уэбб» в очередной раз нарушил ранее объявленные сроки и стоимость, сенатор Барбара Микульски (Barbara Mikulski) потребовала собрать независимую контрольную комиссию. По результатам ее работы NASA реструктуризовало проект и заверило Конгресс США, что стоимость не превысит 8 миллиардов долларов, и телескоп будет запущен не позже осени 2018. Но осенью 2017 сроки съехали на 2019, а весной 2018 - на 2020. NASA, не дожидаясь сенаторского гнева, собрало новую независимую комиссию самостоятельно. В нее вошли авторитетные авиакосмические эксперты, а главой стал работавший в Lockheed Martin Том Янг.


Том Янг, фото NASA/Билл Ингалс

Комиссия завершила работу в мае 2018 и 31 числа представила отчет. В нем, опираясь на оценки трудоемкости и сроков проекта в условиях различных , рекомендовали установить дату запуска на март 2021. Результатом этого стало бы превышение потолка в 8 миллиардов, установленного Конгрессом. Также в отчете было сформулировано 32 рекомендации по улучшению процессов.

Теперь переносимся в осень 2018. 29 октября состоялось заседание комитета по астрономии и астрофизике совета по космическим исследованиям Национальной академии наук США. Нет ничего удивительного, что на нем выступал Том Янг. Портал SpaceNews приводит его слова:

Есть люди, которые поддержат JWST любой ценой, и есть те, кто поддерживают его, но возмущены увеличением сроков и стоимости. Я считаю, что проект не закроют, и политический процесс не сделает телескопу ничего плохого.
Он также добавил, что не исключает «побочного ущерба» другим программам NASA, но не стал предсказывать конкретные решения. Пояснение: сейчас в NASA и администрации США решается вопрос о задержке или отмене инфракрасного телескопа WFIRST для того, чтобы перебросить деньги на JWST.
Я знаю, что сейчас мы начинаем проекты, по сравнению с которыми «Джеймс Уэбб» будет выглядеть небольшим. И эти миссии должны учитывать опыт JWST. Думаю, что в следующем десятилетии придется поломать голову над этой проблемой.
Также Янг рассказал о сложностях убеждения NASA в валидности рекомендаций. Много усилий пришлось потратить, чтобы доказать, что NASA может и должно контролировать подготовку к полету европейской ракеты Ariane 5, на которой должен быть запущен телескоп. Первоначально NASA утверждало, что это невозможно, но представители комиссии сумели в итоге убедить агентство.
Если бы эта программа не имела высокого научного потенциала и не касалась бы вопросов лидерства США, думаю, ее бы закрыли.

Выдающийся кошмар

Первоначально телескоп «Джеймс Уэбб» должен был стоить 500 миллионов долларов и отправиться в космос в 2007 году. Но первоначальные оценки стоимости увеличились в 19 раз, а сроки съехали на 14 лет.


Иллюстрация Grant Tremblay

Вполне ожидаемо, что сейчас выбросить уже потраченные миллиарды долларов жалко, поэтому «Джеймс Уэбб» будет запущен и, надеюсь, станет отличным телескопом. Но его собратья из больших стратегических космических миссий NASA демонстрируют куда большие успехи. Например, стартовавший в этом году Parker Solar Probe обошелся всего в полтора миллиарда. А миссии меньшего калибра с небольшими бюджетами выглядят на фоне «Джеймса Уэбба» просто прекрасно - недавно начавший работать на орбите и уже нашедший первые экзопланеты TESS обошелся в 200 миллионов, при этом сэкономил 40 и завершился на два месяца раньше запланированного. Простая математика говорит, что на стоимость JWST можно было бы запустить почти 50 аппаратов с бюджетом TESS, шесть аналогов Parker Solar Probe или 3 аналога марсохода «Кьюриосити». И, подозреваю, что научной пользы в этом случае было бы больше.

Отдельный печальный юмор заключается в том, что анализ переносов сроков дает дату пуска в 2026. Расчет, конечно, несерьезный, но в районе 2021 года стоит про него вспомнить.


Иллюстрация Corey S. Powell

Итоговые размышления

Печальная история «Джеймса Уэбба» наводит на несколько выводов:

Технологические скачки лучше делать на сравнительно дешевых тестовых аппаратах. У NASA был отличный опыт зонда Deep Space 1, на котором проверили двенадцать новых технологий, успешно применявшихся потом в последующих миссиях. Зонд обошелся, кстати, всего в двести с небольшим миллионов долларов по сегодняшним ценам. У Европейского космического агентства есть наглядный пример - успех LISA Pathfinder. Этот аппарат показывает возможность создать космический детектор гравитационных волн из нескольких спутников, а то, что их конструкция не будет сильно отличаться от уже работающего аппарата, повышает точность оценки сроков и стоимости проекта. Да, конечно, возможно возражение, что от «мини-JWST» не будет особого толка, но это вопрос проектирования аппарата и придумывания для него задач. Практика - критерий истины, и только успешная реализация технологии показывает ее настоящую готовность и стоимость.

Плавное и незаметное увеличение стоимости и сроков проекта может зайти очень далеко, и необходимо иметь четкие критерии того, когда ситуация переходит грань разумного. Этот совет, кстати, универсален, тем более, что в психике человека заложено иррациональное избегание потерь (вспомните эксперимент Макса Базермана с двадцатидолларовой купюрой на аукционе). Конкретно в случае «Джеймса Уэбба» в 2010-11 годах стоимость плавно выросла с 5 до 6,5, а затем до 8 миллиардов. И к тому моменту успели потратить примерно 3 миллиарда, которые, конечно же, стало очень жалко выбрасывать. А до 2011 года развилок с аудитом и шансом на закрытие проекта не просматривается. 2006 года дает оценку стоимости 3,3 миллиарда, меньше, чем у «Хаббла», и сейчас смотрится очень наглядной иллюстрацией.