Связь тригонометрических функций. Соотношения между тригонометрическими функциями одного аргумента

Попробуем отыскать зависимость между основными тригонометрическими функциями одного и того же угла.

Соотношение между косинусом и синусом одного и того же угла

На следующем рисунке представлена система координат Оху с изображенной в ней частью единичной полуокружности ACB с центром в точке О. Эта часть является дугой единичной окружности. Единичная окружность описывается уравнением

  • x 2 +y 2 =1.

Как уже известно ординату у и абсциссу х можно представить в виде синуса и косинуса угла по следующим формулам:

  • sin(a) = у,
  • cos(a) = х.

Подставив эти значения в уравнения единичной окружности имеем следующее равенство

  • (sin(a)) 2 + (cos(a)) 2 =1,

Данное равенство, выполняется при любых значениях угла а. Оно называется основное тригонометрическое тождество.

Из основного тригонометрического тождества, можно выразить одну функцию через другую.

  • sin(a) = ±√(1-(cos(a)) 2),
  • cos(a) = ±√(1-(sin(a)) 2).

Знак в правой части этой формулы определяется знаком выражения, которое стоит в левой части этой формулы.

Например.

Вычислить sin(a), если cos(a)=-3/5 и pi

Воспользуемся формулой приведенной выше:

  • sin(a) = ±√(1-(cos(a)) 2).

Так как pi

  • sin(a) = ±√(1-(cos(a)) 2) = - √(1 – 9/25) = - 4/5.

Соотношение между тангенсом и котангенсом одного и того же угла

Теперь, попробуем найти зависимость, между тангенсом и котангенсов.

По определению tg(a) = sin(a)/cos(a), ctg(a) = cos(a)/sin(a).

Перемножим эти равенства, получим tg(a)*ctg(a) =1.

Из этого равенства можно выразить одну функцию через другую. Получим:

  • tg(a) = 1/ctg(a),
  • ctg(a) = 1/tg(a).

Следует понимать, что эти равенства справедливы лишь тогда, когда tg и ctg существуют, то есть для любых а, кроме а=k*pi/2, при любом целом k.

Теперь попробуем используя основное тригонометрическое тождество найти зависимости между тангенсом и косинусом.

Поделим основное тригонометрическое тождество, на (cos(a)) 2 . (cos(a) не равен нулю, иначе бы тангенс не существовал бы.

Получим следующее равенство ((sin(a)) 2 + (cos(a)) 2)/ (cos(a)) 2 =1/(cos(a)) 2 .

Разделив почленно получаем:

  • 1+(tg(a)) 2 = 1/(cos(a)) 2 .

Как уже отмечалось выше, эта формула верна если cos(a) не равен нулю, то есть для всех углов а, кроме а=pi/2 +pi*k, при любом целом k.

1. Выражение синуса через косинус

Примечание: Знак перед радикалом в правой части зависит от того, в какой четверти находитсяугол α . Знак тригонометрической функции в левой части должен совпадать со знаком правой части. Данное правило справедливо также для других формул, приведенных ниже.

2. Выражение синуса через тангенс

3. Выражение синуса через котангенс

4. Выражение косинуса через синус

5. Выражение косинуса через тангенс

6. Выражение косинуса через котангенс

7. Выражение тангенса через синус

8. Выражение тангенса через косинус

9. Выражение тангенса через котангенс

10. Выражение котангенса через синус

11. Выражение котангенса через косинус

12. Выражение котангенса через тангенс

21. Тригонометрические функции y=sin x, y=cos x, их свойства и графики.

Y = sin(x)

График функции y=sin(x).

Основные свойства:

3. Функция нечетная.

График функции y=cos(x).

Основные свойства:

1. Область определения вся числовая ось.

2. Функция ограниченная. Множество значений – отрезок [-1;1].

3. Функция четная.

4.Функция периодическая с наименьшим положительным периодом равным 2*π.

22. Тригонометрические функции y=tg x, y=ctg x, их свойства и графики.

График функции y=tg(x).

Основные свойства:

1. Область определения вся числовая ось, за исключением точек вида x=π/2 +π*k, где k – целое.

3. Функция нечетная.

Y = ctg(x)

График функции y=ctg(x).

Основные свойства:

1. Область определения вся числовая ось, за исключением точек вида x=π*k, где k – целое.

2. Функция неограниченная. Множество значение вся числовая прямая.

3. Функция нечетная.

4.Функция периодическая с наименьшим положительным периодом равным π.

23. Основные свойства тригонометрических функций: четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям.



Синусом числа а называется ордината точки, изображающей это число на числовой окружности. Синусом угла в а радиан называется синус числа а .

Синус - функция числа x . Ее область определения - множество всех чисел, так как у любого числа можно найти ординату изображающей его точки.

Область значений синуса - отрезок от -1 до 1 , так как любое число этого отрезка на оси ординат является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период синуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.

Знак синуса:

1. синус равен нулю при , где n - любое целое число;

2. синус положителен при , где n - любое целое число;

3. синус отрицателен при


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.