Сверхновые звезды образуются в результате. Сверхновая. Как их найти сверхновые звезды

Вспышка сверхновой звезды (обозначается SN) - явление несравненно более крупного масштаба, чем вспышка новой. Когда в одной из звездных систем мы наблюдаем появление сверхновой, блеск этой одной звезды оказывается подчас того же порядка, что интегральный блеск всей звездной системы. Так, вспыхнувшая в 1885 г. близ центра туманности Андромеды звезда достигла блеска , тогда как интегральный блеск туманности равен , т. е. световой поток от сверхновой всего в четыре раза с небольшим уступает потоку от туманности. В двух случаях блеск сверхновой оказывался больше блеска галактики, в которой сверхновая появлялась. Абсолютные звездные величины сверхновых в максимуме близки к что на , т. е. в 600 раз ярче, чем абсолютная звездная величина обычной новой в максимальном блеске. Отдельные сверхновые достигают в максимуме , что в десять миллиардов раз превышает светимость Солнца.

В нашей Галактике за последнее тысячелетие достоверно наблюдались три сверхновые звезды: в 1054 г. (в Тельце), в 1572 г. (в Кассиопее), в 1604 г. (в Змееносце). По-видимому, прошла незамеченной также вспышка сверхновой в Кассиопее около 1670 г., от которой сейчас осталась система разлетающихся газовых волокон и мощное радиоизлучение (Cas А). В некоторых галактиках на протяжении 40 лет вспыхивало три и даже четыре сверхновые (в туманностях NGC 5236 и 6946). В среднем, в каждой галактике вспыхивает одна сверхновая за 200 лет, а у названных двух галактик этот интервал снижается до 8 лет! Международное сотрудничество за четыре года (1957-1961) привело к открытию сорока двух сверхновых. Общее число наблюдавшихся сверхновых превышает в настоящее время 500.

По особенностям изменения блеска сверхновые распадаются на два типа - I и II (рис. 129); возможно, что существует еще III тип, объединяющий сверхновые с наименьшей светимостью.

Сверхновые I типа отличаются быстротечным максимумом (около недели), после чего в течение 20-30 дней блеск падает со скоростью за одни сутки. Затем падение замедляется и далее, вплоть до наступления невидимости звезды, протекает с постоянной скоростью за сутки. Светимость звезды убывает при этом экспоненциально, вдвое за каждые 55 суток. Например, Сверхновая 1054 г. в Тельце достигла такого блеска , что была видна днем в течение почти месяца, а ее видимость невооруженным глазом продолжалась два года. В максимуме блеска абсолютная звездная величина сверхновых I типа достигает в среднем , а амплитуда от максимума до минимального блеска после вспышки .

Сверхновые II типа имеют меньшую светимость: в максимуме , амплитуда неизвестна. Вблизи максимума блеск несколько задерживается, но спустя 100 дней после максимума падает гораздо быстрее, чем у сверхновых I типа, а именно на за 20 дней.

Сверхновые звезды вспыхивают обычно на периферии галактик.

Сверхновые I типа встречаются в галактиках любой формы, а II типа - только в спиральных. Те и другие в спиральных галактиках бывают чаще всего вблизи экваториальной плоскости, предпочтительно в ветвях спиралей, и, вероятно, избегают центр галактики. Скорее всего они принадлежат к плоской составляющей (I типу населения).

Спектры сверхновых I типа ничем не похожи на спектры новых звезд. Их удалось расшифровать лишь после того, как отказались от идеи весьма широких эмиссионных полос, а темные промежутки были восприняты как весьма широкие абсорбционные полосы, сильно смещенные в фиолетовую сторону на величину ДХ, соответствующую скоростям приближения от 5000 до 20 000 км/с.

Рис. 129. Кривые фотографического блеска сверхновых звезд I и II типа. Вверху - изменение блеска двух сверхновых I типа, вспыхнувших в 1937 г. почти одновременно в туманностях IС 4182 и NGC 1003. На оси абсцисс отложены юлианские дни. Внизу - синтетическая кривая блеска трех сверхновых II типа, полученная соответствующим сдвигом индивидуальных кривых блеска вдоль оси звездных величин (ординаты, оставленной неразмеченной). Прерывистая кривая изображает изменение блеска сверхновой I типа. На оси абсцисс отложены дни от произвольного начала

Такими оказываются скорости расширения оболочек сверхновых! Понятно, что до максимума и первое время после максимума спектр сверхновой сходен со спектром сверхгиганта, цветовая температура которого около 10 000 К или выше (ультрафиолетовый избыток около );

вскоре после максимума температура излучения падает до 5-6 тыс. Кельвинов. Но спектр остается богатым линиями ионизованных металлов, прежде всего CaII (как ультрафиолетовый дублет, так и инфракрасный триплет), хорошо представлены линии гелия (HeI) и очень выделяются многочисленные линии азота (NI), а линии водорода идентифицируются с большой неуверенностью. Конечно, в отдельных фазах вспышки в спектре встречаются и эмиссионные линии, однако недолговечные. Очень большая ширина абсорбционных линий объясняется большой дисперсией скоростей в выброшенных газовых оболочках.

Спектры сверхновых II типа сходны со спектрами обыкновенных новых звезд: широкие эмиссионные линии, окаймленные с фиолетовой стороны линиями поглощения, которые имеют ту же ширину, что и эмиссии. Характерно наличие весьма заметных бальмеровских линий водорода, светлых и темных. Большая ширина абсорбционных линий, образующихся в движущейся оболочке, в той ее части, которая лежит между звездой и наблюдателем, свидетельствует как о дисперсии скоростей в оболочке, так и об ее огромных размерах. Температурные изменения у сверхновых II типа сходны с тем, что происходит у I типа, и скорости расширения доходят до 15 000 км/с.

Между типами сверхновых и их расположением в Галактике или частотой встречаемости в галактиках разных типов существует корреляция, хотя и не очень строгая. Сверхновые I типа встречаются предпочтительнее среди звездного населения сферической составляющей и, в частности, в эллиптических галактиках, а сверхновые II типа, наоборот - среди населения диска, в спиральных и редко - неправильных туманностях. Впрочем, все сверхновые, наблюдавшиеся в Большом Магеллановом Облаке, были I типа. Конечный продукт сверхновых в других галактиках, как правило, неизвестен. При амплитуде около сверхновые, наблюдаемые в других галактиках, в минимуме блеска должны быть объектами , т. е. совершенно недоступными наблюдению.

Все эти обстоятельства могут помочь при выяснении, какими могут быть звезды - предвестники сверхновых. Встречаемость сверхновых I типа в эллиптических галактиках с их старым населением позволяет считать и предсверхновые старыми звездами малой массы, израсходовавшими весь водород. Наоборот, у сверхновых II типа, которые появляются главным образом в богатых газом спиральных ветвях, предшественникам требуется для пересечения ветви около лет, так что их возраст около сотни миллионов лет. За это время звезда должна, начав с главной последовательности, покинуть ее при исчерпании водородного горючего в своих недрах. Звезда маломассивная не успеет пройти этот этап, и, следовательно, предвестник сверхновой II типа должен обладать массой не меньше и быть молодой ОВ-звездой вплоть до взрыва.

Правда, указанное выше появление сверхновых I типа в Большом Магеллановом облаке несколько нарушает достоверность описанной картины.

Естественно допустить, что предвестник сверхновой I типа есть белый карлике массой около , лишенный водорода. Но он стал таким потому, что входил в состав двойной системы, в которой более массивный красный гигант отдает свое вещество бурным потоком так, что от него остается, в конце концов, вырожденное ядро - белый карлик углеродно-кислородного состава, а бывший спутник сам становится гигантом и начинает обратно отсылать вещество белому карлику, образуя там Н = Не-оболочку. Масса его растет и тогда, когда приближается к пределу (18.9), а центральная температура его возрастает до 4-10° К, при которой «возгорается» углерод.

У обычной звезды с ростом температуры возрастает давление, которое поддерживает вышележащие слои. Но у вырожденного газа давление зависит только от плотности, оно не будет возрастать с температурой, и вышележащие слои будут падать к центру, а не расширяться, чтобы компенсировать рост температуры. Будет происходить спадание (коллапс) ядра и прилежащих к нему слоев. Спадание идет резко ускоренно, пока возросшая температура не снимет вырождения, и тогда начнется расширение звезды «в тщетных потугах» стабилизироваться, в то время как волна сгорания углерода проносится через нее. Этот процесс длится секунду-две, за это время вещество с массой около одной массы Солнца превращается в , распад которого (с выделением -квантов и позитронов) поддерживает высокую температуру у оболочки, бурно расширяющейся до размеров в десятки а. е. Образуется (с временем полураспада ), от распада которого возникает в количестве около Белый карлик разрушается до конца. Но не видно причин для образования нейтронной звезды. А между тем в остатках вспышки сверхновой мы не находим заметного количества железа, а находим нейтронные звезды (см. дальше). В этих фактах - главная трудность изложенной модели вспышки сверхновой I типа.

Но объяснения механизма вспышки сверхновой II типа встречаются с еще большими затруднениями. По-видимому, ее предшественник не входит в состав двойной системы. При большой массе (более ) он эволюционирует самостоятельно и быстро, переживая одну за другой фазы сгорания Н, Не, С, О до Na и Si и далее до Fe-Ni-ядра. Каждая новая фаза включается при исчерпании предыдущей, когда, потеряв способность противодействовать гравитации, ядро коллапсирует, температура повышается и следующий этап вступает в действие. Если дело дойдет до фазы Fe-Ni, источник энергии пропадет, так как железное ядро разрушается под воздействием высокоэнергичных фотонов на множество -частиц, и этот процесс эндотермичен. Он помогает коллапсу. И уже нет больше энергии, способной остановить коллапсирующую оболочку.

А у ядра есть возможность перейти в состояние черной дыры (см. с. 289) через стадию нейтронной звезды посредством реакции .

Дальнейшее развитие явлений становится очень неясным. Предложено много вариантов, но в них не содержится объяснения того, как при коллапсе ядра оболочка выбрасывается наружу.

Что же до описательной стороны дела, то при массе оболочки в и скорости выбрасывания около 2000 км/с, затраченная на это энергия достигает , а излучение в течение вспышки (в основном за 70 суток) уносит с собой .

Мы еще раз вернемся к рассмотрению процесса вспышки сверхновой, но уже с помощью изучения остатков вспышек (см. § 28).

Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого звезда резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки . Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромной энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда , если масса звезды до взрыва составляла более 8 солнечных масс (M ☉), либо чёрная дыра при массе звезды свыше 20 M ☉ (масса оставшегося после взрыва ядра - свыше 5 M ☉). Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд .

Имя составляется из метки SN , после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z . Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa , ab , и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova ) с небесными координатами в формате: Jhhmmssss+ddmmsss .

Общая картина

Современная классификация сверхновых
Класс Подкласс Механизм
I
Линии водорода отсутствуют
Сильные линии ионизированного кремния (Si II) на 6150 Ia Термоядерный взрыв
Iax
В максимуме блеска имеют меньшую светимость и меньшую же в сравнении Ia
Линии кремния слабые или отсутствуют Ib
Присутствуют линии гелия (He I).
Гравитационный коллапс
Ic
Линии гелия слабые или отсутствуют
II
Присутствуют линии водорода
II-P/L/N
Спектр постоянен
II-P/L
Нет узких линий
II-P
Кривая блеска имеет плато
II-L
Звёздная величина линейно уменьшается со временем
IIn
Присутствуют узкие линии
IIb
Спектр со временем меняется и становится похожим на спектр Ib.

Кривые блеска

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет M B = − 19.5 m {\textstyle M_{B}=-19.5^{m}} , для Ib\c - .

А вот кривые блеска типа II достаточно разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе от − 20 m {\textstyle -20^{m}} до − 13 m {\textstyle -13^{m}} . Среднее значение для IIp - M B = − 18 m {\textstyle M_{B}=-18^{m}} , для II-L M B = − 17 m {\textstyle M_{B}=-17^{m}} .

Спектры

Вышеприведённая классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:

  • Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещённые эмиссионные компоненты.
  • Линии , , , наблюдаемые в ультрафиолетовом излучении.

Наблюдения вне оптического диапазона

Частота вспышек

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости. Общепринятой величиной, характеризующей частоту вспышек в разных типах галактик, является SNu :

1 S N u = 1 S N 10 10 L ⊙ (B) ∗ 100 y e a r {\displaystyle 1SNu={\frac {1SN}{10^{10}L_{\odot }(B)*100year}}} ,

где L ⊙ (B) {\textstyle L_{\odot }(B)} - светимость Солнца в фильтре B. Для разных типов вспышек её величина составляет :

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Наблюдение остатков сверхновых

Каноническая схема молодого остатка следующая :

  1. Возможный компактный остаток; обычно это пульсар , но возможно и чёрная дыра
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе .
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур T S ≥ 10 7 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Теоретическое описание

Декомпозиция наблюдений

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 10 10 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M ⊙ .

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M ⊙ , преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный .

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M ⊙ .

Термоядерный взрыв

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики . Однако сам по себе последний - устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара . Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах .

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

  • Второй компаньон - обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон - такой же белый карлик. Такой сценарий называет двойным вырождением.
  • Взрыв происходит при превышении предела Чандрасекара .
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции :

12 C + 16 O → 28 S i + γ (Q = 16.76 M e V) {\displaystyle ^{12}C~+~^{16}O~\rightarrow ~^{28}Si~+~\gamma ~(Q=16.76~MeV)} , 28 S i + 28 S i → 56 N i + γ (Q = 10.92 M e V) {\displaystyle ^{28}Si~+~^{28}Si~\rightarrow ~^{56}Ni~+~\gamma ~(Q=10.92~MeV)} .

Масса вступающего в реакцию вещества определяет энергетику взрыва и, соответственно, блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 10 51 эрг .

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада :

56 N i → 56 C o → 56 F e {\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe}

Изотоп 56 Ni нестабилен и имеет период полураспада 6.1 дней. Далее e -захват приводит к образованию ядра 56 Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен, и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние , и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и, как следствие, нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается, и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчёты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени изотоп 56 Ni уже распался, и энерговыделение идёт за счёт β-распада 56 Co до 56 Fe (T 1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Гравитационный коллапс ядра

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка - нейтронной звезды, подставив типичные значения получаем :

E t o t ∼ G M 2 R ∼ 10 53 {\displaystyle E_{tot}\sim {\frac {GM^{2}}{R}}\sim 10^{53}} эрг,

где M = 0 , а R = 10 км, G - гравитационная постоянная. Характерное время при этом:

τ f f ∼ 1 G ρ 4 ⋅ 10 − 3 ⋅ ρ 12 − 0 , 5 {\displaystyle \tau _{ff}\sim {\frac {1}{\sqrt {G\rho }}}~4\cdot 10^{-3}\cdot \rho _{12}^{-0,5}} c,

где ρ 12 - плотность звезды, нормированная на 10 12 г/см 3 .

Полученное значение на два порядка превосходит кинетическую энергию оболочки. Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации :

3 H e + e − → 3 H + ν e {\displaystyle {}^{3}He+e^{-}\to {}^{3}H+\nu _{e}}

4 H e + e − → 3 H + n + ν e {\displaystyle {}^{4}He+e^{-}\to {}^{3}H+n+\nu _{e}}

56 F e + e − → 56 M n + ν e {\displaystyle {}^{56}Fe+e^{-}\to {}^{56}Mn+\nu _{e}}

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение):

E + + n → ν ~ e + p {\displaystyle e^{+}+n\to {\tilde {\nu }}_{e}+p}

E − + p → ν e + n {\displaystyle e^{-}+p\to \nu _{e}+n}

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад:

E − + (A , Z) → (A , Z − 1) + ν e , {\displaystyle e^{-}+(A,Z)\to (A,Z-1)+\nu _{e},}

(A , Z − 1) → (A , Z) + e − + ν ~ e . {\displaystyle (A,Z-1)\to (A,Z)+e^{-}+{\tilde {\nu }}_{e}.}

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества. Достаточная концентрация вырожденных электронов достигается при плотностях ρ n u c = 2 , 8 ⋅ 10 14 {\textstyle \rho _{nuc}=2,8\cdot 10^{14}} г/см 3 .

Заметим, что процессы нейтронизации идут только при плотностях 10 11 /см 3 , достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Модель молодого остатка сверхновой

Теория эволюции остатка сверхновой

Выделяется три этапа эволюции остатка сверхновой:

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками. Время рассасывания достигает:

T m a x = 7 E 51 0.32 n 0 0.34 P ~ 0 , 4 − 0.7 {\displaystyle t_{max}=7E_{51}^{0.32}n_{0}^{0.34}{\tilde {P}}_{0,4}^{-0.7}} лет

Теория возникновения синхротронного излучения

Построение детального описания

Поиск остатков сверхновых

Поиск звёзд-предшественников

Теория сверхновых Ia

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам :

  • Мгновенная детонация
  • Отложенная детонация
  • Пульсирующая отложенная детонация
  • Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два белых карлика. Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Химическая эволюция и воздействие на межзвёздную среду

Химическая эволюция Вселенной. Происхождение элементов с атомным номером выше железа

Взрывы сверхновых - основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее ) He . Однако процессы их породившие для различных групп элементов и даже изотопов свои.

R-процесс

r-проце́сс - это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n ,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β − -распада изотопа . Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть:

τ (n , γ) ≈ 1 n τ β {\displaystyle \tau (n,\gamma)\approx {\frac {1}{n}}\tau _{\beta }}

где τ β - среднее время β-распада ядер, образующих цепочку r-процесса. Это условие накладывает ограничение на плотность нейтронов, т.к.:

τ (n , γ) ≈ (ρ (σ n γ , v n) ¯) − 1 {\displaystyle \tau (n,\gamma)\approx \left(\rho {\overline {(\sigma _{n\gamma },v_{n})}}\right)^{-1}}

где (σ n γ , v n) ¯ {\displaystyle {\overline {(\sigma _{n\gamma },v_{n})}}} - произведение сечения реакции (n ,γ) на скорость нейтрона относительно ядра мишени, усреднённое по максвелловскому спектру распределения скоростей. Учитывая что, r-процесс происходит в тяжёлых и средних ядрах, 0.1 с < τ β < 100 с, то для n ~ 10 и температуры среды T = 10 9 , получим характерную плотность

ρ ≈ 2 ⋅ 10 17 {\displaystyle \rho \approx 2\cdot 10^{17}} нейтронов/см 3 .

Такие условия достигаются в:

ν-процесс

Основная статья: ν-процесс

ν-процесс - это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7 Li , 11 B , 19 F , 138 La и 180 Ta

Влияние на крупномасштабную структуру межзвёздного газа галактики

История наблюдений

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185 (англ. ) , была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054 , породившая Крабовидную туманность . Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году . В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи , следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности , в то время как возраст остатка сверхновой RX J0852.0-4622 (англ. ) оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты , соответствующие времени взрыва сверхновой.

23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. световых лет от Земли вспыхнула сверхновая SN 1987A , самая близкая к Земле, наблюдавшаяся со времён изобретения телескопа. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Остаток сверхновой исследовался с помощью ALMA , «Хаббла » и «Чандры ». Ни нейтронная звезда , ни чёрная дыра , которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.

22 января 2014 года в галактике M82 , расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J . Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

Наиболее известные сверхновые звёзды и их остатки

  • Сверхновая SN 1604 (Сверхновая Кеплера)
  • Сверхновая G1.9+0.3 (Самая молодая из известных в нашей Галактике)

Исторические сверхновые в нашей Галактике (наблюдавшиеся)

Сверхновая Дата вспышки Созвездие Макс. блеск Рассто-
яние (св. лет)
Тип вспы-
шки
Дли-
тель-
ность види-
мости
Остаток Примечания
SN 185 , 7 декабря Центавр −8 3000 Ia ? 8-20 мес. G315.4-2.3 (RCW 86) китайские летописи: наблюдалась рядом с Альфой Центавра.
SN 369 неизвестно неиз-
вестно
неиз-
вестно
неиз-
вестно
5 мес. неизвестно китайские летописи: положение известно очень плохо. Если она находилась вблизи галактического экватора, весьма вероятно, что это была сверхновая, если же нет, она, скорее всего, была медленной новой.
SN 386 Стрелец +1,5 16 000 II ? 2-4 мес. G11.2-0.3 китайские летописи
SN 393 Скорпион 0 34 000 неиз-
вестно
8 мес. несколько кандидатур китайские летописи
SN 1006 , 1 мая Волк −7,5 7200 Ia 18 мес. SNR 1006 швейцарские монахи, арабские учёные и китайские астрономы.
SN 1054 , 4 июля Телец −6 6300 II 21 мес. Крабовидная туманность на Ближнем и Дальнем Востоке (в европейских текстах не значится, не считая туманных намёков в ирландских монастырских хрониках).
SN 1181 , август Кассиопея −1 8500 неиз-
вестно
6 мес. Возможно, 3C58 (G130.7+3.1) труды профессора Парижского университета Александра Некэма, китайские и японские тексты.
SN 1572 , 6 ноября Кассиопея −4 7500 Ia 16 мес. Остаток сверхновой Тихо Это событие зафиксировано во многих европейских источниках, в том числе и в записях молодого Тихо Браге . Правда, он заметил вспыхнувшую звезду лишь 11 ноября , но зато следил за ней целых полтора года и написал книгу «De Nova Stella» («О новой звезде») - первый астрономический труд на эту тему.
SN 1604 , 9 октября Змееносец −2,5 20000 Ia 18 мес. Остаток сверхновой Кеплера С 17 октября её стал изучать Иоганн Кеплер , который изложил свои наблюдения в отдельной книге.
SN 1680 , 16 августа Кассиопея +6 10000 IIb неиз-
вестно (не более недели)
Остаток Сверхновой Кассиопея А возможно замечена Флемстидом и занесена в каталог как 3 Кассиопеи .

Одним из важных достижений XX столетия стало понимание того факта, что почти все элементы, которые тяжелее водорода и гелия, образуются во внутренних частях звезд и поступают в межзвездную среду в результате взрыва сверхновых — одного из наиболее мощных явлений во Вселенной.

На фото: Сверкающие звезды и клочья газа создают захватывающий дух фон для картины саморазрушения массивной звезды, названной сверхновой 1987A. Ее взрыв астрономы наблюдали в Южном полушарии 23 февраля 1987 года. Это изображение, полученное телескопом «Хаббл», показывает остатки сверхновой, окруженные внутренним и внешним кольцами вещества в диффузных облаках газа. Этот трехцветный снимок составлен из нескольких фотографий сверхновой и соседней с ней области, которые были сделаны в сентябре 1994, феврале 1996 и июле 1997 года. Многочисленнные яркие голубые звезды вблизи сверхновой — это массивные звезды, каждая из которых возрастом около 12 млн. лет и в 6 раз тяжелее Солнца. Все они относятся к тому же поколению звезд, что и взорвавшаяся. Присутствие ярких газовых облаков — еще один признак молодости этой области, которая все еще являетя плодородной почвой для рождения новых звезд.

Первоначально все звезды, блеск которых внезапно увеличивался более чем в 1 000 раз, называли новыми. Вспыхивая, такие звезды неожиданно появлялись на небе, нарушая привычную конфигурацию созвездия, и увеличивали свой блеск в максимуме, в несколько тысяч раз, затем их блеск начинал резко падать, а через несколько лет они становились такими же слабыми, какими были до вспышки. Повторяемость вспышек, при каждой из которых звезда с большой скоростью выбрасывает до одной тысячной своей массы, является для новых звезд характерной. И все же при всей грандиозности явления подобной вспышки оно не бывает связано ни с коренным изменением структуры звезды, ни с ее разрушением.

За пять тысяч лет сохранились сведения о более чем 200 ярких вспышках звезд, если ограничиться такими, которые не превышали по блеску 3-ю звездную величину. Но когда была установлена внегалактическая природа туманностей, стало ясно, что вспыхивающие в них новые звезды по своим характеристикам превосходят обычные новые, так как их светимость часто оказывалась равной светимости всей галактики, в которой они вспыхивали. Необычайность таких явлений привела астрономов к мысли, что такие события — нечто совсем не похожее на обычные новые звезды, а потому в 1934 году по предложению американских астрономов Фрица Цвикки и Вальтера Бааде те звезды, вспышки которых в максимуме блеска достигают светимостей нормальных галактик, были выделены в отдельный, самый яркий по светимости и редкий класс сверхновых звезд.

В отличие от вспышек обыкновенных новых звезд вспышки сверхновых в современном состоянии нашей Галактики — явление крайне редкое, происходящее не чаще чем раз в 100 лет. Наиболее яркими были вспышки в 1006 и 1054 годах, сведения о них содержатся в китайских и японских трактатах. В 1572 году вспышку такой звезды в созвездии Кассиопеи наблюдал выдающийся астроном Тихо Браге, последним же, кто следил за явлением сверхновой в созвездии Змееносца в 1604 году, был Иоганн Кеплер. За четыре столетия «телескопической» эры в астрономии подобных вспышек в нашей Галактике не наблюдалось. Положение Солнечной системы в ней таково, что нам оптически доступны наблюдения вспышек сверхновых примерно в половине объема, а в остальной ее части яркость вспышек приглушена межзвездным поглощением. В.И. Красовский и И.С. Шкловский подсчитали, что вспышки сверхновых звезд в нашей Галактике происходят в среднем раз в 100 лет. В других галактиках эти процессы происходят примерно с той же частотой, поэтому основные сведения о сверхновых в стадии оптической вспышки были получены по наблюдениям за ними в других галактиках.

Понимая важность изучения столь мощных явлений, астрономы В. Бааде и Ф. Цвикки, работавшие на Паломарской обсерватории в США, в 1936 году начали планомерный систематический поиск сверхновых. В их распоряжении был телескоп системы Шмидта, позволявший фотографировать области в несколько десятков квадратных градусов и дававший очень четкие изображения даже слабых звезд и галактик. За три года в разных галактиках ими были обнаружены 12 вспышек сверхновых, которые затем исследовались с помощью фотометрии и спектроскопии. По мере совершенствования наблюдательной техники количество вновь обнаруженных сверхновых неуклонно возрастало, а последующее внедрение автоматизированного поиска привело к лавинообразному росту числа открытий (более 100 сверхновых в год при общем количестве — 1 500). В последние годы на крупных телескопах был начат также поиск очень далеких и слабых сверхновых, так как их исследования могут дать ответы на многие вопросы о строении и судьбе всей Вселенной. За одну ночь наблюдений на таких телескопах можно открыть более 10 далеких сверхновых.

В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью (порядка 10000 км/с). Большая скорость расширения — главный признак, по которому остатки вспышек сверхновых отличают от других туманностей. В остатках сверхновых все говорит о взрыве огромной мощности, разметавшем наружные слои звезды и сообщившем отдельным кускам выброшенной оболочки огромные скорости.

Крабовидная туманность

Ни один космический объект не дал астрономам столько ценнейшей информации, как относительно небольшая Крабовидная туманность, наблюдаемая в созвездии Тельца и состоящая из газового диффузного вещества, разлетающегося с большой скоростью. Эта туманность, являющаяся остатком сверхновой, наблюдавшейся в 1054 году, стала первым галактическим объектом, с которым был отождествлен источник радиоизлучения. Оказалось, что характер радиоизлучения ничего общего с тепловым не имеет: его интенсивность систематически возрастает с длиной волны. Вскоре удалось объяснить и природу этого явления. В остатке сверхновой должно быть сильное магнитное поле, которое удерживает созданные ею космические лучи (электроны, позитроны, атомные ядра), имеющие скорости, близкие к скорости света. В магнитном поле они излучают электромагнитную энергию узким пучком в направлении движения. Обнаружение нетеплового радиоизлучения у Крабовидной туманности подтолкнуло астрономов к поиску остатков сверхновых именно по этому признаку.

Особенно мощным источником радиоизлучения оказалась туманность, находящаяся в созвездии Кассиопеи, — на метровых волнах поток радиоизлучения от нее в 10 раз превышает поток от Крабовидной туманности, хотя она и значительно дальше последней. В оптических же лучах эта быстро расширяющаяся туманность очень слаба. Полагают, что туманность в Кассиопее — это остаток вспышки сверхновой, имевшей место около 300 лет назад.

Характерное для старых остатков сверхновых радиоизлучение показала и система волокнистых туманностей в созвездии Лебедя. Радиоастрономия помогла отыскать еще много других нетепловых радиоисточников, которые оказались остатками сверхновых разного возраста. Таким образом, был сделан вывод, что остатки вспышек сверхновых, случившихся даже десятки тысяч лет назад, выделяются среди других туманностей своим мощным нетепловым радиоизлучением.

Как уже говорилось, Крабовидная туманность стала первым объектом, у которого было обнаружено рентгеновское излучение. В 1964 году удалось обнаружить, что источник рентгеновского излучения, исходящего из нее, протяженный, хотя его угловые размеры в 5 раз меньше угловых размеров самой Крабовидной туманности. Из чего был сделан вывод, что рентгеновское излучение испускает не звезда, некогда вспыхнувшая как сверхновая, а сама туманность.

Влияние сверхновых

23 февраля 1987 года в соседней с нами галактике — Большом Магеллановом Облаке — вспыхнула сверхновая, ставшая чрезвычайно важной для астрономов, поскольку была первой, которую они, вооружившись современными астрономическими инструментами, могли изучить в деталях. И эта звезда дала подтверждение целой серии предсказаний. Одновременно с оптической вспышкой специальные детекторы, установленные на территории Японии и в штате Огайо (США), зарегистрировали поток нейтрино — элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Эти наблюдения подтвердили ранее высказанное предположение о том, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино в тот момент, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. В последние годы появились указания на связь некоторых космических гамма-всплесков со сверхновыми. Возможно, и природа космических гамма-всплесков связана с природой взрывов.

Вспышки сверхновых оказывают сильное и многообразное влияние на окружающую межзвездную среду. Сбрасываемая с огромной скоростью оболочка сверхновой сгребает и сжимает окружающий ее газ, что может дать толчок к образованию из облаков газа новых звезд. Группа астрономов во главе с доктором Джоном Хьюгесом (Rutgers University), используя наблюдения на орбитальной рентгеновской обсерватории «Чандра» (NASA), сделала важное открытие, проливающее свет на то, как при вспышках сверхновой звезды образуются кремний, железо и другие элементы. Рентгеновское изображение остатка сверхновой Cassiopeia А (Cas A) позволяет увидеть сгустки кремния, серы и железа, выброшенные при взрыве из внутренних областей звезды.

Высокое качество, четкость и информативность получаемых обсерваторией «Чандра» изображений остатка сверхновой Cas A позволили астрономам не только определить химический состав многих узлов этого остатка, но и узнать, где именно эти узлы образовались. Например, самые компактные и яркие узлы состоят главным образом из кремния и серы с очень малым содержанием железа. Это указывает на то, что они образовались глубоко внутри звезды, где температура достигала трех миллиардов градусов во время коллапса, закончившегося взрывом сверхновой. В других узлах астрономы обнаружили очень большое содержание железа с примесями некоторого количества кремния и серы. Это вещество образовалось еще глубже — в тех частях, где температура во время взрыва достигала более высоких значений — от четырех до пяти миллиардов градусов. Сравнение расположений в остатке сверхновой Cas A богатых кремнием как ярких, так и более слабых узлов, обогащенных железом, позволило обнаружить, что «железные» детали, происходящие из самых глубоких слоев звезды, располагаются на внешних краях остатка. Это означает, что взрыв выбросил «железные» узлы дальше всех остальных. И даже сейчас они, по-видимому, удаляются от центра взрыва с большей скоростью. Изучение полученных «Чандрой» данных позволит остановиться на одном из нескольких предложенных теоретиками механизмов, объясняющих природу вспышки сверхновой, динамику процесса и происхождение новых элементов.

Сверхновые SN I имеют весьма сходные спектры (с отсутствием водородных линий) и формы кривых блеска, в то время как спектры SN II содержат яркие линии водорода и отличаются разнообразием как спектров, так и кривых блеска. В таком виде классификация сверхновых существовала до середины 80-х годов прошлого столетия. А с началом широкого применения ПЗС-приемников количество и качество наблюдательного материала существенно возросли, что позволило получать спектрограммы для недоступных прежде слабых объектов, с гораздо большей точностью определять интенсивность и ширину линий, а также регистрировать в спектрах более слабые линии. В результате казавшаяся установившейся двоичная классификация сверхновых стала быстро изменяться и усложняться.

Различаются сверхновые и по типам галактик, в которых они вспыхивают. В спиральных галактиках вспыхивают сверхновые обоих типов, а вот в эллиптических, где почти нет межзвездной среды и процесс звездообразования закончился, наблюдаются только сверхновые типа SN I, очевидно, до взрыва — это очень старые звезды, массы которых близки к солнечной. А так как спектры и кривые блеска сверхновых этого типа очень похожи, то, значит, и в спиральных галактиках взрываются такие же звезды. Закономерный конец эволюционного пути звезд с массами, близкими к солнечной, — превращение в белого карлика с одновременным образованием планетарной туманности. В составе белого карлика почти нет водорода, поскольку он является конечным продуктом эволюции нормальной звезды.

Ежегодно в нашей Галактике образуется несколько планетарных туманностей, следовательно, большая часть звезд такой массы спокойно завершает свой жизненный путь, и только раз в сто лет происходит вспышка сверхновой SN I типа. Какие же причины определяют совершенно особый финал, не схожий с судьбой других таких же звезд? Знаменитый индийский астрофизик С. Чандрасекар показал, что в том случае, если белый карлик имеет массу, меньшую, чем примерно 1,4 массы Солнца, он будет спокойно «доживать» свой век. Но если он находится в достаточно тесной двойной системе, его мощная гравитация способна «стягивать» материю со звезды-компаньона, что приводит к постепенному увеличению массы, и когда она переходит допустимый предел — происходит мощный взрыв, приводящий к гибели звезды.

Сверхновые SN II явно связаны с молодыми, массивными звездами, в оболочках которых в большом количестве присутствует водород. Вспышки этого типа сверхновых считают конечной стадией эволюции звезд с начальной массой более 8—10 масс Солнца. Вообще же, эволюция таких звезд протекает достаточно быстро — за несколько миллионов лет они сжигают свой водород, затем — гелий, превращающийся в углерод, а затем и атомы углерода начинают преобразовываться в атомы с более высокими атомными номерами.

В природе превращения элементов с большим выделением энергии заканчиваются на железе, ядра которого являются самыми стабильными, и выделения энергии при их слиянии не происходит. Таким образом, когда ядро звезды становится железным, выделение энергии в нем прекращается, сопротивляться гравитационным силам оно уже не может, а потому начинает быстро сжиматься, или коллапсировать.

Процессы, происходящие при коллапсе, все еще далеки от полного понимания. Однако известно, что если все вещество ядра превращается в нейтроны, то оно может противостоять силам притяжения — ядро звезды превращается в «нейтронную звезду», и коллапс останавливается. При этом выделяется огромная энергия, поступающая в оболочку звезды и вызывающая расширение, которое мы и видим как вспышку сверхновой.

Из этого следовало ожидать генетическую связь между вспышками сверхновых и образованием нейтронных звезд и черных дыр. Если эволюция звезды до этого происходила «спокойно», то ее оболочка должна иметь радиус, в сотни раз превосходящий радиус Солнца, а также сохранить достаточное количество водорода для объяснения спектра сверхновых SN II.

Сверхновые и пульсары

О том, что после взрыва сверхновой кроме расширяющейся оболочки и различных типов излучений остаются и другие объекты, стало известно в 1968 году благодаря тому, что годом раньше радиоастрономы открыли пульсары — радиоисточники, излучение которых сосредоточено в отдельных импульсах, повторяющихся через строго определенный промежуток времени. Ученые были поражены строгой периодичностью импульсов и краткостью их периодов. Наибольшее же внимание вызвал пульсар, координаты которого были близки к координатам очень интересной для астрономов туманности, расположенной в южном созвездии Парусов, которая считается остатком вспышки сверхновой звезды — его период составлял всего лишь 0,089 секунды. А после открытия пульсара в центре Крабовидной туманности (его период составлял 1/30 секунды) стало ясно, что пульсары каким-то образом связаны с взрывами сверхновых. В январе 1969 года пульсар из Крабовидной туманности был отождествлен со слабой звездочкой 16-й величины, изменяющей свой блеск с таким же периодом, а в 1977 году удалось отождествить со звездой и пульсар в созвездии Парусов.

Периодичность излучения пульсаров связана с их быстрым вращением, но ни одна обычная звезда, даже белый карлик, не могла бы вращаться с периодом, характерным для пульсаров — она была бы немедленно разорвана центробежными силами, и только нейтронная звезда, очень плотная и компактная, могла бы устоять перед ними. В результате анализа множества вариантов ученые пришли к заключению, что взрывы сверхновых сопровождаются образованием нейтронных звезд — качественно нового типа объектов, существование которых было предсказано теорией эволюции звезд большой массы.

Сверхновые и черные дыры

Первое доказательство прямой связи между взрывом сверхновой и образованием черной дыры удалось получить испанским астрономам. В результате исследования излучения, испускаемого звездой, вращающейся вокруг черной дыры в двойной системе Nova Scorpii 1994, обнаружилось, что она содержит большое количество кислорода, магния, кремния и серы. Есть предположение, что эти элементы были захвачены ею, когда соседняя звезда, пережив взрыв сверхновой, превратилась в черную дыру.

Сверхновые (в особенности же сверхновые типа Ia) являются одними из самых ярких звездообразных объектов во Вселенной, поэтому даже самые удаленные из них вполне можно исследовать с помощью имеющегося в настоящее время оборудования. Многие сверхновые типа Ia были открыты в относительно близких галактиках. Достаточно точные оценки расстояний до этих галактик позволили определить светимость вспыхивающих в них сверхновых. Если считать, что далекие сверхновые имеют в среднем такую же светимость, то по наблюдаемой звездной величине в максимуме блеска можно оценить и расстояние до них. Сопоставление же расстояния до сверхновой со скоростью удаления (красным смещением) галактики, в которой она вспыхнула, дает возможность определить основную величину, характеризующую расширение Вселенной — так называемую постоянную Хаббла.

Еще 10 лет назад для нее получали значения, различающиеся почти в два раза — от 55 до 100 км/c Мпк, на сегодняшний же момент точность удалось значительно увеличить, в результате чего принимается значение 72 км/с Мпк (с ошибкой около 10%). Для далеких сверхновых, красное смещение которых близко к 1, соотношение между расстоянием и красным смещением позволяет также определить величины, зависящие от плотности вещества во Вселенной. Согласно общей теории относительности Эйнштейна именно плотность вещества определяет кривизну пространства, а следовательно, и дальнейшую судьбу Вселенной. А именно: будет ли она расширяться бесконечно или этот процесс когда-нибудь остановится и сменится сжатием. Последние исследования сверхновых показали, что скорее всего плотность вещества во Вселенной недостаточна, чтобы остановить расширение, и оно будет продолжаться. А для того чтобы подтвердить этот вывод, необходимы новые наблюдения сверхновых.

СВЕРХНОВАЯ ЗВЕЗДА, взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла.

Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что это взрыв белого карлика – звезды, по массе близкой к Солнцу, но меньшей по размеру и более плотной. В составе белого карлика почти нет водорода, поскольку это конечный продукт эволюции нормальной звезды. В 1930-х годах С.Чандрасекар показал, что масса белого карлика не может быть выше определенного предела. Если он находится в двойной системе с нормальной звездой, то ее вещество может перетекать на поверхность белого карлика. Когда его масса превысит предел Чандрасекара, белый карлик коллапсирует (сжимается), нагревается и взрывается. См. также ЗВЕЗДЫ.

Сверхновая II типа вспыхнула 23 февраля 1987 в соседней с нами галактике Большое Магелланово Облако. Ей дали имя Яна Шелтона, первым заметившего вспышку сверхновой с помощью телескопа, а затем и невооруженным глазом. (Последнее подобное открытие принадлежит Кеплеру, увидевшему вспышку сверхновой в нашей Галактике в 1604, незадолго до изобретения телескопа.) Одновременно с оптической вспышкой сверхновой 1987 специальные детекторы в Японии и в шт. Огайо (США) зарегистрировали поток нейтрино – элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Хотя поток нейтрино был испущен звездой вместе с оптической вспышкой примерно 150 тыс. лет назад, он достиг Земли практически одновременно с фотонами, доказав тем самым, что нейтрино не обладает массой и движется со скоростью света. Эти наблюдения подтвердили также предположение, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. См . также ЧЕРНАЯ ДЫРА.

В нашей Галактике Крабовидная туманность является остатком взрыва сверхновой, который наблюдали китайские ученые в 1054. Известный астроном Т.Браге также наблюдал в 1572 сверхновую, вспыхнувшую в нашей Галактике. Хотя сверхновая Шелтона стала первой близкой сверхновой, открытой после Кеплера, сотни сверхновых в других, более далеких галактиках были замечены при помощи телескопов за последние 100 лет.

В остатках взрыва сверхновой можно найти углерод, кислород, железо и более тяжелые элементы. Следовательно, эти взрывы играют важную роль в нуклеосинтезе – процессе образования химических элементов. Возможно, что 5 млрд. лет назад рождению Солнечной системы тоже предшествовал взрыв сверхновой, в результате которого возникли многие элементы, вошедшие в состав Солнца и планет. НУКЛЕОСИНТЕЗ.

Довольно редко люди могут наблюдать такое интересное явление как сверхновая звезда. Но это не обыкновенное рождение звезды, ведь в нашей галактике ежегодно рождаются до десяти звезд. А сверхновая звезда - явление, которое можно наблюдать только раз в сто лет. Так ярко и красиво умирают звезды.

Чтобы понять, почему происходит взрыв сверхновой, нужно вернуться к самому рождению звезды. В пространстве летает водород, который постепенно собирается в облака. Когда облако достаточно большое, в его центре начинает собираться уплотнённый водород, и температура постепенно повышается. Под действием гравитации собирается ядро будущей звезды, где благодаря повышенной температуре и возрастающему тяготению начинает проходить реакция термоядерного синтеза. От того, сколько водорода сможет притянуть к себе звезда, зависит ее будущий размер - от красного карлика до голубого гиганта. Со временем устанавливается баланс работы звезды, внешние слои давят на ядро, а ядро расширяется благодаря энергии термоядерного синтеза.

Звезда представляет собой своеобразный и, как у любого реактора, когда-нибудь у нее закончится топливо - водород. Но чтобы мы увидели, как взорвалась сверхновая звезда, должно пройти еще немного времени, ведь в реакторе вместо водорода образовалось другое топливо (гелий), которое начнет сжигать звезда, превращая его в кислород, а затем в углерод. И так будет продолжаться, пока в ядре звезды не образуется железо, которое при термоядерной реакции не выделяет энергию, а потребляет ее. При таких условиях и может произойти взрыв сверхновой звезды.

Ядро становится тяжелее и холоднее, в результате более легкие верхние слои начинают падать на него. Снова запускается синтеза, но на этот раз быстрее обычного, в результате чего звезда просто взрывается, раскидывая в окружающее пространство свою материю. В зависимости от после нее могут тоже остаться известные из них - (вещество с неимоверно высокой плотностью, которое имеет очень большую и может излучать свет). Такие образования остаются после очень больших звезд, которые сумели произвести термоядерный синтез до очень тяжелых элементов. Звезды поменьше оставляют после себя нейтронные или железные малые звезды, которые почти не излучают света, но тоже имеют высокую плотность материи.

Новые и сверхновые звезды тесно связаны, ведь смерть одной из них может означать рождение новой. Этот процесс продолжается бесконечно. Сверхновая звезда разносит в окружающее пространство миллионы тон материи, которая снова собирается в облака, и начинается формирование нового небесного тела. Ученые утверждают, что все тяжелые элементы, которые находятся в нашей Солнечной системе, Солнце во время своего рождения "украло" у взорвавшейся когда-то звезды. Природа удивительна, и смерть чего-то одного всегда означает рождение чего-то нового. В открытом космосе материя распадается, а в звездах образуется, создавая великий баланс Вселенной.