Регуляторные системы организма человека. Развитие половых органов ребенка. Период полового созревания. Гормоны Свойства и классификации гормонов

Общие принципы регуляции жизнедеятельности организма

На всем протяжении своего развития организм непрерыв­но обновляется, сохраняя одни свои свойства и изменяя или утрачивая другие. Однако имеются основные свойства, хотя и частично изменяющиеся, но постоянно позволяющие ему под­держивать свое существование и адекватно приспосабливаться к изменяющимся условиям внешней среды. Их всего три:

Обмен веществ и энергии,

Раздражимость,

Регуляция и саморегуляция.

Каждое из этих свойств можно проследить на клеточном, тканевом и системном уровнях, но на каждом из этих уровней они имеют свои особенности.

Организм человека является совокупностью иерархически связанных (не только взаимосвязанных, но и взаимозависи­мых, взаимоподчиненных) систем, но в то же время представ­ляет собой единую сложнейшую многоэлементную систему. Взаимосвязанная и нормальная жизнедеятельность всех со­ставных частей (органов и систем) организма возможна только при непременном условии сохранения относительного физи­ко-химического постоянства его внутренней среды. Это по­стоянство имеет динамический характер, поскольку поддер­живается не на абсолютно постоянном уровне, а в пределах допустимых колебаний основных физиологических функций. Оно называется гомеостазом.

Гомеостаз возможен благодаря механизмам регуляции и саморегуляции. Регуляция - это осуществление реакций организма и его систем, обеспечивающих адекватность протекания жизненных функций и деятельности различным ха­рактеристикам внешней среды (физическим, химическим, информационным, семантическим и др.). Регуляция выпол­няет функцию интеграции человеческого организма как еди­ного целого.

Регуляция функций органов – это изменение интенсивности их работы для достижения полезного результата согласно потребностям организма в различных условиях его жизнедеятельности.

Изменение параметров функций при поддержании их в границах гомеостаза происходит на каждом уровне органи­зма или в любой иерархической системе за счет саморегуляции, или внутренних для системы механизмов управления жизнедеятельностью. Местные механизмы саморегуляции, свойственные органам и системам, можно наблюдать на при­мерах работы сердца, желудка, кишечника или автоматизма чередований вдоха и выдоха в системе дыхания. Для осуществ­ления функций организма в целом необходима взаимосвязь и взаимозависимость функций составляющих его систем. В этом смысле можно рассматривать организм как самоорганизующу­юся и саморегулируемую систему, а саморегуляцию как свой­ство всего организма.

Деятельность организма как единого целого осуществляется благодаря регуляции со стороны нервной и гуморальной системы. Эти две системы взаимосвязаны и оказывают взаимовлияние друг на друга.

Регуляция функций в организме человека имеет в своей основе воздействие на физиологическую систему, орган или совокупность органов посредством управляющих сигналов, поступающих в виде нервных импульсов или непосредственно гуморального (химического) фактора. При анализе механизмов регуляции, как правило, рассматривают раздельно реф­лекторную и гуморальную составляющие.

Гуморальными (химическими) регуляторами могут быть некоторые соединения, поступающие в организм с пищей (на­пример, витамины), продукта жизнедеятельности клеток, об­разующиеся в процессе обмена веществ (например, углекисло­та), физиологически активные вещества, синтезируемые в тка­нях и органах (простагландины, кинины и др.), прогормоны и гормоны диффузной эндокринной системы и желез внутрен­ней секреции. Эти химические вещества поступают в ткане­вую жидкость, затем в кровь, разносятся по организму и ока­зывают влияние на клетки, ткани и органы, отдаленные от тех клеток, где они образуются. Гормоны являются важнейшими специализированными химическими регуляторами. Они могут вызывать деятельность органов (пусковой эффект), усиливать или подавлять функции (корригирующий эффект), ускорять или замедлять обменные процессы и оказывать влияние на рост и развитие организма.

Нервный механизм регуляции обладает большей скоро­стью действия по сравнению с гуморальным. В отличие от гу­моральных нервные сигналы направляются к строго опреде­ленным органам. Все клетки, ткани и органы регулируются не­рвной системой, объединяющей и приспосабливающей их дея­тельность к изменяющимся условиям среды. В основе нервной регуляции лежат безусловные и условные рефлексы.

Оба механизма регуляции взаимосвязаны, их трудно раз­граничить, так как они представляют собой разные стороны единой нейрогуморальной регуляции. Существует множество биологически активных веществ, способных оказывать влия­ние на жизнедеятельность нервных клеток и функций нервной системы. С другой стороны, синтез и выделение в кровь гумо­ральных факторов регулируются нервной системой. В совре­менном понимании нейрогуморальная регуляция - это регу­лирующее и координирующее влияние нервной системы и со­держащихся в крови, лимфе и тканевой жидкости биологиче­ски активных веществ на процессы жизнедеятельности орга­низма.

Нейрогуморальная регуляция функций организма - это регуляция деятельности организма, осуществляемая нервной и гуморальной системами. Ведущее значение принадлежит нервной системе (более быстрое реагирование организма на изменения внешней среды).

Регуляция осуществляется согласно принципов: 1) саморегуляции – организм с помощью собственных механизмов изменяет интенсивность функционирования органов и систем согласно своим потребностям в различных условиях жизнедеятельности. Пр: при беге активируется деятельность ЦНС, мышечной, дыхательной и сердечно-сосудистой систем, а в покое их активность значительно уменьшается. 2) системный принцип – функциональные системы по П.К. Анохину.

Значение и общий план строения нервной системы. Основные закономерности онтогенеза нервной системы.

Функция нервной системы: регулирует деятельность всех органов и систем, обуславливая их единство, связь с внешней средой при помощи высокодифференцированных клеток, воспринимающих и передающих информацию.

По топографическому принципу нервная система подразделяется на центральную (спинной, головной мозг) и периферическую (соматическую и вегетативную) - представлена волокнами и нервами 12 пар черепномозговых и 31 пара спинномозговых. Соматическая система иннервирует работу скелетных мышц, Вегетативная (автономная) нервная система в свою очередь делиться на симпатическую и парасимпатическую и иннервирует работу внутренних органов.

Нервная система регулирует: 1) поведение организма во внешней среде. Эту регуляцию И.П. Павлов назвал ВНД; 2) регулирует работу внутренних органов - низшая нервная деятельность.

Центральной нервной системе (ЦНС) принадлежит веду­щая роль в организации адаптационных процессов, протекаю­щих в ходе индивидуального развития. Поэтому динамика морфо-функциональных преобразований в этой системе ска­чивается на характере деятельности всех систем организма.

Количество нейронов ЦНС достигает максимального ко­личества у 24-недельного плода и остается постоянным до по­жилого возраста. Дифференцированные нейроны уже не спо­собны к делению, и постоянство их численности играет основ­ную роль в накоплении и хранении информации. Глиальные клетки продолжают оставаться незрелыми и после рождения, что обусловливает дефицит их защитной и опорной функций для ткани мозга, замедленные обменные процессы в мозге, его низкую электрическую активность и высокую проницаемость гемато-энцефалического барьера.

К моменту рождения мозг плода характеризуется низкой чувствительностью к гипоксии, низким уровнем обменных процессов (метаболизма) и преобладанием в этот период ана­эробного механизма получения энергии. В связи с медленным синтезом тормозных медиаторов в ЦНС плода и новорожден­ного легко возникает генерализованное возбуждение даже при небольшой силе раздражения. По мере созревания мозга активность тормозных процессов нарастает. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется преимущественно спинным мозгом. В начале плодного периода (восьмая-десятая неде­ли развития) появляется контроль продолговатого мозга над спинным. С 13-14 недели появляются признаки мезенцефального контроля нижележащих отделов ЦНС. Корригирующие влияния коры на другие структуры ЦНС, механизмы, необхо­димые для выживания после рождения, выявляются в конце плодного периода. К этому времени определяются основные типы безусловных рефлексов: ориентировочный, защитный (избегание), хватательный и пищевой. Последний, в виде со­сательных и глотательных движений, наиболее выражен.

Развитию ЦНС ребенка в значительной мере способству­ют гормоны щитовидной железы. Снижение выработки тиреоидных гормонов в фетальном или раннем постнатальном пе­риодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, нарушением метаболизма в мозге белка и нуклеиновых кислот, а также передачи возбуж­дения в синапсах.

В сравнении со взрослыми дети имеют более высокую воз­будимость нервных клеток, меньшую специализацию нервных центров. В раннем детстве многие нервные волокна еще не имеют миелиновой оболочки, обеспечивающей изолированное проведение нервных импульсов. Вследствие этого процесс воз­буждения легко переходит с одного волокна на другие, сосед­ние. Миелинизация большинства нервных волокон у большин­ства детей заканчивается к трехлетнему возрасту, но у некото­рых продолжается до 5-7 лет. С плохой «изоляцией» нервных волокон во многом связана высокая иррадиация нервных про­цессов, а это влечет за собой несовершенство координации реф­лекторных реакций, обилие ненужных движений и неэконо­мичное вегетативное обеспечение. Процессы миелинизации нор­мально протекают под влиянием тиреоидных и стероидных гормонов. По мере развития, «созревания» нейронов и меж­нейронных связей, координация нервных процессов улучшает­ся и достигает совершенства к 18-20 годам.

Возрастные изменения функций ЦНС обусловлены и дру­гими морфологическими особенностями развития. Несмотря на то, что спинной мозг новорожденного является наиболее зрелой частью ЦНС, его окончательное развитие завершается одновременно с прекращением роста. За это время его масса увеличивается в 8 раз.

Основные части головного мозга выделяются уже к треть­ему месяцу эмбрионального периода, а к пятому месяцу эмбрио­генеза успевают сформироваться основные борозды больших полушарий. Наиболее интенсивно головной мозг человека раз­вивается в первые 2 года после рождения. Затем темпы его раз­вития немного снижаются, но продолжают оставаться высоки­ми до 6-7 лет, когда масса мозга ребенка достигает 80% массы мозга взрослого.

Головной мозг развивается гетерохронно. Быстрее всего идет созревание стволовых, подкорковых и корковых структур, регулирующих вегетативные функции организма. Эти отделы по своему развитию уже в 2-4 года похожи на мозг взрослого человека . Окончательное формирование стволовой части и промежуточного мозга завершается только в 13-16 лет. Пар­ная деятельность полушарий головного мозга в онтогенезе ме­няется от неустойчивой симметрии к неустойчивой асиммет­рии и, наконец, к устойчивой функциональной асимметрии. Клеточное строение, форма и размещение борозд и извилин проекционных зон коры приобретают сходство со взрослым мозгом к 7 годам. В лобных отделах это достигается только к 12 годам. Созревание больших полушарий полностью заверша­ется только к 20-22 годам.

В возрасте 40 лет начинаются процессы дегенерации в ЦНС. Возможна демиелинизация в задних корешках и прово­дящих путях спинного мозга. С возрастом падает скорость рас­пространения возбуждения по нервам, замедляется синаптическое проведение, снижается лабильность нервных клеток. Ослабляются тормозные процессы на разных уровнях нервной системы. Неравномерные, разнонаправленные изменения в от­дельных ядрах гипоталамуса приводят к нарушению координа­ции его функций, изменениям в характере вегетативных реф­лексов и в связи с этим к снижению надежности гомеостатического регулирования. У пожилых людей снижается реактив­ность нервной системы, ограничиваются возможности адапта­ции организма к нагрузкам, хотя у отдельных лиц и в 80 лет функциональное состояние ЦНС и уровень адаптационных процессов могут сохраняться такими же, как и в среднем зре­лом возрасте. На фоне общих изменений в вегетативной не­рвной системе наиболее заметно ослабление парасимпатиче­ских влияний.

Центральная нервная система является наиболее устой­чивой, интенсивно функционирующей и долгоживущей сис­темой организма. Ее функциональная активность обеспечива­ется длительным сохранением в нервных клетках нуклеино­вых кислот, оптимальным кровотоком в сосудах мозга и дос­таточной оксигенацией крови. Однако при нарушении этих условий функциональные возможности ЦНС резко уменьша­ются.

В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную . Соматическая нервная система регулирует произвольные движения скелетной мускулатуры и обеспечивает чувствительность. Вегетативная нервная система координирует деятельность внутренних органов, желез, сердечно-сосудистой системы и осуществляет иннервацию всех обменных процессов в теле человека. Работа этой регуляторной системы не подконтрольна сознанию и осуществляется благодаря слаженной работе двух ее отделов: симпатического и парасимпатического. В большинстве случаев активация этих отделов имеет противоположный эффект. Симпатическое влияние наиболее ярко проявляется в том случае, когда организм находится в состоянии стресса или интенсивной работы. Симпатическая нервная система – это система тревоги и мобилизации резервов, необходимых для защиты организма от воздействий внешней среды. Она подает сигналы, которые активируют деятельность мозга и мобилизуют защитные реакции (процесс терморегуляции, иммунные реакции, механизмы свертывания крови). При активации симпатической нервной системы увеличивается частота сердечных сокращений, замедляются процессы пищеварения, увеличивается частота дыхания и усиливается газообмен, увеличивается концентрация глюкозы и жирных кислот в крови за счет выделения их печенью и жировой тканью (рис.5).

Парасимпатический отдел вегетативной нервной системы регулирует работу внутренних органов в состоянии покоя, т.е. это система текущей регуляции физиологических процессов в организме. Преобладание активности парасимпатической части вегетативной нервной системы создает условия для отдыха и восстановления функций организма. При ее активации снижается частота и сила сердечных сокращений, стимулируются процессы пищеварения, уменьшается просвет дыхательных путей (рис.5). Все внутренние органы иннервируются как симпатическим, так и парасимпатическим отделами автономной нервной системы. Кожа и опорно-двигательный аппарат имеет только симпатическую иннервацию.

Рис.5. Регуляция различных физиологических процессов человеческого организма под действием симпатического и парасимпатического отделов вегетативной нервной системы

Вегетативная нервная система обладает сенсорным (чувствительным) компонентом, представленным рецепторами (чувствительным устройствами), располагающимися во внутренних органах. Эти рецепторы воспринимают показатели состояния внутренней среды организма (например, концентрацию углекислого газа, давление, концентрацию питательных веществ в кровеносном русле) и передают эту информацию по центростремительным нервным волокнам в центральную нервную систему, где эта информация обрабатывается. В ответ на полученную информацию от центральной нервной системы по центробежным нервным волокнам передаются сигналы к соответствующим рабочим органам, участвующим в поддержании гомеостаза.

Эндокринная система также осуществляет регуляцию деятельности тканей и внутренних органов. Эта регуляция называется гуморальной и осуществляется с помощью специальных веществ (гормонов), которые выделяются эндокринными железами в кровь или тканевую жидкость. Гормоны – это специальные регулирующие вещества, вырабатываемые в одних тканях организма, транспортируемые с током крови к различным органам и воздействующие на их работу. В то время как обеспечивающие нервную регуляцию сигналы (нервные импульсы) распространяются с большой скоростью и для осуществления ответа со стороны вегетативной нервной системы требуются доли секунды, гуморальная регуляция осуществляется гораздо медленнее, и под ее контролем находятся те процессы нашего организма, которые требуют для регуляции минуты и часы. Гормоны являются сильнодействующими веществами и вызывают свой эффект в очень малых количествах. Каждый гормон влияет на определенные органы и системы органов, которые называются органами-мишенями . Клетки органов мишеней имеют специ-фические белки-рецепторы, которые избирательно взаимодействуют со специфическими гормона-ми. Образование комплекса гормона с белком-рецептором включает целую цепь биохимических реакций, обуславливающих физиологическое действие данного гормона. Концентрация большинства гормонов может изменяться в больших пределах, что обеспечивает поддержание постоянства многих физиологических параметров при непрерывно изменяющихся потребностях организма человека. Нервная и гуморальная регуляция в организме тесно взаимосвязаны и согласованы, что обеспечивает его приспособленность в условиях постоянно меняющейся окружающей среды.

Ведущую роль в гуморальной функциональной регуляции человеческого организма играют гормоны гипофиза и гипоталамуса. Гипофиз (нижний мозговой придаток) – это отдел головного мозга, относящийся к промежуточному мозгу, он прикреплен специальной ножкой к другому отделу промежуточного мозга, гипоталамусу, и находится с ним в тесной функциональной связи. Гипофиз состоит из трех частей: передней, средней и задней (рис.6). Гипоталамус является основным регулирующим центром вегетативной нервной системы, кроме того, этот отдел мозга содержит специальные нейросекреторные клетки, совмещающие свойства нервной клетки (нейрона) и секреторной клетки, синтезирующей гормоны. Однако в самом гипоталамусе эти гормоны в кровь не выделяются, а поступают в гипофиз, в его заднюю долю (нейрогипофиз) , где и выводятся в кровь. Один из этих гормонов, антидиуретический гормон (АДГ или вазопрессин ), преимущественно воздействует на почку и стенки кровеносных сосудов. Увеличение синтеза этого гормона происходит при значительных кровопотерях и других случаях потери жидкости. Под действием этого гормона уменьшается потеря жидкости организмом, кроме того, как и другие гормоны, АДГ воздействует и на функции мозга. Он является природным стимулятором обучения и памяти. Недостаток синтеза этого гормона в организме приводит к заболеванию, называемому несахарным диабетом, при котором резко увеличивается объем выделяемой больными мочи (до 20 л в сутки). Другой гормон, выделяемый в кровь в задней доли гипофиза, называется окситоцином. Мишенью для этого гормона являются гладкие мышцы матки, мышечные клетки, окружающие протоки молочных желез и семенников. Повышение синтеза этого гормона наблюдается в конце беременности и абсолютно необходимо для протекания родов. Окситоцин ухудшает обучение и память. Передняя доля гипофиза (аденогипофиз ) является эндокринной железой и выделяет в кровь ряд гормонов, которые регулируют функции других эндокринных желез (щитовидной железы, надпочечников, половых желез) и называются тропными гормонами . Например, аденокортикотропный гормон (АКТГ) воздействует на кору надпочечников и под его воздействием в кровь выбрасывается целый ряд стероидных гормонов. Тиреотропный гормон стимулирует работы щитовидной железы. Соматотропный гормон (или гормон роста) воздействует на кости, мышцы, сухожилия, внутренние органы, стимулируя их рост. В нейросекреторных клетках гипоталамуса синтезируются особые факторы, влияющие на работу передней доли гипофиза. Часть этих факторов называются либеринами , они стимулируют секрецию гормонов клетками аденогипофиза. Другие факторы, статины, тормозят секрецию соответствующих гормонов. Активность нейросекреторных клеток гипоталамуса изменяется под действием нервных импульсов, приходящих от периферических рецепторов и других отделов мозга. Таким образом, связь между нервной и гуморальной системами в первую очередь осуществляется на уровне гипоталамуса.

Рис.6. Схема головного мозга (а), гипоталамуса и гипофиза (б):

1 – гипоталамус, 2 – гипофиз; 3 – продолговатый мозг; 4 и 5 – нейросекреторные клетки гипоталамуса; 6 – ножка гипофиза; 7 и 12 – отростки (аксоны) нейросекреторных клеток;
8 – задняя доля гипофиза (нейрогипофиз), 9 – промежуточная доля гипофиза, 10 – передняя доля гипофиха (аденогипофиз), 11 – срединное возвышение ножки гипофиза.

Кроме гипоталамо-гипофизарной системы, к эндокринным железам относятся щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелу-дочной железы, секреторные клетки кишечника, половые железы, некоторые клетки сердца.

Щитовидная железа – это единственный орган человека, который способен активно поглощать йод и включать его в биологически активные молекулы, тиреоидные гормоны . Эти гормоны влияют практически на все клетки организма человека, основные их эффекты связаны с регуляцией процессов роста и развития, а также обменных процессов в организме. Гормоны щитовидной железы стимулируют рост и развитие всех систем организма, а особенно нервной системы. При недостаточном функционировании щитовидной железы у взрослых развивается заболевание, которое называется микседема. Ее симптомами являются снижение обмена веществ и нарушение функций нервной системы: замедляется реакция на раздражители, повышается утомляемость, падает температура тела, развиваются отеки, страдает желудочно-кишечный тракт и др. Снижение уровня тиреоидов у новорожденных сопровождается более тяжелыми последствиями и приводит к кретинизму , задержке умственного развития вплоть до полной идиотии. Раньше микседема и кретинизм часто встречались в горных районах, где в ледниковой воде мало йода. Сейчас эту проблему легко решают добавлением натриевой соли йода в поваренную соль. Усиление функционирования щитовидной железы приводит к нарушению, которое называется базедовой болезнью . У таких больных повышается основной обмен, нарушается сон, повышается температура, учащается дыхание и сердцебиение. У многих больных возникает пучеглазие, иногда образуется зоб.

Надпочечники – парные железы, расположенные на полюсах почек. В каждом надпочечнике выделяют два слоя: корковый и мозговой. Эти слои совершенно различны по своему происхож-дению. Наружный корковый слой развивается из среднего зародышевого листка (мезодермы), мозговой слой является видоизмененным узлом вегетативной нервной системы. В коре надпочеч-ников вырабатываются кортикостероидные гормоны (кортикоиды ). Эти гормоны обладают широким спектром действия: влияют на водно-солевой обмен, жировой и углеводный обмены, на иммунные свойства организма, подавляют воспалительные реакции. Один из основных кортикоидов, кортизол , необходим для создания реакции на сильные раздражители, приводящие к развитию стресса.Стресс можно определить как угрожающую ситуацию, развивающуюся под воздействием боли, кровопотери, страха. Кортизол препятствует кровопотере, сужает мелкие артериальные сосуды, усиливает сократительную способность сердечной мышцы. При разрушении клеток коры надпочечников развивается Аддисонова болезнь . У больных наблюдается бронзовый оттенок кожи на некоторых участках тела, развивается мышечная слабость, снижение массы тела, страдает память и умственные способности. Раньше наиболее распространенной причиной возникновения Аддисоновой болезни был туберкулез, в настоящее время это аутоиммунные реакции (ошибочная выработка антител к своим собственным молекулам).

В мозговом веществе надпочечников синтезируются гормоны: адреналин и норадреналин . Мишенями этих гормонов являются все ткани организма. Адреналин и норадреналин призваны мобилизовать все силы человека в случае ситуации, требующей большого физического или умственного напряжения, при травме, инфекции, испуге. Под их влиянием увеличивается частота и сила сердечных сокращений, повышается кровяное давление, учащается дыхание и расширяются бронхи, повышается возбудимость структур головного мозга.

Поджелудочная железа является железой смешанного типа, она выполняет как пищевари-тельные (выработка панкриотического сока), так и эндокринные функции. Она вырабатывает гормоны, регулирующие углеводный обмен в организме. Гормон инсулин стимулирует поступле-ние глюкозы и аминокислот из крови в клетки различных тканей, а также образование в печени из глюкозы основного запасного полисахарида нашего организма, гликогена . Другой гормон подже-лудочной железы, глюкогон , по своим биологическим эффектам является антагонистом инсулина, повышая содержание глюкозы в крови. Глюкогон стимулирует распад гликогена в печени. При недостатке инсулина развивается сахарный диабет, поступившая с пищей глюкоза не поглоща-ется тканями, накапливается в крови и выводится из организма с мочой, в то время как тканям катастрофически не хватает глюкозы. Особенно сильно страдает нервная ткань: нарушается чувствительность периферических нервов, возникает ощущение тяжести в конечностях, возможны судороги. В тяжелых случаях может возникать диабетическая кома и смерть.

Нервная и гуморальная системы, работая совместно, возбуждают или затормаживают различ-ные физиологические функции, что сводит к минимуму отклонения отдельных параметров внут-ренней среды. Относительное постоянство внутренней среды обеспечивается у человека путем регуляции деятельности сердечно-сосудистой, дыхательной, пищеварительной, выделительной систем, потовых желез. Регуляторные механизмы обеспечивают постоянство химического состава, осмотического давления, числа форменных элементов крови и т.д. Весьма совершенные механизмы обеспечивают поддержание постоянной температуры тела человека (терморегуляцию).

В многоклеточном организме существует единая нейро-эндокринная система, которая обеспечивает согласованную регуляцию функций, структур и обмена веществ в различных органах и тканях.

Нервная система, как правило, через химический синапс (с помощью медиаторов), влияет на ближайшую к нервному окончанию клетку, а эндокринные образования вырабатывают гормоны, действующие на множество, даже удаленных от места их выработки, органов и тканей.

Нервная и эндокринная системы регулируют активность друг друга. Кроме того, одни и те же биологически активные вещества (БАВ) могут секретироваться эндокринными железами и нейронами (например, норадреналин).

Даже один отдел нервной системы (например, гипоталамус) способен влиять на другие структуры, как по нервным путям, так и с помощью гормонов.

Общая физиология эндокринной системы

Существование эндокринной системы невозможно без секреторных клеток. Они, вырабатывают свои биологически активные секреты (гормоны), которые поступают во внутренние внеклеточные среды организма (тканевая жидкость, лимфа и кровь). Поэтому эндокринные железы часто называют железами внутренней секреции.

В эндокринную систему входят (рис. 1) эндокринные железы (органы, в которых большинство клеток секретируют гормоны), нейрогемальные образования (нейроны, секретирующие вещества, обладающие свойствами гормонов)и диффузная эндокринная система (клетки секретирующие гормоны в органах и тканях, состоящих преимущественно из «неэндокринных» структур).

Рис. 1. Основные представители эндокринной системы: а) железы внутренней секреции (на примере надпочечника); б) нейрогемальные образования и в) диффузная эндокринная система (на примере поджелудочной железы).

К железам внутренней секреции относятся: гипофиз, щитовидная и околощитовидные железы, надпочечник и эпифиз. Примером нейрогемальной структуры являются нейроны секретирующие окситоцин, а диффузная эндокринная система наиболее характерна для поджелудочной железы, пищеварительного тракта, половых желез, тимуса и почек.

Эндокринные железы постоянно секретируют гормоны (базальный уровень секреции ), а уровень такой секреции, как правило, зависит от скорости их синтеза (только щитовидная железа накапливает в виде коллоида значительные количества гормонов ).

Таким образом, в соответствии с классической моделью эндокринной системы, гормон выделяется эндокринными железами в кровь, циркулирует с ней по всему организму и взаимодействует с клетками-мишенями независимо от степени удаления их от источника секреции.

Гормоны Свойства и классификации гормонов

Гормоны – это органические соединения, вырабатываемые в кровь специализированными клетками и влияющие вне места своего образования на определенные функции организма.

Для гормонов характерны: специфичность и высокая биологическая активность, дистантность действия, способность к прохождению через эндотелий капилляров и быстрая обновляемость.

Специфичность проявляется местом образования и избирательным действием гормонов на клетки. Биологическая активность гормонов характеризуется чувствительностью мишени к очень низким их концентрациям (10 -6 -10 -21 М). Дистантность действия заключается в проявлении эффектов гормонов на значительном расстоянии от места их образования (эндокринное действие). Способность к прохождению через эндотелий капилляров облегчает секрецию гормонов в кровь и переход их к клеткам-мишеням, а быстрая обновляемость объясняется высокой скоростью инактивации гормона или выведения из организма.

По химической природе гормоны делят на белковые, стероидные, а также производные аминокислот и жирных кислот.

Белковые гормоны дополнительно делят на полипептиды и протеиды (белки). К стероидным относят гормоны коры надпочечника и половых желез. Производными аминокислоты тирозина являются катехоламины (адреналин, норадреналин и дофамин) и тиреоидные гормоны, а жирных кислот - простогландины, тромбоксаны и лейкотриены.

У всех небелковых и некоторых небелковых гормонов также отсутствует видовая специфичность.

Вызываемые гормонами эффекты делят (рис. 2) на метаболические, морфогенетические, кинетические и коррегирующие (например, адреналин усиливает сердечные сокращения, но и без него сердце сокращается).

Эффекты

Метаболи-ческие

Морфогене-тические

Кинетические

Коррегирующие

Изменяют интенсивность обмена веществ

Регулируют дифференцировку и метаморфоз тканей

Повышают активность клеток-мишеней

Влияют на структуры, способные работать и при отсутствии гормонов

Рис. 2. Основные физиологические эффекты гормонов.

Гормоны переносятся кровью в растворенном и связанном (с белками) состояниях. Связанные гормоны неактивны и не разрушаются. Поэтому белки плазмы обеспечивают функции транспорта и депо гормона в крови. Часть из них (например, альбумины) взаимодействует с многими гормонами, но существуют и специфические переносчики. Например, кортикостероиды преимущественно связываются с транскортином.

Регуляция многих процессов в организме обеспечивается по принципу обратной связи. Он впервые был сформулирован отечественным ученым М.М. Завадовским в 1933 г. Под обратной связью подразумевается влияние результата деятельности системы на ее активность.

Различают «длинный», «короткий» и «ультракороткий» (рис. 3) уровни обратной связи.

Рис. 3. Уровни обратной связи.

Длинный уровень регуляции обеспечивает взаимодействие удаленных клеток, короткий – находящихся в соседних тканях, а ультракороткий – только в пределах одного структурного образования.

Физиологические процессы в организме человека согласованно проте­кают благодаря существованию определенных механизмов их регуляции.

Регуляция различных процессов в организме осуществляется с помощью нервного и гуморального механизмов.

Гуморальная регуляция осуществляется с помощью гуморальных факторов (гормонов ), которые разносятся кровью и лимфой по всему организму.

Нервная регуляция осуществляется с помощью нервной системы.

Нервный и гуморальный способы регуляции функций тесно связаны между собой. На деятельность нервной системы постоянно оказывают влияние приносимые с током крови химические вещества, а образование большинства химических веществ и выделение их в кровь находится под постоянным контролем нервной системы.

Регуляция физиологических функций в организме не может осуществляться с помощью только нервной или только гуморальной регуляции - это единый комплекс нейрогуморалыюй регуляции функций.

В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная).

Нервная регуляция

Нервная регуляция - это координирующее влияние нервной системы на клетки, ткани и органы, один из основных механизмов саморегуляции функций целостного организма. Нервная регуляция осуществляется с помощью нервных импульсов. Нервная регуляция является быстрой и локальной, что особенно важно при регуляции движений, и затрагивает все(!) системы организма.

В основе нервной регуляции лежит рефлекторный принцип. Рефлекс является универсальной формой взаимодействия организма с окружающей средой, это ответная реакция организма на раздражение, которая осуществляется через центральную нервную систему и контролируется ею.

Структурно-функциональной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление ответа на раздражение. Все рефлексы осуществляются I благодаря деятельности центральной нервной системы - головного и спинного мозга.

Гуморальная регуляция

Гуморальная регуляция - это координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (гормонов), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

Гуморальная регуляция возникла в процессе эволюции раньше, чем нервная. Она усложнялась в процессе эволюции, в результате чего возникла эндокринная система (железы внутренней секреции).

Гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции функций организма, которая играет важную роль в поддержании относительного пос­тоянства состава и свойств внутренней среды организма (гомеостаза) и его приспособлении к меняющимся условиям существования.


Иммунная регуляция

Иммунитет - это физиологическая функция, которая обеспечивает устойчивость организма к действию чужеродных антигенов. Иммунитет человека делает его невосприимчивым ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных, обеспечивает защиту организма от раковых клеток. Задачей иммунной системы является распознавать и разрушать все чужеродные структуры.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител , которые, например, могут связывать избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную регуляцию.

Интенсивность иммунного ответа, в свою очередь, регулируется нейрофильным способом . Работа иммунной системы корректируется мозгом и через эндокринную систему. Такая нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов. Промедиаторы и нейропептиды достигают органов иммунной системы по аксонам нервов, а гормоны выделяются эндокринными железами не­родственно в кровь и таким образом доставляются к органам иммунной системы. Фагоцит (клетка иммунитета), уничтожает бактериальные клетки

Начало формы

ГОУ ВПО УГМА РОСЗДРАВА

Кафедра биологической химии

«Утверждаю»

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2008 г

Экзаменационные вопросы по биохимии

По специальности «фармация» 060108, 2008 г.

Белки, ферменты.

1. Аминокислоты: классификация по химической природе, химическим свойствам,

биологической роли.

2. Строение и физико-химические свойства природных аминокислот.

3. Стереоизомерия и амфотерность аминокислот.

4. Физико-химические свойства белка. Обратимое и необратимое осаждение белка.

5. Механизм образования пептидной связи, ее свойства и особенности. Первичная

структура белка, биологическая роль.

6. Пространственные конфигурации белков: вторичная, третичная, четвертичная

структуры белка, связи их стабилизирующие, роль.

7 Стабилизирующие, дестабилизирующие, нарушающие аминокислоты и их роль в

структурной организации белков, понятие о доменной, сверх вторичной и

над четвертичной структурах.

8. Четвертичная структура белков, кооперативность функционирования протомеров.

8. Водородные связи, их роль в строении и функции белков.

9. Характеристика простых и сложных белков, классификация, основные представители,

их биологические функции.

10. Гемопротеиды: основные представители, функции. Строение гема.

11. Структура, номенклатура, биологическая роль нуклеотидтрифосфатов.

12. Ферменты: понятие, свойства – сходство и отличие с катализаторами небелковой

13. Активный центр ферментов, его структурно-функциональная неоднородность.

Единицы активности ферментов.

14. Механизм действия ферментов. Значение образования фермент-субстратного

комплекса, стадии катализа.

15. Изображение графической зависимости скорости катализа от концентраций субстрата

и фермента. Понятие о Км, её физиологическом смысле и клинико-диагностическом

значении.

16. Зависимость скорости реакции от концентрации субстрата и фермента, температуры,

рН среды, времени реакции.

17. Ингибиторы и виды ингибирования, их механизм действия.

18. Основные пути и механизмы регуляции активности ферментов на уровне клетки и

целого организма. Полиферментные комплексы.

19. Аллостерические ферменты, их структура, физико-химические свойства, роль.

20. Аллостерические эффекторы (модуляторы), их характеристика, механизм действия.

21. Механизмы ковалентной регуляции ферментов (обратимой и необратимой), их роль в

обмене веществ.

22. Неспецифическая и специфическая регуляция активности ферментов – понятия,

23. Механизмы специфической регуляции активности ферментов: индукция – репрессия.

24. Роль гормонов стероидной природы в механизмах регуляции активности ферментов.

25. Роль гормонов пептидной природы в механизмах регуляции активности ферментов.

26. Изоферменты - множественные молекулярные формы ферментов: особенности

структуры, физико-химических свойств, регуляторных функций, клинико –

диагностическое значение.

27. Применение ферментов в медицине и фармации (энзимодиагностика, энзимопатология,

энзимотерапия).

28. Простетические группы, коферменты, кофакторы, косубстраты, субстраты,

метаболиты, продукты реакций: понятия, примеры. Коферменты и кофакторы:

химическая природа, примеры, роль в катализе.

29. Энзимопатии: понятие, классификация, причины и механизмы развития, примеры.

30. Энзимодиагностика: понятие, принципы и направления, примеры.

31. Энзимотерапия: виды, методы, используемые ферменты, примеры.

32. Системная энзимотерапия: понятие, области применения, используемые ферменты,

пути введения, механизмы действия.

33. Локализация ферментов: ферменты общего назначения, органо- и органелло-

специфические ферменты, их функции и клинико-диагностическое значение.

30. Принципы номенклатуры и классификации ферментов, краткая характеристика.

30. Современная теория биологического окисления. Строение, функции, механизм

восстановления: НАД + , ФМН, ФАД, КоQ, цитохромов. Различие в их функциях.

30. Хемиосмотическая теория сопряжения окисления и фосфорилирования.

30. Электрохимический потенциал, понятие его роль в сопряжении окисления и

фосфорилирования.

30. Химическая и конформационнея гипотезы сопряжения окисления и фосфорилирования.

30. Фотосинтез.Реакции световой и темновой фаз фотосинтеза, биологическая роль.

Структура хлоропластов хлорофилл его строение, роль.

30. Световые реакции фотосинтеза. Фотосистемы Р-700 и Р-680” их роль. Механизм

фотосинтетического фосфорилирования.

Энергетический обмен.

1. Митохондрии: строение, химический состав, маркерные ферменты, функции, причины

и последствия повреждений.

2. Общая схема энергетического обмена и образования субстратов биологического

окисления; типы окислительных ферментов и реакций, примеры.

3. Пути использования О 2 в клетках (перечислить), значение. Диоксигеназный путь,

значение, примеры.

4 Сходство и отличие монооксигеназного пути использования О 2 в митохондриях и

эндоплазматической сети.

5. Монооксигеназный путь использования О 2 в клетке: ферменты, коферменты,

косубстраты, субстраты, значение.

6. Цитохром Р-450: структура, функция, регуляция активности.

7. Сравнительная характеристика цитохромов В 5 и С: особенности структуры, функции,

значение.

8. Микросомальная редокс-цепь переноса электронов: ферменты, коферменты, субстраты,

косубстраты, биологическая роль.

9. АТФ: строение, биологическая роль, механизмы образования из АДФ и Фн.

10.Окислительное фосфорилирование: механизмы сопряжения и разобщения,

физиологическое значение.

11.Окислительное фосфорилирование: механизмы, субстраты, дыхательный контроль,

возможные причины нарушений и последствия.

12.Редокс-цепь окислительного фосфорилирования: локализация, ферментные комплексы,

окисляемые субстраты, ОВП, коэффициент Р/О, биологическое значение.

13.Сравнительная характеристика окислительного и субстратного фосфорилирования:

локализация, ферменты, механизмы, значение.

14.Сравнительная характеристика митохондриальной и микросомальной редокс-цепей:

ферменты, субстраты, косубстраты, биологическая роль.

15.Сравнительная характеристика цитохромов клетки: виды, строение локализация,

16.Цикл Кребса: схема, регуляция активности, энергетический баланс окисления АцКоА

до Н 2 О и СО 2 .

17.Цикл Кребса: окислительные реакции, номенклатура ферментов, значение.

18.Регуляторные реакции цикла Кребса, номенклатура ферментов, механизмы регуляции.

19.a-Кетоглутаратдегидрогеназный комплекс: состав, катализируемая реакция, регуляция.

20.Цикл Кребса: реакции превращения a-кетоглутарата в сукцинат, ферменты, значение.

21.Цикл Кребса: реакции превращения сукцината в оксалоацетат, ферменты, значение.

22.Антиоксидантная защита клеток (АОЗ): классификация, механизмы, значение.

23.Механизмы образования активных форм кислорода (АФК), физиолоическое и

клиническое значение.

24. Механизм образования и токсического действия . О - 2 , роль СОД в обезвреживании.

25. Механизмы образования и токсического действия пероксидного кислорода, механизмы

его обезвреживания.

26. Механизмы образования и токсического действия пероксидов липидов, механизмы их

обезвреживания.

27. Механизмы образования и токсического действия гидроксильных радикалов,

механизмы их обезвреживания.

28. СОД и каталаза: коферменты, реакции, значение в физиологии и патологии клетки.

29. Оксид азота (NO): реакция образования, регуляция, механизмы физиологических и

токсических эффектов.

30. Оксида азота: метаболизм, регуляция, механизмы физиологических и токсических

эффектов.

31. Перекисное окисление липидов (ПОЛ): понятие, механизмы и стадии развития,

значение.

32. Антиоксидантная защита клетки (АОЗ): классификация; механизм действия системы

глутатиона.

33. Антиоксидантная защита клетки (АОЗ): классификация, механизм действия системы

ферментативной защиты.

34. Антиоксидантная защита клетки (АОЗ): классификация, механизмы действия системы

неферментативной защиты.

35. Антиоксиданты и антигипоксанты: понятия, примеры представителей и механизмы их

действия.

36. NO-синтаза: тканевая локализация, функция, регуляция активности, физиологическое и

клиническое значение.

Обмен углеводов

1. Углеводы: определение класса, принципы нормирования суточной потребности,

структурная и метоболическая роль.

2. Гликоген и крахмал: структуры, механизмы переваривания и всасывания конечных

продуктов гидролиза.

3. Механизмы мембранного пищеварения углеводов и всасывания моносахаридов.

4. Мальабсорбция: понятие, биохимические причины, общие симптомы.

5. Синдром непереносимости молока: причины, биохимические нарушения, механизмы раз –

вития основных симптомов, последствия.

6. Углеводы: определение класса, строение и биологическое значение ГАГ.

7. Производные моносахаридов: уроновые и сиаловые кислоты, амино- и

дезоксисахариды строение и биологическая роль.

8. Пищевые волокна и клетчатка: особенности строения, физиологическая роль.

9. Гл6Ф: реакции образования и распада до глюкозы, номенклатура и характеристика

ферментов, значение.

10. Пути обмена Гл6Ф, значение путей, реакции образования из глюкозы, характеристика и

номенклатура ферментов.

11. Реакции расщепления гликогена до глюкозы и Гл6Ф – тканевые особенности, значение,

ферменты, регуляция.

12. Реакции биосинтеза гликогена из глюкозы – тканевые особенности, ферменты,

регуляция, значение.

13. Механизмы ковалентной и аллостерической регуляции обмена гликогена, значение.

14. Адреналин и глюкагон: сравнительная характеристика по химической природе,

механизму действия, метаболическим и физиологическим эффектам.

15. Механизмы гормональной регуляции обмена гликогена, значение.

16. Катаболизм глюкозы в анаэробных и аэробных условиях: схема, сравнить

энергетический баланс, указать причины различной эффективности.

17. Гликолиз - реакции субстратного фосфорилирования и фосфорилирования субстратов:

номенклатура ферментов, механизмы регуляции, биологическое значение.

18. Гликолиз: киназные реакции, номенклатура ферментов, регуляция, значение.

19. Регуляторные реакции гликолиза, ферменты, механизмы регуляции, биологическое

значение.

20. Реакции гликолитической оксидоредукции аэробного и анаэробного гликолиза:

написать, сравнить энергетическую эффективность, значение.

21. Гликолиз: реакции превращения триозофосфатов в пируват, сравнить энергетический

выход в аэробных и анаэробных условиях.

22. Эффект Пастера: понятие, механизм, физиологическое значение. Сравнить

энергетический баланс расщепления фруктозы в отсутствии и реализации эффекта П.

23. Пути обмена лактата: схема, значение путей, тканевые особенности.

24. Превращение пирувата в АцКоА и оксалоацетат: реакции, ферменты, регуляция,

значение.

25. Челночные механизмы транспорта водорода из цитозоля в митохондрии: схемы,

биологическое значение, тканевые особенности.

26. Пентозофосфатный шунт гликолиза: схема, биологическое значение, тканевые

особенности.

27. Пентозный цикл - реакции до пентозофосфатов: ферменты, регуляция, значение.

28. Окислительные реакции гликолиза и пентозофосфатного шунта, биологическое

значение.

29. Глюконеогенез: понятие, схема, субстраты, аллостерическая регуляция, тканевые

особенности, биологическое значение.

30. Глюконеогенез: ключевые реакции, ферменты, регуляция, значение.

31. Механизмы образования глюкозы в печени: схемы, значение, причины и последствия

возможных нарушений.

32. Гормональная регуляция механизмов поддержания уровня сахара в крови.

33. Уровни и механизмы регуляции обмена углеводов, примеры.

34. Глюкозо-лактатный и глюкозо-аланиновый циклы (цикл Кори): схема, значение.

35. Центральный уровень регуляции обмена углеводов – адреналин, глюкагон, нервная

36. Обмен фруктозы в печени – схема, значение. Непереносимость фруктозы: причины,

метаболические нарушения, биохимические и клинические проявления.

37. Обмен галактозы в печени – схема, значение. Галактоземия: причины, метаболические

нарушения, биохимические и клинические проявления.

38 Гипергликемия: определение понятия, классификация причин, биохимические

39. Гипогликемия: определение понятия, классификация причин, биохимические

нарушения, клинические проявления, механизмы компенсации.

40. Инсулин – человеческий и животный: сравнить по химическому составу, структуре,

физико химическим и иммунологическим свойствам.

41. Механизмы биосинтеза и секреции инсулина: этапы, ферменты, регуляция.

42. Механизмы регуляции образования и секреции инсулина концентрацией глюкозы,

аргинина, гормонами.

43. Рецепторы инсулина: тканевая, клеточная локализация, структурная организация,

метаболизм.

44. Белки – транспортеры глюкозы через клеточные мембраны: классификация,

локализация, состав и структура, механизмы регуляции их функции.

45. Общая схема механизма действия инсулина.

46. Механизм действия инсулина на транспорт глюкозы.

47. Метаболические и физиологические эффекты инсулина.

48. Сахарный диабет I и II типа: понятия, роль генетических факторов и диабетогенов в их

возникновении и развитии.

49. Стадии развития диабета типа I и II – краткая сравнительная характеристика

генетических, биохимических, морфологических признаков.

50. Механизмы нарушений обмена углеводов при сахарном диабете, клинические

проявления, последствия.

51. Инсулинорезистентность и интолерантность к глюкозе: определение понятий,

причины возникновения, метаболические нарушения, клинические проявления,

последствия.

52. Метаболический синдром: его составляющие, причины возникновения, клиническое

значение.

53. Кетоацидотическая диабетическая кома: стадии и механизмы развития, клинические

проявления, биохимическая диагностика, профилактика.

54. Гиперосмолярная диабетическая кома: механизмы развития, биохимические

нарушения, клинические проявления, биохимическая диагностика.

55. Гипогликемия и гипогликемическая кома: причины и механизмы развития,

биохимические и клинические проявления, диагностика и профилактика.

56. Механизмы развития микроангиопатий: клинические проявления, последствия.

57. Механизмы развития макроангиопатий: клинические проявления, последствия.

58. Механизмы развития нейропатий: клинические проявления, последствия.

59. Моносахариды: Классификация, изомерия, примеры, биологическое значение.

60. Углеводы: Основные химические свойстсва и качественные реакции их обнаружения в

биологических средах.

61. Методические подходы и методы исследований обмена углеводов.

Обмен липидов.

1. Дать определение классу липидов, их классификация, строение, физ-хим. свойства и биологическое значение каждого класса.

2. Принципы нормирования суточной потребности пищевых липидов.

3. Строение, химический состав, функции липопротеидов.

4. Перечислить этапы обмена липидов в организме (Ж.К.Т., кровь, печень, жировая ткань, и др.).

5. Желчь: химический состав, функции, гуморальная регуляция секреции, причины и последствия нарушений секреции.

6. ПАВ желудочно - кишечного тракта и механизмы эмульгирования, значение.

7. Ферменты, расщепляющие ТГ, ФЛ, ЭХС, и др. липиды – их происхождение, регуляция секреции, функции.

8. Схемы реакций ферментативного гидролиза липидов до их конечных продуктов.

9. Химический состав и строение мицелл, механизмы всасывания липидов.

10. Значение гепато - энтерального рециклирования желчных кислот, ХС, ФЛ в физиологии и патологии организма.

11. Стеаторея: причины и механизмы развития, биохимические и клинические проявления, последствия.

12. Механизмы ресинтеза липидов в энтероцитах, значение.

13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз).

14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.

  1. Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
  2. Особенности метаболизма и функции бурой жировой ткани.
  3. Бурая жировая ткань: механизмы регуляции термогенеза, роль лептина и белков-разобщителей, значение.
  4. Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
  5. Белая жировая ткань: особенности метаболизма, функции, роль в интеграции обмена веществ.
  6. Механизм липолиза в белой жировой ткани: реакции, регуляция, значение.
  7. Механизмы регуляции липолиза – схема: роль СНС и ПСНС, их b- и a- адренорецепторов, гормонов адреналина, норадреналина, глюкокортикоидов, СТГ, Т 3 ,Т 4 , инсулина и их внутриклеточных посредников, значение.
  8. b-Окисление жирных кислот: кратко - история вопроса, суть процесса, современные представления, значение, тканевые и возрастные особенности.
  9. Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
  10. b-Окисление жирных кислот: реакции одного оборота цикла, регуляция, энергетический баланс окисления стеариновой и олеиновой кислот (сравнить).
  11. Окисление глицерина до Н 2 О и СО 2: схема, энергетический баланс.
  12. Окисление ТГ до Н 2 О и СО 2: схема, энергетический баланс.
  13. ПОЛ: понятие, роль в физиологии и патологии клетки.
  14. СРО: стадии и факторы инициации, реакции образования активных форм кислорода.
  15. Реакции образования продуктов ПОЛ, используемых для клинической оценки состояния ПОЛ.
  16. АОЗ: ферментативная, неферментативная, механизмы.
  17. Схема обмена Ацет-КоА, значение путей.
  18. Биосинтез жирных кислот: этапы, тканевая и субклеточная локализация процесса, значение, источники углерода и водорода для биосинтеза.
  19. Механизм переноса Ацет-КоА из митохондрии в цитозоль, регуляция, значение.
  20. Реакция карбоксилирования Ацет-КоА, номенклатура фермента, регуляция, значение.
  21. Цитрат и Мал-КоА: реакции образования, роль в механизмах регуляции обмена жирных к-т.
  22. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
  23. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
  24. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты из пальмитиновой).
  25. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
  26. Гормональная регуляция биосинтеза жирных кислот и ТГ– механизмы, значение.
  27. Реакции биосинтеза ТГ, тканевые и возрастные особенности, регуляция, значение.
  28. Биосинтез ТГ и ФЛ: схема, регуляция и интеграция этих процессов (роль фосфотидной кислоты диглицерида, ЦТФ).
  29. Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
  30. Особенности регуляции в кишечной стенке и других тканях биосинтеза ХС; роль гормонов: инсулина, Т 3 ,Т 4 , витамина РР.
  31. Реакции образования и распада эфиров холестерина – роль АХАТ и гидролазы ЭХС, особенности тканевого распределения ХС и его эфиров, значение.
  32. Катаболизм ХС, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание ХС в крови.
  33. Реакции биосинтеза кетоновых тел, регуляция, значение.
  34. Реакции распада кетоновых тел до Ацет-КоА и, далее до СО 2 и Н 2 О, схема, энергетический баланс.
  35. Интеграция липидного и углеводного обменов – роль печени, жировой ткани, кишечной стенки и др.
  36. Уровни и механизмы регуляции обмена липидов (перечислить).
  37. Метаболический (клеточный) уровень регуляции обмена липидов, механизмы, примеры.
  38. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
  39. Центральный уровень регуляции обмена липидов: роль СНС и ПСНС - a и b рецепторов, гормонов – КХ, ГК, Т 3 , Т 4 , ТТГ, СТГ, инсулина, лептина, и др.

54. Обмен ЛПОНП, регуляция, значение; роль ЛПЛ, апо В- 100, Е и С 2 , ВЕ-рецепторов, ЛПВП.

55. Обмен ЛПНП, регуляция, значение; роль апо В- 100 , В-клеточных рецепторов, АХАТ, БЛЭХ, ЛПВП.

56. Обмен ЛПВП, регуляция, значение; роль ЛХАТ, апо А и С, других классов ЛП.

57. Липиды крови: состав, нормальное содержание каждого компонента, транспорт по кровотоку физиологическое и диагностическое значение.

58. Гиперлипидемии: классификация по Фредриксону. Взаимосвязь каждого класса со специфическим патологическим процессом и его биохимическая диагностика.

59. Лабораторные методы установления типов липидемий.

60. Дислипопротеинемии: хиломикронемия, b-липопротеинемия, абеталипопротеинемия, болезнь Танжи - биохимические причины, метаболические нарушения, диагностика.

61. Атеросклероз: понятие, распространённость, осложнения, последствия.

62. Атеросклероз: причины, стадии и механизмы развития.

63. Экзогенные и эндогенные факторы риска развития атеросклероза, механизм их действия, профилактика.

64. Атеросклероз: особенности развития и течения при сахарном диабете.

65. Диабетические макроангиопатии: механизмы развития, роль в возникновении, течении и осложнении атеросклероза.

66. Ожирение: понятие, классификация, возрастные и половые особенности отложения жира, расчетные показатели степени ожирения, значение.

67. Липостат: понятие, основные звенья и механизмы его функционирования, значение.

68. Гуморальные факторы, регулирующие центр голода, перечислить.

69. Лептин: регуляция образования и поступления в кровоток, механизм участия в развитии первичного ожирения.

70. Абсолютная и относительная лептиновая недостаточность: причины, механизмы развития.

71. Вторичное ожирение: причины, последствия.

72. Биохимические нарушения в тканях и крови при ожирении, последствия, профилактика.

73. Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.

74. Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.

75. Роль кахексина (ФНО-a) в развитии инсулиновой резистентности и ожирения.

76. Метаболический синдром: понятие, его составляющие, клиническое значение.

Роль наследственных факторов и факторов окружающей среды в его

возникновении.

Регуляторные системы организма.

  1. Системы регуляции:определение понятий – гормоны, гормоноиды, гистогормоны, дисперсная эндокринная система, иммунная регуляторная система, их общие свойства.
  2. Классификация и номенклатура гормонов: по месту синтеза, химической природе, функциям.
  3. Уровни и принципы организации регуляторных систем: нервной, гормональной, иммунной.
  4. Этапы метаболизма гормонов: биосинтез, активация, секреция, транспорт по кровотоку, рецепция и механизм действия, инактивация и удаление из организма, клиническое значение.
  5. V2: Базы данных. Системы управления базами данных и базами знаний.
  6. V2: Назначение и основы использования систем искусственного интеллекта; базы знаний, экспертные системы, искусственный интеллект.
  7. а развитие экономики туризма оказывает заметное воздействие состояние кредитно-денежной системы.
  8. А.Смит и формирование системы категорий классической политической экономии