Производные с е примеры. Производная сложной функции

И теорему о производной сложной функции, формулировка которой такова:

Пусть 1) функция $u=\varphi (x)$ имеет в некоторой точке $x_0$ производную $u_{x}"=\varphi"(x_0)$, 2) функция $y=f(u)$ имеет в соответствующей точке $u_0=\varphi (x_0)$ производную $y_{u}"=f"(u)$. Тогда сложная функция $y=f\left(\varphi (x) \right)$ в упомянутой точке также будет иметь производную, равную произведению производных функций $f(u)$ и $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_{u}"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

или, в более короткой записи: $y_{x}"=y_{u}"\cdot u_{x}"$.

В примерах этого раздела все функции имеют вид $y=f(x)$ (т.е. рассматриваем лишь функции одной переменной $x$). Соответственно, во всех примерах производная $y"$ берётся по переменной $x$. Чтобы подчеркнуть то, что производная берётся по переменной $x$, часто вместо $y"$ пишут $y"_x$.

В примерах №1, №2 и №3 изложен подробный процесс нахождения производной сложных функций. Пример №4 предназначен для более полного понимания таблицы производных и с ним имеет смысл ознакомиться.

Желательно после изучения материала в примерах №1-3 перейти к самостоятельному решению примеров №5, №6 и №7. Примеры №5, №6 и №7 содержат краткое решение, чтобы читатель мог проверить правильность своего результата.

Пример №1

Найти производную функции $y=e^{\cos x}$.

Нам нужно найти производную сложной функции $y"$. Так как $y=e^{\cos x}$, то $y"=\left(e^{\cos x}\right)"$. Чтобы найти производную $\left(e^{\cos x}\right)"$ используем формулу №6 из таблицы производных . Дабы использовать формулу №6 нужно учесть, что в нашем случае $u=\cos x$. Дальнейшее решение состоит в банальной подстановке в формулу №6 выражения $\cos x$ вместо $u$:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)" \tag {1.1}$$

Теперь нужно найти значение выражения $(\cos x)"$. Вновь обращаемся к таблице производных, выбирая из неё формулу №10. Подставляя $u=x$ в формулу №10, имеем: $(\cos x)"=-\sin x\cdot x"$. Теперь продолжим равенство (1.1), дополнив его найденным результатом:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x") \tag {1.2} $$

Так как $x"=1$, то продолжим равенство (1.2):

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x")=e^{\cos x}\cdot (-\sin x\cdot 1)=-\sin x\cdot e^{\cos x} \tag {1.3} $$

Итак, из равенства (1.3) имеем: $y"=-\sin x\cdot e^{\cos x}$. Естественно, что пояснения и промежуточные равенства обычно пропускают, записывая нахождение производной в одну строку, - как в равенстве (1.3). Итак, производная сложной функции найдена, осталось лишь записать ответ.

Ответ : $y"=-\sin x\cdot e^{\cos x}$.

Пример №2

Найти производную функции $y=9\cdot \arctg^{12}(4\cdot \ln x)$.

Нам необходимо вычислить производную $y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"$. Для начала отметим, что константу (т.е. число 9) можно вынести за знак производной:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)" \tag {2.1} $$

Теперь обратимся к выражению $\left(\arctg^{12}(4\cdot \ln x) \right)"$. Чтобы выбрать нужную формулу из таблицы производных было легче, я представлю рассматриваемое выражение в таком виде: $\left(\left(\arctg(4\cdot \ln x) \right)^{12}\right)"$. Теперь видно, что необходимо использовать формулу №2, т.е. $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. В эту формулу подставим $u=\arctg(4\cdot \ln x)$ и $\alpha=12$:

Дополняя равенство (2.1) полученным результатом, имеем:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))" \tag {2.2} $$

В этой ситуации часто допускается ошибка, когда решатель на первом шаге выбирает формулу $(\arctg \; u)"=\frac{1}{1+u^2}\cdot u"$ вместо формулы $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. Дело в том, что первой должна находиться производная внешней функции. Чтобы понять, какая именно функция будет внешней для выражения $\arctg^{12}(4\cdot 5^x)$, представьте, что вы считаете значение выражения $\arctg^{12}(4\cdot 5^x)$ при каком-то значении $x$. Сначала вы посчитаете значение $5^x$, потом умножите результат на 4, получив $4\cdot 5^x$. Теперь от этого результата берём арктангенс, получив $\arctg(4\cdot 5^x)$. Затем возводим полученное число в двенадцатую степень, получая $\arctg^{12}(4\cdot 5^x)$. Последнее действие, - т.е. возведение в степень 12, - и будет внешней функцией. И именно с неё надлежит начинать нахождение производной, что и было сделано в равенстве (2.2).

Теперь нужно найти $(\arctg(4\cdot \ln x))"$. Используем формулу №19 таблицы производных, подставив в неё $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)" $$

Немного упростим полученное выражение, учитывая $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)"=\frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" $$

Равенство (2.2) теперь станет таким:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" \tag {2.3} $$

Осталось найти $(4\cdot \ln x)"$. Вынесем константу (т.е. 4) за знак производной: $(4\cdot \ln x)"=4\cdot (\ln x)"$. Для того, чтобы найти $(\ln x)"$ используем формулу №8, подставив в нее $u=x$: $(\ln x)"=\frac{1}{x}\cdot x"$. Так как $x"=1$, то $(\ln x)"=\frac{1}{x}\cdot x"=\frac{1}{x}\cdot 1=\frac{1}{x}$. Подставив полученный результат в формулу (2.3), получим:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)"=\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot 4\cdot \frac{1}{x}=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}. $$

Напомню, что производная сложной функции чаще всего находится в одну строку, - как записано в последнем равенстве. Поэтому при оформлении типовых расчетов или контрольных работ вовсе не обязательно расписывать решение столь же подробно.

Ответ : $y"=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}$.

Пример №3

Найти $y"$ функции $y=\sqrt{\sin^3(5\cdot9^x)}$.

Для начала немного преобразим функцию $y$, выразив радикал (корень) в виде степени: $y=\sqrt{\sin^3(5\cdot9^x)}=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$. Теперь приступим к нахождению производной. Так как $y=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)" \tag {3.1} $$

Используем формулу №2 из таблицы производных , подставив в неё $u=\sin(5\cdot 9^x)$ и $\alpha=\frac{3}{7}$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}-1} (\sin(5\cdot 9^x))"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" $$

Продолжим равенство (3.1), используя полученный результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" \tag {3.2} $$

Теперь нужно найти $(\sin(5\cdot 9^x))"$. Используем для этого формулу №9 из таблицы производных, подставив в неё $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Дополнив равенство (3.2) полученным результатом, имеем:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)" \tag {3.3} $$

Осталось найти $(5\cdot 9^x)"$. Для начала вынесем константу (число $5$) за знак производной, т.е. $(5\cdot 9^x)"=5\cdot (9^x)"$. Для нахождения производной $(9^x)"$ применим формулу №5 таблицы производных, подставив в неё $a=9$ и $u=x$: $(9^x)"=9^x\cdot \ln9\cdot x"$. Так как $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Теперь можно продолжить равенство (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можно вновь от степеней вернуться к радикалам (т.е. корням), записав $\left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}$ в виде $\frac{1}{\left(\sin(5\cdot 9^x)\right)^{\frac{4}{7}}}=\frac{1}{\sqrt{\sin^4(5\cdot 9^x)}}$. Тогда производная будет записана в такой форме:

$$ y"=\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}. $$

Ответ : $y"=\frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}$.

Пример №4

Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.

В формуле №2 таблицы производных записана производная функции $u^\alpha$. Подставляя $\alpha=-1$ в формулу №2, получим:

$$(u^{-1})"=-1\cdot u^{-1-1}\cdot u"=-u^{-2}\cdot u"\tag {4.1}$$

Так как $u^{-1}=\frac{1}{u}$ и $u^{-2}=\frac{1}{u^2}$, то равенство (4.1) можно переписать так: $\left(\frac{1}{u} \right)"=-\frac{1}{u^2}\cdot u"$. Это и есть формула №3 таблицы производных.

Вновь обратимся к формуле №2 таблицы производных. Подставим в неё $\alpha=\frac{1}{2}$:

$$\left(u^{\frac{1}{2}}\right)"=\frac{1}{2}\cdot u^{\frac{1}{2}-1}\cdot u"=\frac{1}{2}u^{-\frac{1}{2}}\cdot u"\tag {4.2} $$

Так как $u^{\frac{1}{2}}=\sqrt{u}$ и $u^{-\frac{1}{2}}=\frac{1}{u^{\frac{1}{2}}}=\frac{1}{\sqrt{u}}$, то равенство (4.2) можно переписать в таком виде:

$$ (\sqrt{u})"=\frac{1}{2}\cdot \frac{1}{\sqrt{u}}\cdot u"=\frac{1}{2\sqrt{u}}\cdot u" $$

Полученное равенство $(\sqrt{u})"=\frac{1}{2\sqrt{u}}\cdot u"$ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения $\alpha$.

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

Приводятся примеры вычисления производных с применением формулы производной сложной функции.

Содержание

См. также: Доказательство формулы производной сложной функции

Основные формулы

Здесь мы приводим примеры вычисления производных от следующих функций:
; ; ; ; .

Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или , расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.

Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .

Простые примеры

Пример 1

Найти производную сложной функции
.

Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.

По формуле производной сложной функции имеем:
.
Здесь .

Пример 2

Найти производную
.

Выносим постоянную 5 за знак производной и из таблицы производных находим:
.


.
Здесь .

Пример 3

Найдите производную
.

Выносим постоянную -1 за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.

Применяем формулу производной сложной функции:
.
Здесь .

Более сложные примеры

В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.

Пример 4

Найдите производную
.

Выделим самую простую часть формулы и найдем ее производную. .



.
Здесь мы использовали обозначение
.

Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.

Еще раз применяем правило дифференцирования сложной функции.

.
Здесь .

Пример 5

Найдите производную функции
.

Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .

Применяем правило дифференцирования сложной функции.
.
Здесь
.

Дифференцируем следующую часть, применяя полученные результаты.
.
Здесь
.

Дифференцируем следующую часть.

.
Здесь
.

Теперь находим производную искомой функции.

.
Здесь
.

См. также:

Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу

и сделать вот такое лицо:

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь , старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.

Что такое сложная функция?

Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот "сложнейший" процесс представлен на схеме ниже:

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а \(x\), при этом «пакетами» и «коробками» служат разные .

Например, возьмем x и «запакуем» его в функцию :


В результате получим, ясное дело, \(\cos⁡x\). Это наш «пакет с вещами». А теперь кладем его в «коробку» - запаковываем, например, в кубическую функцию.


Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» - «упаковка в упаковке».

В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре:

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию . Получим:

\(x → 7^x → tg⁡(7^x)\)

А теперь «упакуем» икс два раза в тригонометрические функции, сначала в , а потом в :

\(x → sin⁡x → ctg⁡ (sin⁡x)\)

Просто, правда?

Напиши теперь сам функции, где икс:
- сначала «упаковывается» в косинус, а потом в показательную функцию с основанием \(3\);
- сначала в пятую степень, а затем в тангенс;
- сначала в логарифм по основанию \(4\) , затем в степень \(-2\).

Ответы на это задание посмотри в конце статьи.

А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» \(4\) раза:

\(y=5^{\log_2⁡{\sin⁡(x^4)}}\)

Но такие формулы в школьной практике не встретятся (студентам повезло больше - у них может быть и посложнее☺).

«Распаковка» сложной функции

Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть - какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.

Теперь правильный ответ: сначала икс «упаковали» в \(4\)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию \(2\), и в конце концов всю эту конструкцию засунули в степень пятерки.

То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.

Например, вот такая функция: \(y=tg⁡(\log_2⁡x)\). Смотрим на икс – что с ним происходит сначала? Берется от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Еще пример: \(y=\cos⁡{(x^3)}\). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: \(x → x^3 → \cos⁡{(x^3)}\). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть \(\cos⁡{(x·x·x)})\), а там в кубе косинус \(x\) (то есть, \(\cos⁡x·\cos⁡x·\cos⁡x\)). Эта разница возникает из-за разных последовательностей «упаковки».

Последний пример (с важной информацией в нем): \(y=\sin⁡{(2x+5)}\). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: \(x → 2x+5 → \sin⁡{(2x+5)}\). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.

Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных - два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) - тоже простая функция. Например, \(x^7\) – простая функция и \(ctg x\) - тоже. Значит и все их комбинации являются простыми функциями:

\(x^7+ ctg x\) - простая,
\(x^7· ctg x\) – простая,
\(\frac{x^7}{ctg x}\) – простая и т.д.

Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:



Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:
\(y=cos{⁡(sin⁡x)}\)
\(y=5^{x^7}\)
\(y=arctg⁡{11^x}\)
\(y=log_2⁡(1+x)\)
Ответы опять в конце статьи.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция - это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: \(y=tg⁡(log_2⁡x)\), функция \(\log_2⁡x\) – внутренняя, а
- внешняя.

А в этом: \(y=\cos⁡{(x^3+2x+1)}\), \(x^3+2x+1\) - внутренняя, а
- внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось - будем находить производные сложных функций:

Заполни пропуски в таблице:


Производная сложной функции

Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Формула эта читается так:

Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.

И сразу смотри схему разбора "по словам" чтобы понимать, что к чему относиться:

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» - мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?

Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.

Пусть у нас есть функция \(y=\sin⁡(x^3)\). Понятно, что внутренняя функция здесь \(x^3\), а внешняя
. Найдем теперь производную внешней по неизменной внутренней.

Если g (x ) и f (u ) – дифференцируемые функции своих аргументов соответственно в точках x и u = g (x ), то сложная функция также дифференцируема в точке x и находится по формуле

Типичная ошибка при решении задач на производные - машинальное перенесение правил дифференцирования простых функций на сложные функции. Будем учиться избегать этой ошибки.

Пример 2. Найти производную функции

Неправильное решение: вычислять натуральный логарифм каждого слагаемого в скобках и искать сумму производных:

Правильное решение: опять определяем, где "яблоко", а где "фарш". Здесь натуральный логарифм от выражения в скобках - это "яблоко", то есть функция по промежуточному аргументу u , а выражение в скобках - "фарш", то есть промежуточный аргумент u по независимой переменной x .

Тогда (применяя формулу 14 из таблицы производных)

Во многих реальных задачах выражение с логарифмом бывает несколько сложнее, поэтому и есть урок

Пример 3. Найти производную функции

Неправильное решение:

Правильное решение. В очередной раз определяем, где "яблоко", а где "фарш". Здесь косинус от выражения в скобках (формула 7 в таблице производных)- это "яблоко", оно готовится в режиме 1, воздействующем только на него, а выражение в скобках (производная степени - номер 3 в таблице производных) - это "фарш", он готовится при режиме 2, воздействующей только на него. И как всегда соединяем две производные знаком произведения. Результат:

Производная сложной логарифмической функции - частое задание на контрольных работах, поэтому настоятельно рекомендуем посетить урок "Производная логарифмической функции".

Первые примеры были на сложные функции, в которых промежуточный аргумент по независимой переменной был простой функцией. Но в практических заданиях нередко требуется найти производную сложной функции, где промежуточный аргумент или сам является сложной функцией или содержит такую функцию. Что делать в таких случаях? Находить производные таких функций по таблицам и правилам дифференцирования . Когда найдена производная промежуточного аргумента, она просто подставляется в нужное место формулы. Ниже – два примера, как это делается.

Кроме того, полезно знать следующее. Если сложная функция может быть представлена в виде цепочки из трёх функций

то её производную следует находить как произведение производных каждой из этих функций:

Для решения многих ваших домашних заданий может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Пример 4. Найти производную функции

Применяем правило дифференцирования сложной функции, не забывая, что в полученном произведении производных промежуточный аргумент по независимой переменной x не меняется:

Готовим второй сомножитель произведения и применяем правило дифференцирования суммы:

Второе слагаемое - корень, поэтому

Таким образом получили, что промежуточный аргумент, являющийся суммой, в качестве одного из слагаемых содержит сложную функцию: возведение в степень - сложная функция, а то, что возводится в степень - промежуточный аргумент по независимой переменной x .

Поэтому вновь применим правило дифференцирования сложной функции:

Степень первого сомножителя преобразуем в корень, а дифференцируя второй сомножитель, не забываем, что производная константы равна нулю:

Теперь можем найти производную промежуточного аргумента, нужного для вычисления требуемой в условии задачи производной сложной функции y :

Пример 5. Найти производную функции

Сначала воспользуемся правилом дифференцирования суммы:

Получили сумму производных двух сложных функций. Находим первую из них:

Здесь возведение синуса в степень - сложная функция, а сам синус - промежуточный аргумент по независимой переменной x . Поэтому воспользуемся правилом дифференцирования сложной функции, попутно вынося множитель за скобки :

Теперь находим второе слагаемое из образующих производную функции y :

Здесь возведение косинуса в степень - сложная функция f , а сам косинус - промежуточный аргумент по независимой переменной x . Снова воспользуемся правилом дифференцирования сложной функции:

Результат - требуемая производная:

Таблица производных некоторых сложных функций

Для сложных функций на основании правила дифференцирования сложной функции формула производной простой функции принимает другой вид.

1. Производная сложной степенной функции, где u x
2. Производная корня от выражения
3. Производная показательной функции
4. Частный случай показательной функции
5. Производная логарифмической функции с произвольным положительным основанием а
6. Производная сложной логарифмической функции, где u – дифференцируемая функция аргумента x
7. Производная синуса
8. Производная косинуса
9. Производная тангенса
10. Производная котангенса
11. Производная арксинуса
12. Производная арккосинуса
13. Производная арктангенса
14. Производная арккотангенса