Обозначение дроби. Действия с дробями

Определение обыкновенной дроби

Определение 1

Обыкновенные дроби используют для описания числа долей. Рассмотрим пример, с помощью которого можно дать определение обыкновенной дроби.

Яблоко разделили на $8$ долей. В этом случае каждая доля представляет одну восьмую долю целого яблока, т. е. $\frac{1}{8}$. Две доли обозначаются $\frac{2}{8}$, три доли -- $\frac{3}{8}$ и т.д., а $8$ долей -- $\frac{8}{8}$. Каждая из представленных записей называется обыкновенной дробью .

Приведем общее определение обыкновенной дроби.

Определение 2

Обыкновенной дробью называется запись вида $\frac{m}{n}$, где $m$ и $n$-- любые натуральные числа.

Часто можно встретить следующую запись обыкновенной дроби: $m/n$.

Пример 1

Примеры обыкновенных дробей:

\[{3}/{4}, \frac{101}{345},\ \ {23}/{5}, \frac{15}{15}, {111}/{81}.\]

Замечание 1

Числа $\frac{\sqrt{2}}{3}$, $-\frac{13}{37}$, $\frac{4}{\frac{2}{7}}$, $\frac{2,4}{8,3}$ не являются обыкновенными дробями, т.к. не подходят под вышеприведенное определение.

Числитель и знаменатель

Обыкновенная дробь состоит из числителя и знаменателя.

Определение 3

Числителем обыкновенной дроби $\frac{m}{n}$ называется натуральное число $m$, которое показывает количество взятых равных долей из единого целого.

Определение 4

Знаменателем обыкновенной дроби $\frac{m}{n}$ называется натуральное число $n$, которое показывает, на сколько равных долей разделено единое целое.

Рисунок 1.

Числитель располагается над дробной чертой, а знаменатель --под дробной чертой. Например, числителем обыкновенной дроби $\frac{5}{17}$ является число $5$, а знаменателем -- число $17$. Знаменатель показывает, что предмет разделен на $17$ долей, а числитель -- что взято $5$ таких долей.

Натуральное число как дробь со знаменателем 1

Знаменателем обыкновенной дроби может быть единица. В таком случае считают, что предмет неделим, т.е. представляет собой единое целое. Числитель такой дроби показывает, сколько целых предметов взято. Обыкновенная дробь вида $\frac{m}{1}$ имеет смысл натурального числа $m$. Таким образом получаем обоснованное равенство $\frac{m}{1}=m$.

Если переписать равенство в виде $m=\frac{m}{1}$, то оно даст возможность любое натуральное число $m$ представить в виде обыкновенной дроби. Например, число $5$ можно представить в виде дроби $\frac{5}{1}$, число $123 \ 456$ -- это дробь $\frac{123\ 456}{1}$.

Таким образом, любое натуральное число $m$ можно представить в виде обыкновенной дроби со знаменателем $1$, а любую обыкновенную дробь вида $\frac{m}{1}$ можно заменить натуральным числом $m$.

Дробная черта как знак деления

Представление предмета в виде $n$ долей является делением на $n$ равных частей. После деления предмета на $n$ долей его можно разделить поровну между $n$ людьми -- каждый получит по одной доле.

Пусть имеется $m$ одинаковых предметов, разделенных на $n$ долей. Эти $m$ предметов можно поровну разделить между $n$ людьми, если раздать каждому человеку по одной доле от каждого из $m$ предметов. При этом каждый человек получит $m$ долей $\frac{1}{n}$, которые дают обыкновенную дробь $\frac{m}{n}$. Получаем, что обыкновенная дробь $\frac{m}{n}$ может применяться для обозначения деления $m$ предметов между $n$ людьми.

Связь между обыкновенными дробями и делением выражается в том, что дробную черту можно понимать как знак деления, т.е. $\frac{m}{n}=m:n$.

Обыкновенная дробь дает возможность записывать результат деления двух натуральных чисел, для которых не выполняется деление нацело.

Пример 2

Например, результат деления $7$ яблок на $9$ человек можно записать как $\frac{7}{9}$, т.е. каждый получит семь девятых долей яблока: $7:9=\frac{7}{9}$.

Равные и неравные обыкновенные дроби, сравнение дробей

Результатом сравнения двух обыкновенных дробей может быть или их равенство, или их не равенство. При равенстве обыкновенных дробей их называют равными, в другом случае обыкновенные дроби называют неравными.

равными , если справедливым является равенство $a\cdot d=b\cdot c$.

Обыкновенные дроби $\frac{a}{b}$ и $\frac{c}{d}$ называют неравными , если равенство $a\cdot d=b\cdot c$ не выполняется.

Пример 3

Выяснить, являются ли равными дроби $\frac{1}{3}$ и $\frac{2}{6}$.

Равенство выполняется, значит, дроби $\frac{1}{3}$ и $\frac{2}{6}$ являются равными: $\frac{1}{3}=\frac{2}{6}$.

Данный пример можно рассмотреть на примере яблок: одно из двух одинаковых яблок разделено на три равные доли, второе -- на $6$ долей. При этом видно, что две шестых доли яблока составляют $\frac{1}{3}$ долю.

Пример 4

Проверить, являются ли равными обыкновенные дроби $\frac{3}{17}$ и $\frac{4}{13}$.

Проверим, выполняется ли равенство $a\cdot d=b\cdot c$:

\ \

Равенство не выполняется, значит, дроби $\frac{3}{17}$ и $\frac{4}{13}$ не равны: $\frac{3}{17}\ne \frac{4}{13}$.

При сравнении двух обыкновенных дробей, если выясняется, что они не равны, можно узнать, какая из них больше, а какая -- меньше другой. Для этого используют правило сравнения обыкновенных дробей: нужно привести дроби к общему знаменателю и затем сравнить их числители. У какой дроби числитель будет больше, та дробь и будет являться большей.

Дроби на координатном луче

Все дробные числа, которые отвечают обыкновенным дробям, можно отобразить на координатном луче.

Чтобы на координатном луче отметить точку, которая соответствует дроби $\frac{m}{n}$, необходимо от начала координат в положительном направлении отложить $m$ отрезков, длина которых составляет $\frac{1}{n}$ долю единичного отрезка. Такие отрезки получают при делении единичного отрезка на $n$ равных частей.

Чтобы отобразить на координатном луче дробное число, нужно единичный отрезок разделить на части.

Рисунок 2.

Равные дроби описываются одним и тем же дробным числом, т.е. равные дроби представляют собой координаты одной и той же точки на координатном луче. Например, координатами $\frac{1}{3}$, $\frac{2}{6}$, $\frac{3}{9}$, $\frac{4}{12}$ описывается одна и та же точка на координатном луче, так как все записанные дроби равны.

Если точка описывается координатой с большей дробью, то она будет находится правее на горизонтальном направленном вправо координатном луче от точки, координатой которой является меньшая дробь. Например, т.к. дробь $\frac{5}{6}$ больше дроби $\frac{2}{6}$, то и точка с координатой $\frac{5}{6}$ находится правее точки с координатой $\frac{2}{6}$.

Аналогично, точка с меньшей координатой будет лежать левее точки с большей координатой.

Часть единицы или несколько ее частей называют простой или обыкновенной дробью. Количество равных частей, на которые делится единица, называется знаменателем, а количество взятых частей - числителем. Дробь записывается в виде:

В данном случае а - числитель, b - знаменатель.

Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью. Если числитель больше знаменателя, то дробь больше 1, тогда дробь называется неправильной.

Если числитель и знаменатель дроби равны, то дробь равна.

1. Если числитель можно разделить на знаменатель, то эта дробь равна частному от деления:

В случае если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом, например:

Тогда 9 - неполное частное (целая часть смешанного числа),
1 - остаток (числитель дробной части),
5 - знаменатель.

Для того чтобы обратить смешанное число в дробь, необходимо умножить целую часть смешанного числа на знаменатель и прибавить числитель дробной части.

Полученный результат будет числителем обыкновенной дроби, а знаменатель останется прежним.

Действия с дробями

Расширение дроби. Значение дроби не меняется, если умножить ее числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:

Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, то есть привести к общему знаменателю. Рассмотрим, например, следующие дроби:

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того чтобы сложить дроби, необходимо сложить их числители, а для того чтобы вычесть дроби, надо вычесть их числители. Полученная сумма или разность будет числителем результата, а знаменатель останется прежним. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел сначала необходимо преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется к виду смешанного числа.

Умножение дробей . Для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

Деление дробей . Для того чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь.

Десятичная дробь - это результат деления единицы на десять, сто, тысячу и т.д. частей. Сначала пишется целая часть числа, затем справа ставится десятичная точка. Первая цифра после десятичной точки означает число десятых, вторая - число сотых, третья - число тысячных и т. д. Цифры, расположенные после десятичной точки, называются десятичными знаками.

Например:

Свойства десятичных дробей

Свойства:

  • Десятичная дробь не меняется, если справа добавить нули: 4,5 = 4,5000.
  • Десятичная дробь не меняется, если удалить нули, расположенные в конце десятичной дроби: 0,0560000 = 0,056.
  • Десятичная дробь возрастает в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции вправо: 4,5 45 (дробь возросла в 10 раз).
  • Десятичная дробь уменьшается в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции влево: 4,5 0,45 (дробь уменьшилась в 10 раз).

Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом: 0,321321321321…=0,(321)

Действия с десятичными дробями

Сложение и вычитание десятичных дробей выполняются так же, как и сложение и вычитание целых чисел, необходимо только записать соответствующие десятичные знаки один под другим.
Например:

Умножение десятичных дробей проводится в несколько этапов:

  • Перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку.
  • Применяется правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях.

Например :

Сумма чисел десятичных знаков в сомножителях равна: 2+1=3. Теперь необходимо с конца получившегося числа отсчитать 3 знака и поставить десятичную точку: 0,675.

Деление десятичных дробей. Деление десятичной дроби на целое число: если делимое меньше делителя, тогда нужно записать ноль в целой части частного и поставить после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединить к его целой части следующую цифру дробной части и опять сравнить полученную целую часть делимого с делителем. Если новое число опять меньше делителя, надо повторить операцию. Этот процесс повторяется до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.

Деление одной десятичной дроби на другую: сначала переносятся десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом, и выполняются действия, описанные выше.

Для того чтобы обратить десятичную дробь в обыкновенную, необходимо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять k-ую степень десяти (k - количество десятичных знаков). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается.
Например:

Для того чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления.

Процент - это сотая часть единицы, например: 5% означает 0,05. Отношение - это частное от деления одного числа на другое. Пропорция - это равенство двух отношений.

Например:

Основное свойство пропорции: произведение крайних членов пропорции равно произведению ее средних членов, то есть 5х30=6х25. Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным (коэффициент пропорциональности).

Таким образом, выявлены следующие арифметические действия.
Например:

Множество рациональных чисел включает в себя положительные и отрицательные числа (целые и дробные) и ноль. Более точное определение рациональных чисел, принятое в математике, следующее: число называется рациональным, если оно может быть представлено в виде обыкновенной несократимой дроби вида:, где a и b целые числа.

Для отрицательного числа абсолютная величина (модуль) - это положительное число, получаемое от перемены его знака с «-» на «+»; для положительного числа и нуля - само это число. Для обозначения модуля числа используются две прямые черты, внутри которых записывается это число, например: |–5|=5.

Свойства абсолютной величины

Пусть дан модуль числа , для которого справедливы свойства:

Одночлен - это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы: 3 х a х b. Коэффициентом чаще всего называют лишь числовой множитель. Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами. Степень одночлена - это сумма показателей степеней всех его букв. Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду: 3 х a х b + 6 х a = 3 х a х (b + 2). Эта операция называется приведением подобных членов или вынесением за скобки.

Многочлен - это алгебраическая сумма одночленов. Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

Существуют следующие формулы сокращенного умножения:

Методы разложения на множители:

Алгебраическая дробь - это выражение вида , где A и B могут быть числом, одночленом, многочленом.

Если два выражения (числовые и буквенные) соединены знаком «=», то говорят, что они образуют равенство. Любое верное равенство, справедливое при всех допустимых числовых значениях входящих в него букв, называется тождеством.

Уравнение - это буквенное равенство, которое справедливо при определенных значениях входящих в него букв. Эти буквы называются неизвестными (переменными), а их значения, при которых данное уравнение обращается в тождество, - корнями уравнения.

Решить уравнение - значит найти все его корни. Два или несколько уравнений называются равносильными, если они имеют одни и те же корни.

  • ноль являлся корнем уравнения;
  • уравнение имело только конечное число корней.

Основные типы алгебраических уравнений:

У линейного уравнения ax + b = 0:

  • если a х 0, имеется единственный корень x = -b/a;
  • если a = 0, b ≠ 0, нет корней;
  • если a = 0, b = 0, корнем является любое действительное число.

Уравнение xn = a, n N:

  • если n - нечетное число, имеет при любом а действительный корень, равный a/n;
  • если n - четное число, то при a 0, то имеет два корня.

Основные тождественные преобразования: замена одного выражения другим, тождественно равным ему; перенос членов уравнения из одной стороны в другую с обратными знаками; умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля.

Линейным уравнением с одним неизвестным называется уравнение вида: ax+b=0, где a и b - известные числа, а x - неизвестная величина.

Системы двух линейных уравнений с двумя неизвестными имеют вид:

Где a, b, c, d, e, f - заданные числа; x, y - неизвестные.

Числа a, b, c, d - коэффициенты при неизвестных; e, f - свободные члены. Решение этой системы уравнений может быть найдено двумя основными методами: метод подстановки: из одного уравнения выражаем одно из неизвестных через коэффициенты и другое неизвестное, а затем подставляем во второе уравнение, решая последнее уравнение, находим сначала одно неизвестное, затем подставляем найденное значение в первое уравнение и находим второе неизвестное; метод сложения или вычитания одного уравнения из другого.

Операции с корнями:

Арифметическим корнем n-й степени из неотрицательного чис-ла a называется неотрицательное число, n-я степень которого рав-на a. Алгебраическим корнем n-й степени из данного числа называ-ется множество всех корней из этого числа.

Иррациональные числа в отличие от рациональных не могут быть представлены в виде обыкновенной несократимой дроби вида m/n, где m и n - целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: отношение длины диагонали квадрата к длине его стороны равно.

Квадратное уравнение есть алгебраическое уравнение второй степени ax2+bx+c=0, где a, b, c - заданные числовые или буквенные коэффициенты, x - неизвестное. Если разделить все члены этого уравнения на а, в результате получим x2+px+q=0 - приведенное уравнение p=b/a, q=c/a. Его корни находятся по формуле:

Если b2-4ac>0, тогда имеются два различных корня, b2- 4ac=0, тогда имеются два равных корня; b2-4ac Уравнения, содержащие модули

Основные типы уравнений, содержащие модули:
1) |f(x)| = |g(x)|;
2) |f(x)| = g(x);
3) f1(x)|g1(x)| + f2(x)|g2(x)| + … + fn(x)|gn(x)| =0, n N, где f(x), g(x), fk(x), gk(x) - заданные функции.

Долей единицы и представляется в виде \frac{a}{b} .

Числитель дроби (a) — число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) — число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

Скрыть Показать

Основное свойство дроби

Если ad=bc , то две дроби \frac{a}{b} и \frac{c}{d} считаются равными. К примеру, равными будут дроби \frac35 и \frac{9}{15} , так как 3 \cdot 15 = 15 \cdot 9 , \frac{12}{7} и \frac{24}{14} , так как 12 \cdot 14 = 7 \cdot 24 .

Из определения равенства дробей следует, что равными будут дроби \frac{a}{b} и \frac{am}{bm} , так как a(bm)=b(am) — наглядный пример применения сочетательного и переместительного свойств умножения натуральных чисел в действии.

Значит \frac{a}{b} = \frac{am}{bm} — так выглядит основное свойство дроби .

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Сокращение дроби — это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, \frac{45}{60}=\frac{15}{20} (числитель и знаменатель делится на число 3 ); полученную дробь снова можно сократить, разделив на 5 , то есть \frac{15}{20}=\frac 34 .

Несократимая дробь — это дробь вида \frac 34 , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби — сделать дробь несократимой.

Приведение дробей к общему знаменателю

Возьмем в качестве примера две дроби: \frac{2}{3} и \frac{5}{8} с разными знаменателями 3 и 8 . Для того, чтобы привести данные дроби к общему знаменателю и сначала перемножим числитель и знаменатель дроби \frac{2}{3} на 8 . Получаем следующий результат: \frac{2 \cdot 8}{3 \cdot 8} = \frac{16}{24} . Затем умножаем числитель и знаменатель дроби \frac{5}{8} на 3 . Получаем в итоге: \frac{5 \cdot 3}{8 \cdot 3} = \frac{15}{24} . Итак, исходные дроби приведены к общему знаменателю 24 .

Арифметические действия над обыкновенными дробями

Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b} ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

\frac{7}{3}+\frac{1}{4}=\frac{7 \cdot 4}{3}+\frac{1 \cdot 3}{4}=\frac{28}{12}+\frac{3}{12}=\frac{31}{12} .

Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

\frac{a}{b}-\frac{c}{b}=\frac{a-c}{b} ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} ,

то есть перемножают отдельно числители и знаменатели.

Например:

\frac{3}{5} \cdot \frac{4}{8} = \frac{3 \cdot 4}{5 \cdot 8}=\frac{12}{40} .

Деление обыкновенных дробей

Деление дробей производят следующим способом:

\frac{a}{b} : \frac{c}{d}= \frac{ad}{bc} ,

то есть дробь \frac{a}{b} умножается на дробь \frac{d}{c} .

Пример: \frac{7}{2} : \frac{1}{8}=\frac{7}{2} \cdot \frac{8}{1}=\frac{7 \cdot 8}{2 \cdot 1}=\frac{56}{2} .

Взаимно обратные числа

Если ab=1 , то число b является обратным числом для числа a .

Пример: для числа 9 обратным является \frac{1}{9} , так как 9 \cdot \frac{1}{9}=1 , для числа 5 — \frac{1}{5} , так как 5 \cdot \frac{1}{5}=1 .

Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10\,000, ..., 10^n .

Например: \frac{6}{10}=0,6;\enspace \frac{44}{1000}=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 5\frac{1}{10}=5,1;\enspace \frac{763}{100}=7\frac{63}{100}=7,63 .

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

Пример: 5 — делитель числа 100 , поэтому дробь \frac{1}{5}=\frac{1 \cdot 20}{5 \cdot 20}=\frac{20}{100}=0,2 .

Арифметические действия над десятичными дробями

Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

Вычитание десятичных дробей

Выполняется аналогично сложению.

Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 . Отделяем справа две цифры запятой (у первого и второго числа — одна цифра после запятой; 1+1=2 ). В итоге получаем 2,7 \cdot 1,3=3,51 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10\,000 = 14 700 .

Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

2,8: 0,09= \frac{28}{10} : \frac {9}{100}= \frac{28 \cdot 100}{10 \cdot 9}=\frac{280}{9}=31 \frac{1}{9} .

1 Что такое обыкновенные дроби. Виды дробей.
Дробь всегда означает какую то часть целого. Дело в том, что не всегда количество можно передать натуральными числами, то есть пересчитать: 1,2,3 и т.д. Как, например, обозначить половину арбуза или четверть часа? Вот для этого и появились дробные числа, или дроби.

Для начала нужно сказать, что вообще дробей бывает два вида: обыкновенные дроби и десятичные дроби. Обыкновенные дроби записываются так:
Десятичные дроби записываются по другому:


Обыкновенные дроби состоят из двух частей: вверху — числитель, внизу — знаменатель. Числитель и знаменатель разделяет дробная черта. Итак, запомните:

Любая дробь - это часть целого . За целое обычно принимают 1 (единицу). Знаменатель дроби показывает, на сколько частей разделили целое (1 ), а числитель - сколько частей взяли. Если мы разрезали торт на 6 одинаковых частей (в математике говорят долей ), то каждая часть торта будет равна 1/6. Если Вася съел 4 куска, то значит, он съел 4/6 .

С другой стороны, дробная черта — это не что иное, как знак деления. Поэтому дробь — это частное двух чисел — числителя и знаменателя. В тексте задач или в рецептах блюд дроби записываются обычно так: 2/3, 1/2 и т.д. Некоторые дроби получили собственное название, например, 1/2 — «половина», 1/3 — «треть», 1/4 — «четверть»
А теперь разберемся, какие бывают виды обыкновенных дробей.

2 Виды обыкновенных дробей

Обыкновенные дроби бывают трех видов: правильные, неправильные и смешанные:

Правильная дробь

Если числитель меньше, чем знаменатель, то такую дробь называют правильной, например: Правильная дробь всегда меньше 1.

Неправильная дробь

Если числитель больше, чем знаменатель или равен знаменателю, такая дробь называется неправильной , например:

Неправильная дробь больше единицы(если числитель больше знаменателя) или равна единице (если числитель равен знаменателю)

Смешанная дробь

Если дробь состоит из целого числа (целая часть) и правильной дроби (дробная часть), то такая дробь называется смешанной , например:

Смешанная дробь всегда больше единицы.

3 Преобразования дробей

В математике обыкновенные дроби часто приходится преобразовывать, то есть смешанную дробь превращать в неправильную и наоборот. Это необходимо для выполнения некоторых действий, например, умножения и деления.

Итак, любую смешанную дробь можно перевести в неправильную . Для этого целую часть умножают на знаменатель и прибавляют числитель дробной части. Полученную сумму берут числителем, а знаменатель оставляют тот же, например:

Любую неправильную дробь можно превратить в смешанную. Для этого делят числитель на знаменатель (с остатком).Полученное число будет целой частью, а остаток - числителем дробной части, например:

При этом говорят: «Мы выделили целую часть из неправильной дроби».

Необходимо запомнить еще одно правило: Любое целое число можно представить в виде обыкновенной дроби со знаменателем 1 , например:

Поговорим о том, как сравнивать дроби.

4 Сравнение дробей

При сравнении дробей может быть несколько вариантов: Легко сравнивать дроби с одинаковыми знаменателями, гораздо сложнее — если знаменатели разные. А есть еще и сравнение смешанных дробей. Но не волнуйтесь, сейчас мы подробно рассмотрим каждый вариант и научимся сравнивать дроби.

Сравнение дробей с одинаковыми знаменателями

Из двух дробей с одинаковыми знаменателями, но разными числителями больше та дробь, у которой числитель больше, например:

Сравнение дробей с одинаковыми числителями

Из двух дробей с одинаковыми числителями, но разными знаменателями больше та дробь, у которой знаменатель меньше, например:

Сравнение смешанных и неправильных дробей с правильными дробями

Неправильная или смешанная дробь всегда больше правильной дроби, например:

Сравнение двух смешанных дробей

При сравнении двух смешанных дробей больше та дробь, у которой целая часть больше, например:

Если целые части у смешанных дробей одинаковые, больше та дробь, у которой дробная часть больше, например:

Сравнение дробей с разными числителями и знаменателями

Сравнивать дроби с разными числителями и знаменателями без их преобразования нельзя. Сначала дроби нужно привести к одному знаменателю, а затем сравнить их числители. Больше та дробь, у которой числитель будет больше. А вот как приводить дроби к одинаковому знаменателю, мы рассмотрим в следующих двух разделах статьи статьи. Сначала мы рассмотрим основное свойство дроби и сокращение дробей, а затем непосредственно приведение дробей к одному знаменателю.

5 Основное свойство дроби. Сокращение дробей. Понятие о НОД.

Запомните: складывать и вычитать, а также сравнивать можно только дроби, у которых одинаковые знаменатели . Если знаменатели разные, то сначала нужно привести дроби к одному знаменателю, то есть так преобразовать одну из дробей, чтобы ее знаменатель стал таким же, как у второй дроби.

У дробей есть одно важное свойство, называемое также основным свойством дроби:

Если и числитель, и знаменатель дроби умножить или разделить на одно и то же число, то величина дроби при этом не изменится :

Благодаря этому свойству мы можем сокращать дроби :

Сократить дробь - значит разделить и числитель, и знаменатель на одно и то же число (смотрите пример чуть выше). Когда мы сокращаем дробь, то можно расписать наши действия так:

Чаще же в тетради сокращают дробь так:

Но запомните: сокращать можно только множители. Если в числителе или знаменателе сумма или разность, сокращать слагаемые нельзя. Пример:

Нужно сначала преобразовать сумму в множитель:

Иногда, при работе с большими числами, для того, чтобы сократить дробь, удобно найти наибольший общий делитель числителя и знаменателя (НОД)

Наибольший общий делитель (НОД) нескольких чисел - это наибольшее натуральное число, на которое эти числа делятся без остатка.

Для того, чтобы найти НОД двух чисел (например, числителя и знаменателя дроби), нужно разложить оба числа на простые множители, отметить одинаковые множители в обоих разложениях, и перемножить эти множители. Полученное произведение и будет НОД. Например, нам нужно сократить дробь:

Найдем НОД чисел 96 и 36:

НОД нам показывает, что и в числителе, и в знаменателе есть множитель12, и мы легко сокращаем дробь.

Иногда, чтобы привести дроби к одному знаменателю, достаточно сократить одну из дробей. Но чаще бывает необходимо подбирать дополнительные множители для обеих дробей.Сейчас мы рассмотрим, как это делается. Итак:

6 Как приводить дроби к одному знаменателю. Наименьшее общее кратное (НОК).

Когда мы приводим дроби к одинаковому знаменателю, мы подбираем для знаменателя такое число, которое бы делилось и на первый, и на второй знаменатель (то есть было бы кратным обоим знаменателям, выражаясь математическим языком). И желательно, чтобы число это было как можно меньшим, так удобнее считать. Таким образом, мы должны найти НОК обоих знаменателей.

Наименьшее общее кратное двух чисел (НОК) - это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

Однако вернемся к нашим дробям. После того, как мы подобрали или письменно вычислили НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители . Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

Таким образом мы привели наши дроби к одному знаменателю — 15.

7 Сложение и вычитание дробей

Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Сложение и вычитание смешанных дробей с одинаковыми знаменателями

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью:

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

Вычитание проводится аналогично: целая часть вычитается из целой, а дробная — из дробной части:

Если дробная часть вычитаемого больше, чем дробная часть уменьшаемого, «занимаем» единицу из целой части, превращая уменьшаемое в неправильную дробь, а дальше действуем как обычно:

Аналогично вычитаем из целого числа дробь :

Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

Если мы складываем целое число и смешанную дробь , мы прибавляем это число к целой части дроби, например:

Сложение и вычитание дробей с разными знаменателями.

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как при сложении дробей с одинаковыми знаменателями (сложить числители):

При вычитании действуем аналогично:

Если работаем со смешанными дробями, приводим к одинаковому знаменателю их дробные части и далее вычитаем как обычно: целую часть из целой, а дробную — из дробной части:

8 Умножение и деление дробей.

Умножать и делить обыкновенные дроби гораздо проще, чем складывать и вычитать, так как не нужно приводить их к одному знаменателю. Запомните простые правила умножения и деления дробей:

Перед тем, как перемножать числа в числителе и знаменателе желательно сократить дробь, то есть избавиться от одинаковых множителей в числителе и знаменателе, как в нашем примере.

Чтобы разделить дробь на натуральное число , нужно знаменатель умножить на это число, а числитель оставить без изменений:

Например:

Деление дроби на дробь

Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное делителю (обратную дробь).Что же это за обратная дробь?

Если мы перевернем дробь, то есть поменяем местами числитель и знаменатель, то получим обратную дробь. Произведение дроби и обратной ей дроби дает единицу. В математике такие числа называют взаимно обратными числами:

Например, числа - взаимно обратные, так как

Таким образом, вернемся к делению дроби на дробь:

Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю :

Например:

При делении смешанных дробей нужно так же, как и при умножении, сначала перевести их в неправильные дроби:

При умножении и делении дробей на целые натуральные числа , можно представлять эти числа так же в виде дробей со знаменателем 1 .

И при делении целого числа на дробь представляем это число в виде дроби со знаменателем 1 :