Напряжение по формуле электромагнитных колебаний. Электрические колебания и электромагнитные волны

Свободные электромагнитные колебания это происходящие под действием внутренних сил периодическое изменение заряда на конденсаторе, силы тока в катушке, а также электрических и магнитных полей в колебательном контуре.

    Незатухающие электромагнитные колебания

Для возбуждения электромагнитных колебаний служит колебательный контур , состоящий из соединённых последовательно катушки индуктивности L и конденсатора ёмкостью С (рис.17.1).

Рассмотрим идеальный контур, т. е. контур, омическое сопротивление которого равно нулю (R=0). Чтобы возбудить колебания в этом контуре, необходимо либо сообщить обкладкам конденсатора некоторый заряд, либо возбудить в катушке индуктивности ток. Пусть в начальный момент времени кон­денсатор заряжен до разности потенциалов U (рис. (рис.17.2, а); следователь­но, он обладает потенциальной энергией
.В этот момент времени ток в катушке I = 0. Такое состояние колеба­тельного контура аналогично состоянию математического маятника, отклоненного на угол α (рис. 17.3, а). В это время ток в катушке I=0. После соединения заряженного конденсатора с катушкой, под действием электрического поля, создаваемого зарядами на конденсаторе, свободные электроны в контуре начнут перемещаться от отрицательно заряженной обкладки конденсатора к положительно заряженной. Конденсатор начнёт разряжаться, и в контуре появится нарастающий ток. Переменное магнитное поле этого тока породит вихревое электрическое. Это электрическое поле будет направлено противоположно току и потому не даст ему сразу достигнуть максимального значения. Сила тока будет увеличиваться постепенно. Когда сила в контуре достигнет максимума, заряд на конденсаторе и напряжение между обкладками равно нулю. Это произойдёт через четверть периода t = π/4. При этом энергия электрического поля переходит в энергию магнитного поляW э =1/2C U 2 0 . В этот момент на положительно заряженной обкладке конденсатора окажется столько перешедших на неё электронов, что их отрицательный заряд полностью нейтрализует имевшийся там положительный заряд ионов. Ток в контуре начнёт уменьшаться и станет уменьшаться индукция создаваемого им магнитного поля. Изменяющееся магнитное поле снова породит вихревое электрическое, которое на этот раз будет направлено в ту же сторону, что и ток. Поддерживаемый этим полем ток будет идти в прежнем направлении и постепенно перезаряжать конденсатор. Однако по мере накопления заряда на конденсаторе его собственное электрическое поле будет всё сильнее тормозить движение электронов, и сила тока в контуре будет становиться всё меньше и меньше. Когда сила тока уменьшится до нуля, конденсатор окажется полностью перезаряженным.

Состояния системы, изображенные на рис. 17.2 и 17.3, соответствуют последовательным моментам времени Т = 0; ;;иТ.

ЭДС само­индукции, возникающая в контуре, равна напряжению на обкладках кон­денсатора: ε = U

и

Полагая
, получаем

(17.1)

Формула (17.1) аналогична дифференциальному уравнению гармонического колебания, рассмотренных в механике; его решением будет

q = q max sin(ω 0 t+φ 0) (17.2)

где q max - наибольший (начальный) заряд на обкладках конденсатора, ω 0 -круговая частота собственных колебаний контура, φ 0 -начальная фаза.

Согласно принятым обозначениям,
откуда

(17.3)

Выражение (17.3) называется формулой Томсона и показывает, что при R=0 период электромагнитных колебаний, возникающих в контуре, определяется только значениями индуктивности L и ёмкости С.

По гармоническому закону изменяется не только заряд на обкладках конденсатора, но и напряжение и сила тока в контуре:

где U m и I m – амплитуды напряжения и силы тока.

Из выражений (17.2), (17.4), (17.5) вытекает, что колебания заряда (напряжения) и тока в контуре сдвинуты по фазе на π/2. Следователь­но, ток достигает максимального значения в те моменты времени, ко­гда заряд (напряжение) на обкладках конденсатора равен нулю, и наоборот.

При зарядке конденсатора между его обкладками появляется электрическое поле, энергия которого

или

При разрядке конденсатора на катушку индуктивности в ней возникает магнитное поле, энергия которого

В идеальном контуре максимальная энергия электрического поля равна максимальной энергии магнитного поля:

Энергия заряженного конденсатора периодически изменяется со временем по закону

или

Учитывая, что
, получаем

Энергия магнитного поля соленоида изменяется со временем по закону

(17.6)

Учитывая, что I m =q m ω 0 , получаем

(17.7)

Полная энергия электромагнитного поля колебательного контура равна

W =W э +W м = (17.8)

В идеальном контуре суммарная энергия сохраняется, электромагнитные колебания незатухающие.

    Затухающие электромагнитные колебания

Реальный колебательный контур обладает омическим сопротивлением, поэтому колебания в нём затухают. Применительно к этому контуру закон Ома для полной цепи запишем в виде

(17.9)

Преобразовав это равенство:

и сделав замену:

и
,где β- коэффициент затухания получим

(17.10) - это дифференциальное уравнение затухающих электромагнитных колебаний .

Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими (рис. 17.5). При малых затуханиях ω ≈ ω 0 , решением дифференциального уравнения будет уравнение вида

(17.11)

Затухающие колебания в электрическом контуре аналогичны затухающим механическим колебаниям груза на пружине при наличии вязкого трения.

Логарифмический декремент затухания равен

(17.12)

Интервал времени
в течение, которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называетсявременем затухания .

Добротность Q колебательной системы определяется по формуле:

(17.13)

Для RLC-контура добротность Q выражается формулой

(17.14)

Добротность электрических контуров, применяемых в радиотехнике, обычно порядка нескольких десятков и даже сотен.

Электрическая цепь, состоящая из катушки индуктивности и конденсатора (см. рисунок), называется колебательным контуром. В этой цепи могут происходить своеобразные электрические колебания. Пусть, например, в начальный момент времени мы заряжаем пластины конденсатора положительным и отрицательным зарядами, а затем разрешим зарядам двигаться. Если бы катушка отсутствовала, конденсатор начал бы разряжаться, в цепи на короткое время возник электрический ток, и заряды пропали бы. Здесь же происходит следующее. Сначала благодаря самоиндукции катушка препятствует увеличению тока, а затем, когда ток начинает убывать, препятствует его уменьшению, т.е. поддерживает ток. В результате ЭДС самоиндукции заряжает конденсатор с обратной полярностью: та пластина, которая изначально была заряжена положительно, приобретает отрицательный заряд, вторая - положительный. Если при этом не происходит потерь электрической энергии (в случае малого сопротивления элементов контура), то величина этих зарядов будет такая же, как величина первоначальных зарядов пластин конденсатора. В дальнейшем движение процесс перемещения зарядов будет повторяться. Таким образом, движение зарядов в контуре представляет собой колебательный процесс.

Для решения задач ЕГЭ, посвященных электромагнитным колебаниям, нужно запомнить ряд фактов и формул, касающихся колебательного контура. Во-первых, нужно знать формулу для периода колебаний в контуре. Во-вторых, уметь применять к колебательному контуру закон сохранения энергии. И, наконец (хотя такие задачи встречаются редко), уметь использовать зависимости силы тока через катушку и напряжения на конденсаторе от времени

Период электромагнитных колебаний в колебательном контуре определяется соотношением:

где и - заряд на конденсаторе и сила тока в катушке в этот момент времени, и - емкость конденсатора и индуктивность катушки. Если электрическое сопротивление элементов контура мало, то электрическая энергия контура (24.2) остается практически неизменной, несмотря на то, что заряд конденсатора и ток в катушке изменяются с течением времени. Из формулы (24.4) следует, что при электрических колебаниях в контуре происходят превращения энергии: в те моменты времени, когда ток в катушке равен нулю, вся энергия контура сводится к энергии конденсатора. В те моменты времени, когда равен нулю заряд конденсатора, энергия контура сводится к энергии магнитного поля в катушке. Очевидно, в эти моменты времени заряд конденсатора или ток в катушке достигают своих максимальных (амплитудных) значений.

При электромагнитных колебаниях в контуре заряд конденсатора изменяется с течением времени по гармоническому закону:

стандартной для любых гармонических колебаний. Поскольку сила тока в катушке представляет собой производную заряда конденсатора по времени, из формулы (24.4) можно найти зависимость силы тока в катушке от времени

В ЕГЭ по физике часто предлагаются задачи на электромагнитные волны. Необходимый для решения этих задач минимум знаний включает в себя понимание основных свойств электромагнитной волны и знание шкалы электромагнитных волн. Сформулируем кратко эти факты и принципы.

Согласно законам электромагнитного поля переменное магнитное поле порождает поле электрическое, переменное электрическое поле порождает поле магнитное. Поэтому если одно из полей (например, электрическое) начнет меняться, возникнет второе поле (магнитное), которое затем снова порождает первое (электрическое), затем снова второе (магнитное) и т.д. Процесс взаимного превращения друг в друга электрического и магнитного полей, который может распространяться в пространстве, называется электромагнитной волной. Опыт показывает, что направления, в которых колеблются векторы напряженности электрического и индукции магнитного поля в электромагнитной волне перпендикулярны направлению ее распространения. Это означает, что электромагнитные волны являются поперечными. В теории электромагнитного поля Максвелла доказывается, что электромагнитная волна создается (излучается) электрическими зарядами при их движении с ускорением. В частности, источником электромагнитной волны является колебательный контур.

Длина электромагнитной волны , ее частота (или период ) и скорость распространения связаны соотношением, которое справедливо для любой волны (см. также формулу (11.6)):

Электромагнитные волны в вакууме распространяются со скоростью = 3 10 8 м/с, в среде скорость электромагнитных волн меньше, чем в вакууме, причем эта скорость зависит от частоты волны. Такое явление называется дисперсией волн. Электромагнитной волне присущи все свойства волн, распространяющихся в упругих средах: интерференция, дифракция, для нее справедлив принцип Гюйгенса. Единственное, что отличает электромагнитную волну, это то, что для ее распространения не нужна среда - электромагнитная волна может распространяться и в вакууме.

В природе наблюдаются электромагнитные волны с сильно отличающимися друг от друга частотами, и обладающие благодаря этому существенно различными свойствами (несмотря на одинаковую физическую природу). Классификация свойств электромагнитных волн в зависимости от их частоты (или длины волны) называется шкалой электромагнитных волн. Дадим краткий обзор этой шкалы.

Электромагнитные волны с частотой меньшей 10 5 Гц (т.е. с длиной волны, большей нескольких километров) называются низкочастотными электромагнитными волнами. Излучают волны такого диапазона большинство бытовых электрических приборов.

Волны с частотой от 10 5 до 10 12 Гц называются радиоволнами. Этим волнам отвечают длины волн в вакууме от нескольких километров до нескольких миллиметров. Эти волны применяются для радиосвязи, телевидения, радиолокации, сотовых телефонов. Источниками излучения таких волн являются заряженные частицы, движущиеся в электромагнитных полях. Радиоволны излучаются также свободными электронами металла, которые совершают колебания в колебательном контуре.

Область шкалы электромагнитных волн с частотами, лежащими в интервале 10 12 - 4,3 10 14 Гц (и длинами волн от нескольких миллиметров до 760 нм) называется инфракрасным излучением (или инфракрасными лучами). Источником такого излучения служат молекулы нагретого вещества. Человек излучает инфракрасные волны с длиной волны 5 - 10 мкм.

Электромагнитное излучение в интервале частот 4,3 10 14 - 7,7 10 14 Гц (или длин волн 760 - 390 нм) воспринимается человеческим глазом как свет и называется видимым светом. Волны различных частот внутри этого диапазона воспринимаются глазом, как имеющие различный цвет. Волна с самой маленькой частотой из видимого диапазона 4,3 10 14 воспринимается как красная, с самой большой частотой внутри видимого диапазона 7,7 10 14 Гц - как фиолетовая. Видимый свет излучается при переходе электронов в атомах, молекулами твердых тел, нагретых до 1000 °С и более.

Волны с частотой 7,7 10 14 - 10 17 Гц (длина волны от 390 до 1 нм) принято называть ультрафиолетовым излучением. Ультрафиолетовое излучение имеет выраженное биологическое действие: оно способно убивать ряд микроорганизмов, способно вызвать усиление пигментации человеческой кожи (загар), при избыточном облучении в отдельных случаях может способствовать развитию онкологических заболеваний (рак кожи). Ультрафиолетовые лучи содержатся в излучении Солнца, в лабораториях создаются специальными газоразрядными (кварцевыми) лампами.

За областью ультрафиолетового излучения лежит область рентгеновских лучей (частота 10 17 - 10 19 Гц, длина волны от 1 до 0,01 нм). Эти волны излучаются при торможении в веществе заряженных частиц, разогнанных напряжением 1000 В и более. Обладают способностью проходить сквозь толстые слои вещества, непрозрачного для видимого света или ультрафиолетового излучения. Благодаря этому свойству рентгеновские лучи широко используются в медицине для диагностики переломов костей и ряда заболеваний. Рентгеновские лучи оказывают губительное действие на биологические ткани. Благодаря этому свойству их можно использовать для лечения онкологических заболеваний, хотя при избыточном облучении они смертельно опасны для человека, вызывая целый ряд нарушений в организме. Из-за очень малой длины волны волновые свойства рентгеновского излучения (интерференцию и дифракцию) можно обнаружить только на структурах, сравнимых с размерами атомов.

Гамма-излучением (-излучением) называют электромагнитные волны с частотой, большей, чем 10 20 Гц (или длиной волны, меньшей 0,01 нм). Возникают такие волны в ядерных процессах. Особенностью -излучения является его ярко выраженные корпускулярные свойства (т.е. это излучение ведет себя как поток частиц). Поэтому о -излучении часто говорят как о потоке -частиц.

В задаче 24.1.1 для установления соответствия между единицами измерений используем формулу (24.1), из которой следует, что период колебаний в контуре с конденсатором емкостью 1 Ф и индуктивностью 1 Гн равен секунд (ответ 1 ).

Из графика, данного в задаче 24.1.2 , заключаем, что период электромагнитных колебаний в контуре составляет 4 мс (ответ 3 ).

По формуле (24.1) находим период колебаний в контуре, данном в задаче 24.1.3 :
(ответ 4 ). Отметим, что согласно шкале электромагнитных волн такой контур излучает волны длинноволнового радиодиапазона.

Периодом колебания называется время одного полного колебания. Это значит, что если в начальный момент времени конденсатор заряжен максимальным зарядом (задача 24.1.4 ), то через половину периода конденсатор будет также заряжен максимальным зарядом, но с обратной полярностью (та пластина, которая изначально была заряжена положительно, будет заряжена отрицательно). А максимальный в контуре ток будет достигаться между этими двумя моментами, т.е. через четверть периода (ответ 2 ).

Если увеличить индуктивность катушки в четыре раза (задача 24.1.5 ), то согласно формуле (24.1) период колебаний в контуре возрастет в два раза, а частота уменьшится в два раза (ответ 2 ).

Согласно формуле (24.1) при увеличении емкости конденсатора в четыре раза (задача 24.1.6 ) период колебаний в контуре увеличивается в два раза (ответ 1 ).

При замыкании ключа (задача 24.1.7 ) в контуре вместо одного конденсатора будут работать два таких же конденсатора, соединенных параллельно (см. рисунок). А поскольку при параллельном соединении конденсаторов их емкости складываются, то замыкание ключа приводит к двукратному увеличению емкости контура. Поэтому из формулы (24.1) заключаем, что период колебаний увеличивается в раз (ответ 3 ).

Пусть заряд на конденсаторе совершает колебания с циклической частотой (задача 24.1.8 ). Тогда согласно формулам (24.3)-(24.5) с той же частотой будет совершать колебаний ток в катушке. Это значит, что зависимость тока от времени может быть представлена в виде . Отсюда находим зависимость энергии магнитного поля катушки от времени

Из этой формулы следует, что энергия магнитного поля в катушке совершает колебания с удвоенной частотой, и, значит, с периодом, вдвое меньшим периода колебания заряда и тока (ответ 1 ).

В задаче 24.1.9 используем закон сохранения энергии для колебательного контура. Из формулы (24.2) следует, что для амплитудных значений напряжения на конденсаторе и тока в катушке справедливо соотношение

где и - амплитудные значения заряда конденсатора и тока в катушке. Из этой формулы с использованием соотношения (24.1) для периода колебаний в контуре находим амплитудное значение тока

ответ 3 .

Радиоволны - электромагнитные волны с определенными частотами. Поэтому скорость их распространения в вакууме равна скорости распространения любых электромагнитных волн, и в частности, рентгеновских. Эта скорость - скорость света (задача 24.2.1 - ответ 1 ).

Как указывалось ранее, заряженные частицы излучают электромагнитные волны при движении с ускорением. Поэтому волна не излучается только при равномерном и прямолинейном движении (задача 24.2.2 - ответ 1 ).

Электромагнитная волна - это особым образом изменяющиеся в пространстве и времени и поддерживающие друг друга электрическое и магнитное поля. Поэтому правильный ответ в задаче 24.2.3 - 2 .

Из данного в условии задачи 24.2.4 графика следует, что период данной волны - = 4 мкс. Поэтому из формулы (24.6) получаем м (ответ 1 ).

В задаче 24.2.5 по формуле (24.6) находим

(ответ 4 ).

С антенной приемника электромагнитных волн связан колебательный контур. Электрическое поле волны действует на свободные электроны в контуре и заставляет их совершать колебания. Если частота волны совпадает с собственной частотой электромагнитных колебаний, амплитуда колебаний в контуре возрастает (резонанс) и может быть зарегистрирована. Поэтому для приема электромагнитной волны частота собственных колебаний в контуре должна быть близка к частоте этой волны (контур должен быть настроен на частоту волны). Поэтому если контур нужно перенастроить с волны длиной 100 м на волну длиной 25 м (задача 24.2.6 ), собственная частота электромагнитных колебаний в контуре должна быть увеличена в 4 раза. Для этого согласно формулам (24.1), (24.4) емкость конденсатора следует уменьшить в 16 раз (ответ 4 ).

Согласно шкале электромагнитных волн (см. введение к настоящей главе), максимальной длиной из перечисленных в условии задачи 24.2.7 электромагнитных волн обладает излучение антенны радиопередатчика (ответ 4 ).

Среди перечисленных в задаче 24.2.8 электромагнитных волн максимальной частотой обладает рентгеновское излучение (ответ 2 ).

Электромагнитная волна является поперечной. Это значит, что векторы напряженности электрического поля и индукции магнитного поля в волне в любой момент времени направлены перпендикулярно направлению распространения волны. Поэтому при распространении волны в направлении оси (задача 24.2.9 ), вектор напряженности электрического поля направлен перпендикулярно этой оси. Следовательно, обязательно равна нулю его проекция на ось = 0 (ответ 3 ).

Скорость распространения электромагнитной волны - есть индивидуальная характеристика каждой среды. Поэтому при переходе электромагнитной волны из одной среду в другую (или из вакуума в среду) скорость электромагнитной волны изменяется. А что можно сказать о двух других параметрах волны, входящих в формулу (24.6), - длине волны и частоте . Будут ли они изменяться при переходе волны из одной среды в другую (задача 24.2.10 )? Очевидно, что частота волны не изменяется при переходе из одной среды в другую. Действительно, волна это колебательный процесс, в котором переменное электромагнитное поле в одной среде создает и поддерживает поле в другой среде благодаря именно этим изменениям. Поэтому периоды этих периодических процессов (а значит и частоты) в одной и другой среде должны совпадать (ответ 3 ). А поскольку скорость волны в разных средах разная, то из проведенных рассуждений и формулы (24.6) следует, что длина волны при ее переходе из одной среды в другую - изменяется.

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

1. Свободные электромагнитные колебания.

2. Апериодический разряд конденсатора. Постоянная времени. Зарядка конденсатора.

3. Электрический импульс и импульсный ток.

4. Импульсная электротерапия.

5. Основные понятия и формулы.

6. Задачи.

14.1. Свободные электромагнитные колебания

В физике колебаниями называют процессы, отличающиеся той или иной степенью повторяемости.

Электромагнитные колебания - это повторяющиеся изменения электрических и магнитных величин: заряда, тока, напряжения, а также электрического и магнитного полей.

Такие колебания возникают, например, в замкнутой цепи, содержащей конденсатор и катушку индуктивности (колебательный контур).

Незатухающие колебания

Рассмотрим идеальный колебательный контур, который не обладает активным сопротивлением (рис. 14.1).

Если зарядить конденсатор от сети постоянного напряжения (U c), установив ключ К в положение «1», а затем перевести ключ К в положение «2», то конденсатор начнет разряжаться через катушку индуктивности, и в цепи

Рис. 14.1. Идеальный колебательный контур (С - емкость конденсатора, L - индуктивность катушки)

появится нарастающий ток i (силу переменного тока обозначают строчной буквой i).

При этом в катушке возникает э.д.с. самоиндукции Е = -L*di/dt (см. формулу 10.15). В идеальном контуре (R = 0) э.д.с. равна напряжению на обкладках конденсатора U = q/C (см. формулу 10.16). Приравняв Е и U, получим

Период свободных колебаний определяется формулой Томпсона: T = 2π/ω 0 = 2π√LC . (14.6)

Рис. 14.2. Зависимость заряда, напряжения и тока от времени в идеальном колебательном контуре (незатухающие колебания)

Энергия электрического поля конденсатора W эл и энергия магнитного поля катушки W м периодически изменяются со временем:

Полная энергия (W) электромагнитных колебаний складывается из двух этих энергий. Поскольку в идеальном контуре отсутствуют потери, связанные с выделением теплоты, полная энергия свободных колебаний сохраняется:

Затухающие колебания

В обычных условиях все проводники обладают активным сопротивлением. Поэтому свободные колебания в реальном контуре затухают. На рисунке 14.3 активное сопротивление проводников изображает резистор R.

При наличии активного сопротивления э.д.с. самоиндукции равна сумме напряжений на резисторе и обкладках конденсатора:

После переноса всех слагаемых в левую часть и деления на индуктивность

Рис. 14.3. Реальный колебательный контур

катушки (L) получим дифференциальное уравнение свободных колебаний в реальном контуре:

График таких колебаний представлен на рис. 14.4.

Характеристикой затухания является логарифмический декремент затухания λ = βТ з = 2πβ/ω з, где Т з и ω з - период и частота затухающих колебаний соответственно.

Рис. 14.4. Зависимость заряда от времени в реальном колебательном контуре (затухающие колебания)

14.2. Апериодический разряд конденсатора. Постоянная времени. Зарядка конденсатора

Апериодические процессы возникают и в более простых случаях. Если, например, заряженный конденсатор соединить с резистором (рис. 14.5) или незаряженный конденсатор подключить к источнику постоянного напряжения (рис. 14.6), то после замыкания ключей колебаний не возникнет.

Разрядка конденсатора с начальным зарядом между пластинами q max происходит по экспоненциальному закону:

где τ = RC называется постоянной времени.

По такому же закону изменяется и напряжение на обкладках конденсатора:

Рис. 14.5. Разряд конденсатора через резистор

Рис. 14.6. Зарядка конденсатора от сети постоянного тока с внутренним сопротивлением r

При зарядке от сети постоянного тока напряжение на обкладках конденсатора нарастает по закону

где τ = rC также называется постоянной времени (r - внутреннее сопротивление сети).

14.3. Электрический импульс и импульсный ток

Электрический импульс - кратковременное изменение электрического напряжения или силы тока на фоне некоторого постоянного значения.

Импульсы подразделяются на две группы:

1) видеоимпульсы - электрические импульсы постоянного тока или напряжения;

2) радиоимпульсы - модулированные электромагнитные колебания.

Видеоимпульсы различной формы и пример радиоимпульса показаны на рис. 14.7.

Рис. 14.7. Электрические импульсы

В физиологии термином «электрический импульс» обозначают именно видеоимпульсы, характеристики которых имеют существенное значение. Для уменьшения возможной погрешности при измерениях условились выделять моменты времени, при которых параметры имеют значение 0,1U max и 0,9U max (0,1I max и 0,9I max). Через эти моменты времени выражают характеристики импульсов.

Рис.14.8. Характеристики импульса (а) и импульсного тока (б)

Импульсный ток - периодическая последовательность одинаковых импульсов.

Характеристики отдельного импульса и импульсного тока указаны на рис. 14.8.

На рисунке указаны:

14.4. Импульсная электротерапия

Электросонтерапия - метод лечебного воздействия на структуры головного мозга. Для этой процедуры применяют прямоугольные

импульсы с частотой 5-160 имп/с и длительностью 0,2-0,5 мс. Сила импульсного тока составляет 1-8 мА.

Транскраниальная электроанальгезия - метод лечебного воздействия на кожные покровы головы импульсными токами, вызывающими обезболивание или снижение интенсивности болевых ощущений. Режимы воздействия показаны на рис. 14.9.

Рис. 14.9. Основные виды импульсных токов, используемых при транскраниальной электроанальгезии:

а) прямоугольные импульсы напряжением до 10 В, частотой 60-100 имп/с, длительностью 3,5-4 мс, следующие пачками по 20-50 импульсов;

б) прямоугольные импульсы постоянной (б) и переменной (в) скважности продолжительностью 0,15-0,5 мс, напряжением до 20 В, следующие с частотой

Выбор параметров (частоты, длительности, скважности, амплитуды) осуществляется индивидуально для каждого больного.

Диадинамотерапия использует полусинусоидальные импульсы

(рис. 14.10).

Токи Бернара представляют собой диадинамические токи - импульсы с задним фронтом, имеющим форму экспоненты, частота этих токов 50-100 Гц. Возбудимые ткани организма быстро адаптируются к таким токам.

Электростимуляция - метод лечебного применения импульсных токов для восстановления деятельности органов и тканей, утративших нормальную функцию. Лечебный эффект обусловлен тем физиологическим действием, которое оказывают на ткани организ-

Рис. 14.10. Основные виды диадинамических токов:

а) однополупериодный непрерывный ток с частотой 50 Гц;

б) двухполупериодный непрерывный ток с частотой 100 Гц;

в) однополупериодный ритмический ток - прерывистый однополупериодный ток, посылки которого чередуются с паузами равной длительности

г) ток, модулированный разными по длительности периодами

ма импульсы с высокой крутизной фронта. При этом происходит быстрый сдвиг ионов из установившегося положения, оказывающий на легковозбудимые ткани (нервную, мышечную) значительное раздражающее действие. Это раздражающее действие пропорционально скорости изменения силы тока, т.е. di/dt.

Основные виды импульсных токов, используемых в этом методе, показаны на рис. 14.11.

Рис. 14.11. Основные виды импульсных токов, используемых для электростимуляции:

а) постоянный ток с прерыванием;

б) импульсный ток прямоугольной формы;

в) импульсный ток экспоненциальной формы;

г) импульсный ток треугольной остроконечной формы

На раздражающее действие импульсного тока особенно сильно влияет крутизна нарастания переднего фронта.

Электропунктура - лечебное воздействие импульсных и переменных токов на биологически активные точки (БАТ). По современным представлениям такие точки являются морфофункционально обособленными участками тканей, расположенными в подкожной жировой клетчатке. Они имеют повышенную электропроводность по отношению к окружающим их участкам кожи. На этом свойстве основано действие приборов для поиска БАТ и воздействия на них (рис. 14.12).

Рис. 14.12. Прибор для электропунктуры

Рабочее напряжение измерительных приборов не превышает 2 В.

Измерения проводятся следующим образом: нейтральный электрод пациент держит в руке, а оператор прикладывает к исследуемой БАТ измерительный электрод-щуп малой площади (точечные электроды). Экспериментально показано, что сила тока, протекающего в измерительной цепи, зависит от давления электрода-щупа на поверхность кожи (рис. 14.13).

Поэтому всегда имеется разброс в измеряемой величине. Кроме того, упругость, толщина, влажность кожи на различных участках тела и у различных людей разная, поэтому нельзя ввести единую норму. Следует особо отметить, что механизмы электрического раздражения

Рис. 14.13. Зависимость силы тока от давления щупа на кожу

БАТ нуждаются в строгом научном обосновании. Необходимо корректное сравнение с концепциями нейрофизиологии.

14.5. Основные понятия и формулы

Окончание таблицы

14.6. Задачи

1. В качестве датчика медико-биологической информации используют конденсаторы с изменяющимся расстоянием между пластинами. Найти отношение изменения частоты к частоте собственных колебаний в контуре, включающем такой конденсатор, если расстояние между пластинами уменьшилось на 1 мм. Первоначальное расстояние равно 1 см.

2. Колебательный контур аппарата для терапевтической диатермии состоит из катушки индуктивности и конденсатора емкостью

С = 30 Ф. Определить индуктивность катушки, если частота генератора 1 МГц.

3. Конденсатор емкостью С = 25 пФ, заряженный до разности потенциалов U = 20 В, разряжается через реальную катушку сопротивлением R = 10 Ом и индуктивностью L = 4 мкГн. Найти логарифмический декремент затухания λ.

Решение

Система представляет собой реальный колебательный контур. Коэффициент затухания β = R/(2L) = 20/(4х10 -6) = 5х10 6 1/с. Логарифмический декремент затухания

4. Фибрилляция желудочков сердца заключается в их хаотическом сокращении. Большой кратковременный ток, пропущенный через область сердца, возбуждает клетки миокарда, и может восстановиться нормальный ритм сокращения желудочков. Соответствующий аппарат называется дефибриллятором. Он представляет собой конденсатор, который заряжается до значительного напряжения и затем разряжается через электроды, приложенные к телу больного в области сердца. Найти значение максимального тока при действии дефибриллятора, если он был заряжен до напряжения U = 5 кВ, а сопротивление участка тела человека равно 500 Ом.

Решение

I = U/R = 5000/500 = 10 А. Ответ: I = 10 А.