Какие бывают формулы сокращенного умножения. Формулы сокращенного умножения — Гипермаркет знаний

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 - у 2 = (х - у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х - у) 2 = х 2 - 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х - у) 3 = х 3 - 3х 2 у + 3ху 2 - у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 - ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 - у 3 = (х - у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

>>Математика: Формулы сокращенного умножения

Формулы сокращенного умножения

Имеется несколько случаев, когда умножение одного многочлена на другой приводит к компактному, легко запоминающемуся результату. В этих случаях предпочтительнее не умножать каждый раз один многочлен на другой, а пользоваться готовым результатом. Рассмотрим эти случаи.

1. Квадрат суммы и квадрат разности:

Пример 1. Раскрыть скобки в выражении:

а) (Зх + 2) 2 ;

б) (5а 2 - 4b 3) 2

а) Воспользуемся формулой (1), учтя, что в роли а выступает Зх, а в роли b - число 2.
Получим:

(Зх + 2) 2 = (Зх) 2 + 2 Зх 2 + 2 2 = 9x 2 + 12x + 4.

б) Воспользуемся формулой (2) , учтя, что в роли а выступает5а 2 , а в ролиb выступает 4b 3 . Получим:

(5а 2 -4b 3) 2 = (5а 2) 2 - 2- 5a 2 4b 3 + (4b 3) 2 = 25a 4 -40a 2 b 3 + 16b 6 .

При использовании формул квадрата суммы или квадрата разности учитывайте, что
(- a - b) 2 = (а + b) 2 ;
(b-a) 2 = (a-b) 2 .

Это следует из того, что (- а) 2 = а 2 .

Отметим, что на формулах (1) и (2) основаны некоторые математические фокусы, позволяющие производить вычисления в уме.

Например, можно практически устно возводить в квадрат числа, оканчивающиеся на 1 и 9. В самом деле

71 2 = (70 + 1) 2 = 70 2 + 2 70 1 + 1 2 = 4900 + 140 + 1 = 5041;
91 2 = (90 + I) 2 = 90 2 + 2 90 1 + 1 2 = 8100 + 180 + 1 = 8281;
69 2 = (70 - I) 2 = 70 2 - 2 70 1 + 1 2 = 4900 - 140 + 1 = 4761.

Иногда можно быстро возвести в квадрат и число, оканчивающееся цифрой 2 или цифрой 8. Например,

102 2 = (100 + 2) 2 = 100 2 + 2 100 2 + 2 2 = 10 000 + 400 + 4 = 10 404;

48 2 = (50 - 2) 2 = 50 2 - 2 50 2 + 2 2 = 2500 - 200 + 4 = 2304.

Но самый элегантный фокус связан с возведением в квадрат чисел, оканчивающихся цифрой 5.
Проведем соответствующие рассуждения для 85 2 .

Имеем:

85 2 = (80 + 5) 2 = 80 2 + 2 80 5 + 5 2 =-80 (80+ 10)+ 25 = 80 90 + 25 = 7200 + 25 = 7225.

Замечаем, что для вычисления 85 2 достаточно было умножить 8 на 9 и к полученному результату приписать справа 25. Аналогично можно поступать и в других случаях. Например, 35 2 = 1225 (3 4 = 12 и к полученному числу приписали справа 25);

65 2 = 4225; 1252 = 15625 (12 18 = 156 и к полученному числу приписали справа 25).

Раз уж мы с вами заговорили о различных любопытных обстоятельствах, связанных со скучными (на первый взгляд) формулами (1) и (2), то дополним этот разговор следующим геометрическим рассуждением. Пусть а и b - положительные числа. Рассмотрим квадрат со стороной а + b и вырежем в двух его углах квадраты со сторонами, соответственно равными а и b (рис. 4).


Площадь квадрата со стороной а + b равна (а + b) 2 . Но этот квадрат мы разрезали на четыре части: квадрат со стороной а (его площадь равна а 2), квадрат со стороной b (его площадь равна b 2), два прямоугольника со сторонами а и b (площадь каждого такого прямоугольника равна ab). Значит, (а + b) 2 = а 2 + b 2 + 2аb, т. е. получили формулу (1).

Умножим двучлен а + b на двучлен а - b. Получим:
(а + b) (а - b) = а 2 - аb + bа - b 2 = а 2 - b 2 .
Итак

Любое равенство в математике употребляется как слева направо (т.е. левая часть равенства заменяется его правой частью), так и справа налево (т.е. правая часть равенства заменяется его левой частью). Если формулу C) использовать слева направо, то она позволяет заменить произведение (а + b) (а - b) готовым результатом а 2 - b 2 . Эту же формулу можно использовать справа налево, тогда она позволяет заменить разность квадратов а 2 - b 2 произведением (а + b) (а - b). Формуле (3) в математике дано специальное название - разность квадратов.

Замечание. Не путайте термины «разность квадратов» к и «квадрат разности». Разность квадратов - это а 2 - b 2 , значит, речь идет о формуле (3); квадрат разности - это (a- b) 2 , значит речь идет о формуле (2). На обычном языке формулу (3) читают «справа налево» так:

разность квадратов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на их разность,

Пример 2. Выполнить умножение

(3x- 2y)(3x+ 2y)
Решение. Имеем:
(Зх - 2у) (Зх + 2у)= (Зx) 2 - (2у) 2 = 9x 2 - 4y 2 .

Пример 3. Представить двучлен 16x 4 - 9 в виде произведения двучленов.

Решение. Имеем: 16x 4 =(4x 2) 2 , 9 = З 2 , значит, заданный двучлен есть разность квадратов, т.е. к нему можно применить формулу (3), прочитанную справа налево. Тогда получим:

16x 4 - 9 = (4x 2) 2 - З 2 = (4x 2 + 3)(4x 2 - 3)

Формула (3), как и формулы (1) и (2), используется для математических фокусов. Смотрите:

79 81 = (80 - 1) (80 + 1) - 802 - I2 = 6400 - 1 = 6399;
42 38 = D0 + 2) D0 - 2) = 402 - 22 = 1600 - 4 = 1596.

Завершим разговор о формуле разности квадратов любопытным геометрическим рассуждением. Пусть а и b - положительные числа, причем а > b. Рассмотрим прямоугольник со сторонами а + b и а - b (рис. 5). Его площадь равна (а + b) (а - b). Отрежем прямоугольник со сторонами b и а - b и подклеим его к оставшейся части так, как показано на рисунке 6. Ясно, что полученная фигура имеет ту же площадь, т. е. (а + b) (а - b). Но эту фигуру можно
построить так: из квадрата со стороной а вырезать квадрат со стороной b (это хорошо видно на рис. 6). Значит, площадь новой фигуры равна а 2 - b 2 . Итак, (а + b) (а - b) = а 2 - b 2 , т. е. получили формулу (3).

3. Разность кубов и сумма кубов

Умножим двучлен а - b на трехчлен а 2 + ab + b 2 .
Получим:
(a - b) (а 2 + ab + b 2) = а а 2 + а ab + а b 2 - b а 2 - b аb -b b 2 = а 3 + а 2 b + аb 2 -а 2 b-аb 2 -b 3 = а 3 -b 3 .

Аналогично

(а + b) (а 2 - аb + b 2) = а 3 + b 3

(проверьте это сами). Итак,

Формулу (4) обычно называют разностью кубов , формулу(5) - суммой кубов. Попробуем перевести формулы (4) и (5) на обычный язык. Прежде чем это сделать, заметим, что выражение a 2 + ab + b 2 похоже на выражение а 2 + 2ab + b 2 , которое фигурировало в формуле (1) и давало (а + b) 2 ; выражение а 2 - ab + b 2 похоже на выражение а 2 - 2ab + b 2 , которое фигурировало в формуле (2) и давало (а - b) 2 .

Чтобы отличить (в языке) эти пары выражений друг от друга, каждое из выражений а 2 + 2ab + b 2 и а 2 - 2ab + b 2 называют полным квадратом (суммы или разности), а каждое из выражений а 2 + ab + b 2 и а 2 - ab + b 2 называют неполным квадратом (суммы или разности). Тогда получается следующий перевод формул (4) и (5) (прочитанных «справа налево») на обычный язык:

разность кубов двух чисел (выражений) равна произведению разности этих чисел (выражений) на неполный квадрат их суммы; сумма кубов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на неполный квадрат их разности.

Замечание. Все полученные в этом параграфе формулы (1)-(5) используются как слева направо, так и справа налево, только в первом случае (слева направо) говорят, что (1)-(5) - формулы сокращенного умножения, а во втором случае (справа налево) говорят, что (1)-(5) - формулы разложения на множители.

Пример 4. Выполнить умножение (2х- 1)(4x 2 + 2х +1).

Решение. Так как первый множитель есть разность одночленов 2х и 1, а второй множитель - неполный квадрат их суммы, то можно воспользоваться формулой (4). Получим:

(2х - 1)(4x 2 + 2х + 1) = (2x) 3 - I 3 = 8x 3 - 1.

Пример 5. Представить двучлен 27а 6 + 8b 3 в виде произведения многочленов.

Решение. Имеем: 27а 6 = (За 2) 3 , 8b 3 =(2b) 3 . Значит, заданный двучлен есть сумма кубов, т. е. к нему можно применить формулу 95), прочитанную справа налево. Тогда получим:

27а 6 + 8b 3 = (За 2) 3 + (2b) 3 = (За 2 + 2Ь) ((За 2) 2 - За 2 2Ь + (2b) 2) = (За 2 + 2Ь) (9а 4 - 6а 2 Ь + 4b 2).

Помощь школьнику онлайн , Математика для 7 класса скачать , календарно-тематическое планирование

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .

Применяют для упрощения вычислений, а также разложение многочленов на множители, быстрого умножения многочленов. Большинство формул сокращенного умножения можно получить из бинома Ньютона - в этом Вы скоро убедитесь.

Формулы для квадратов применяют в вычислениях чаще. Их начинают изучать в школьной программе начиная с 7 класса и до конца обучения формулы для квадратов и кубов школьники должны знать на зубок.

Формулы для кубов не сильно сложные и их нужно знать при сведении многочленов к стандартному виду, для упрощения подъема суммы или разности переменной и числа к кубу.

Формулы обозначены красным получают из предыдущих группировкой подобных слагаемых.

Формулы для четвертого и пятого степени в школьном курсе мало кому пригодятся, однако есть задачи при изучении высшей математики где нужно вычислять коэффициенты при степенях.


Формулы для степени n расписаны через биномиальные коэффициенты с использованием факториалов следующие

Примеры применения формул сокращенного умножения

Пример 1. Вычислить 51^2.

Решение. Если есть калькулятор то без проблем находите

Это я пошутил - с калькулятором мудрые все, без него... (не будем о грустном).

Не имея калькулятора и зная приведенные выше правила квадрат числа находим по правилу

Пример 2. Найти 99^2.

Решение. Применим вторую формулу

Пример 3. Возвести в квадрат выражение
(x+y-3).

Решение. Сумму первых двух слагаемых мысленно считаем одним слагаемым и по второй формуле сокращенного умножения имеем

Пример 4. Найти разность квадратов
11^2-9^2.

Решение. Поскольку числа небольшие то можно просто подставить значения квадратов

Но цель у нас совсем другая - научиться использовать формулы сокращенного умножения для упрощения вычислений. Для этого примера применим третью формулу

Пример 5. Найти разность квадратов
17^2-3^2 .

Решение. На этом примере Вы уже захотите изучить правила чтобы вычисления свести к одной строке

Как видите - ничего удивительного мы не делали.

Пример 6. Упростить выражение
(x-y)^2-(x+y)^2.

Решение. Можно раскладывать квадраты, а позже сгруппировать подобные слагаемые. Однако можно прямо применить разность квадратов

Просто и без длинных решений.

Пример 7. Возвести в куб многочлен
x^3-4.

Решение . Применим 5 формулу сокращенного умножения

Пример 8. Записать в виде разности квадратов или их сумме
а) x^2-8x+7
б) x^2+4x+29

Решение. а) Перегруппируем слагаемые

б) Упрощаем на основе предыдущих рассуждений

Пример 9. Разложить рациональную дробь

Решение. Применим формулу разности квадратов

Составим систему уравнений для определения констант

К утроенному первому уравнению добавим второе. Найденное значение подставляем в первое уравнение

Окончательно разложение примет вид

Разложить рациональную дробь часто необходимо перед интегрированием, чтобы снизить степень знаменателя.

Пример 10. Используя бином Ньютона расписать
выражение (x-a)^7.

Решение. Что такое бином Ньютона Вы вероятно уже знаете. Если нет то ниже приведены биномиальные коэффициенты

Они образуются следующим образом: по краю идут единицы, коэффициенты между ними в нижней строке образуют суммированием соседних верхних. Если ищем разницу в каком-то степени, то знаки в расписании чередуются от плюса к минусу. Таким образом для седьмого порядка получим такой расклад

Внимательно также посмотрите как меняются показатели - для первой переменной они уменьшаются на единицу в каждом следующем слагаемом, соответственно для второй - на единицу растут. В сумме показатели всегда должны быть равны степени разложения (=7 ).

Думаю на основе приведенного выше материала Вы сможете решить задачи на бином Ньютона. Изучайте формулы сокращенного умножения и применяйте везде, где это может упростить вычисления и сэкономит время выполнения задания.

Ключевые слова:

квадрат суммы, квадрат разности, куб суммы, куб разности, разность квадратов, сумма кубов, разность кубов

    Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй величины. (a+b) 2 =a 2 +2ab+b 2

  • Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй.величины (a-b) 2 =a 2 -2ab+b 2
  • Произведение суммы двух величин на их разность равно разности их квадратов . (a+b)(a-b)=a 2 -b 2
  • К уб суммы двух величин равен кубу первой величины плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй.

    (a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3

  • К уб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй.

    (a-b) 3 =a 3 -3a 2 b+3ab 2 -b 3

  • Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов . (a+b)(a 2 -ab+b 2)=a 3 +b 3
  • Произведение разности двух величин на неполный квадрат суммы равно разности их кубов.

    (a - b)(a 2 +ab+b 2)=a 3 - b 3

Очень часто приведение многочлена к стандартному виду можно осуществить путём применения формул сокращённого умножения. Все они доказываются непосредственным раскрытием скобок и приведением подобных слагаемых. Формулы сокращённого умножения нужно знать наизусть:

Пример . Докажем формулу a 3 +b 3 = (a + b )(a 2 – ab + b 2).

Имеем: (a + b )(a 2 – ab + b 2) = a 3 – a 2 b + ab 2 + ba 2 – ab 2 – b 3

Приводя подобные слагаемые, мы видим, что

(a + b )(a 2 – ab + b 2) = a 3 +b 3 , что и доказывает нужную формулу.

Аналогично доказывается, что (a - b )(a 2 + ab + b 2) = a 3 – b 3

Мало просто знать наизусть формулы сокращенного умножения. Надо еще научиться видеть в конкретном алгебраическом выражении эту формулу.

Например:

49m 2 – 42mn + 9n 2 = (7m – 3n) 2

Или другой пример, посложнее:

Тут 3x 2 можно представить как ( √ 3x) 2

Полезно еще и знать, как возводить двучлен в степень большую, чем 3. Формула, позволяющая выписывать разложение алгебраической суммы двух слагаемых произвольной степени, впервые была предложена Ньютоном в 1664–1665 г. и получила название бинома Ньютона. Коэффициенты формулы называются биномиальными коэффициентами. Если n – положительное целое число, то коэффициенты обращаются в нуль при любом k > n, поэтому разложение содержит лишь конечное число членов. Во всех остальных случаях разложение представляет собой бесконечный (биномиальный) ряд. (Условия сходимости биномиального ряда впервые были установлены в начале 19 в. Н.Абелем.) Такие частные случаи, как

(a+b) 2 =a 2 +2ab+b 2 и (a+b) 3 =a 3 +3a 2 b+3ab 2 + b 3

были известны задолго до Ньютона. Если n – положительное целое число, то биномиальный коэффициент при a n-k b k в формуле бинома есть число комбинаций из n по k , обозначаемое C k n . При небольших значениях n коэффициенты можно найти из треугольника Паскаля :

в котором каждое из чисел за исключением единиц равно сумме двух соседних чисел, стоящих строкой выше. Для данного n соответствующая (n-я) строка треугольника Паскаля дает по порядку коэффициенты биномиального разложения n-й степени, в чем нетрудно убедиться при n = 2 и n = 3.