История создания квадратных уравнений. Из истории возникновения квадратных уравнений. способов решения квадратных уравнений

Главная > Доклад

МОУ СОШ имени Героев Советского Союза
Сотникова А.Т. и Шепелёва Н. Г. с.Урицкое

Доклад на тему:

«История возникновения

квадратных уравнений»

Подготовили: Изотова Юлия,
Амплеева Елена,
Шепелёв Николай,

Дяченко Юрий.

О математика. В веках овеяна ты славой,

Светило всех земных светил.

Тебя царицей величавой

Недаром Гаусс окрестил.

Строга, логична, величава,

Стройна в полете, как стрела,

Твоя немеркнущая слава

В веках бессмертье обрела.

Мы славим разум человека,

Дела его волшебных рук,

Надежду нынешнего века,

Царицу всех земных наук.

Поведать мы сегодня вам хотим

Историю возникновения

Того, что каждый школьник должен знать –

Историю квадратных уравнений.

Евклид, в III век до н. э. отвел геометрической алгебре в своих «Началах» всю вторую книгу, где собран весь необходимый материал для решения квадратных уравнений.

Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике

Ведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. Герон – греческий математик и инженер впервые в Греции в I век н.э. дает чисто алгебраический способ решения квадратного уравнения.

Герон Александрийский; Heron, I в. н. э., греческий механик и математик. Время его жизни неопределенно, известно только, что он цитировал Архимеда (который умер в 212 г. до н. э.), его же самого цитировал Папп (ок. 300 г. н. э.). В настоящее время преобладает мнение, что он жил в I в. н. э. Занимался геометрией, механикой, гидростатикой, оптикой; изобрел прототип паровой машины и точные нивелировочные инструменты. Наибольшей популярностью пользовались такие автоматы Г., как автоматизированный театр, фонтаны и др. Г. описал теодолит, опираясь на законы статики и кинетики, привел описание рычага, блока, винта, военных машин. В оптике сформулировал законы отражения света, в математике - способы измерения важнейших геометрических фигур. Основные произведения Г. - это Иетрика, Пневматика, Автоматопоэтика, Механика (фр.; произведение сохранилось целиком по-арабски), Катоптика (наука о зеркалах; сохранилась только в латинском переводе) и др. Г. использовал достижения своих предшественников: Евклида, Архимеда, Стратона из Лампсака. Его стиль простой и ясный, хотя порой бывает чересчур лаконичен или нестроен. Интерес к сочинениям Г. возник в III в. н. э. Греческие, а затем византийские и арабские ученики комментировали и переводили его произведения.

Диофант – греческий ученый в III век н.э., не прибегая к геометрии, чисто алгебраическим путем решал некоторые квадратные уравнения, причем само уравнение и его решение записывал в символической форме

«Я расскажу вам, как составлял и решал квадратные уравнения греческий математик Диофант. Вот, к примеру, одна из его задач: «Найти два числа, зная, что их сумма равна 20, а их произведение 96».

1. Из условия задачи вытекает, что искомые числа не равны, т.к. если бы они были равны, то их произведение равнялось бы не 96, а 100.

2. Т.о. одно из них будет больше половины их суммы, т.е. 10 + x, другое же меньше, т.е. 10 – х.

3. Разность между ними 2х.

4. Отсюда уравнение (10 + x) * (10 – x) = 96

100 – х 2 = 96 х 2 – 4 = 0

5. Ответ x = 2 . Одно из искомых чисел равно 12,
другое - 8. Решение x = - 2 для Диофанта не существует, т.к. гре-ческая математика знала только положительные числа.» Диофант умел решать очень сложные уравнения, применял для неизвестных буквенные обозначения, ввёл специальный символ для вычисления, использовал сокращения слов. Бхаскаре – Акариа – индийский математик в XII век н.э. открыл общий метод решения квадратных уравнений.

Разберём одну из задач индийских математиков, например, задачу Бхаскары:

«Стая обезьян забавляется: восьмая часть всего числа их в квадрате резвится в лесу, остальные двенадцать кричат на вершине холмика. Скажите мне, сколько всех обезьян?»

Комментируя задачу, хочется сказать, что задаче соответствует уравнение (х/8) 2 + 12 = x . Бхаскара пишет под видом x 2 – 64х = - 768. Прибавляя к обеим частям квадрат 32, уравнение примет вид:

x 2 – 64 x + 32 2 = - 768 + 1024

(x – 32) 2 = 256

После извлечения квадратного корня получаем: x – 32 =16.

«В данном случае, говорит Бхаскара, - отрицательные единицы первой части таковы, что единицы второй части меньше их, а потому последние можно считать и положительными и отрицательными, и получаем двойное значение неизвестного: 48 и 16».

Необходимо сделать вывод: решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Предлагается решить старинную индийскую задачу Бхаскары:

«Квадрат пятой части обезьян, уменьшенный на три, спрятался в гроте, одна обезьяна влезла на дерево, была видна. Сколько было обезьян?» Следует заметить, что данная задача решается элементарно, сводясь к квадратному уравнению.
Аль – Хорезми
- арабский учёный, который в 825 г. написал книгу «Книга о восстановлении и противопоставлении». Это был первый в мире учебник алгебры. Он также дал шесть видов квадратных уравнений и для каждого из шести уравнений в словесной форме сформулировал особое правило его решения. В трактате Хорезми насчитывает 6 видов уравнений, выражая их следующим образом:

1.«Квадраты равны корням», т.е. ах 2 = вх.

2.«Квадраты равны числу», т.е. ах 2 = с.

3.«Корни равны числу», т.е. ах = с.

4.«Квадраты и числа равны корням», т.е. ах 2 + с = вх.

5.«Квадраты и корни равны числу», т.е. ах 2 + вх = с.

6.«Корни и числа равны квадратам», т.е. вх +с = ах 2 .

Разберём задачу аль – Хорезми, которая сводится к решению квадратного уравнения. «Квадрат и число равны корням.» Например, один квадрат и число 21 равны 10 корням того же квадрата, т.е. спрашивается, из чего образуется квадрат, который после прибавления к нему 21 делается равным 10 корням того же квадрата?»

Используя 4-ю формулу аль – Хорезми, ученики должны записать: х 2 + 21 = 10х

Франсуа Виет - французский мате-матик, сформулировал и доказал теорему о сумме и произведении корней приведённого квадратного уравнения.

Искусство, которое я излагаю, ново или по крайней мере было настолько испорчено временем искажено влиянием варваров, что я счел нужным придать ему совершенно новый вид.

Франсуа Виет

Иет Франсуа (1540-13.12. 1603) родился в городе Фонтене ле-Конт провинции Пуату, недалеко от знаменитой крепости Ла-Ро-шель. Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. Знал астрономию и математику и все свободное время отдавал этим наукам.

Главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики: Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся. Нельзя было записывать и, следовательно, начать в общем виде алгебраические сравнения или какие-нибудь другие алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят. Виет и его последователи установи, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка. Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Значит, их можно обозначать какими-либо отвлеченными знаками. Виет это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытий, поставив перед собой цель изучать не числа, а действия над ними. Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют "отцом" алгебры, основоположником буквенной символики.

Информационные ресурсы:

http:// som . fio . ru / Resources / Karpuhina /2003/12/ Complited %20 work / Concert / index 1. htm

http:// pages . marsu . ru / iac / school / s 4/ page 74. html

История развития решений квадратных уравнений

Аристотель

Д.И.Менделеев



Найти стороны поля, имеющего форму прямоугольника, если его площадь 12 , а

Рассмотрим эту задачу.

  • Пусть х – длина поля, тогда – его ширина,
  • – его площадь.
  • Составим квадратное уравнение:
  • В папирусе дано правило его решения: «Разделим 12 на ».
  • 12: .
  • Итак, .
  • «Длина поля равна 4», - указано в папирусе.


  • Приведенное квадратное уравнение
  • где – любые действительные числа.

В одной из вавилонских задач так же требовалось определить длину прямоугольного поля (обозначим ее) и его ширину ().

Сложив длину и две ширины прямоугольного поля, получишь 14, а площадь поля 24. Найти его стороны.

Составим систему уравнений:

Отсюда получаем квадратное уравнение.

Для его решения прибавим к выражению некоторое число,

чтобы получить полный квадрат:


Следовательно, .

Вообще же квадратное уравнение

Имеет два корня:




  • ДИОФАНТ
  • Древнегреческий математик, живший предположительно в III веке до н. э. Автор «Арифметики» - книги, посвящённой решению алгебраических уравнений.
  • В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел. Диофант также одним из первых развивал математические обозначения.

«Найдите два числа, зная, что их сумма равна 20, а произведение 96».

Одно из чисел будет больше половины их суммы, то есть 10+, другое же меньше, то есть 10-.

Отсюда уравнение ()()=96






Приведем одну из задач знаменитого

индийского математика XII века Бхаскары:

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать, повисая…

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?


  • Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.
  • Соответствующее решение уравнения
  • Бхаскара записывает в виде и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляем к обеим частям 32 2 , получая




«АЛЬ-ДЖЕБР» – ВОССТАНОВЛЕНИЕМ - АЛЬ-ХОРЕЗМИ НАЗЫВАЛ ОПЕРАЦИЮ ИСКЛЮЧЕНИЯ ИЗ ОБЕИХ ЧАСТЕЙ УРАВНЕНИЯ ОТРИЦАТЕЛЬНЫХ ЧЛЕНОВ ПУТЕМ ДОБАВЛЕНИЯ РАВНЫХ ЧЛЕНОВ, НО ПРОТИВОПОЛОЖНЫХ ПО ЗНАКУ.

«АЛЬ-МУКАБАЛА» – ПРОТИВОПОСТАВЛЕНИЕ – СОКРАЩЕНИЕ В ЧАСТЯХ УРАВНЕНИЯ ОДИНАКОВЫХ ЧЛЕНОВ.

ПРАВИЛО «АЛЬ-ДЖЕБР»

ПРИ РЕШЕНИИ УРАВНЕНИЯ

ЕСЛИ В ЧАСТИ ОДНОЙ,

БЕЗРАЗЛИЧНО КАКОЙ,

ВСТРЕТИТСЯ ЧЛЕН ОТРИЦАТЕЛЬНЫЙ,

МЫ К ОБЕИМ ЧАСТЯМ

РАВНЫЙ ЧЛЕН ПРИДАДИМ,

ТОЛЬКО С ЗНАКОМ ДРУГИМ,

И НАЙДЕМ РЕЗУЛЬТАТ ПОЛОЖИТЕЛЬНЫЙ.


1) квадраты равны корням, то есть;

2)квадраты равны числу, то есть;

3)корни равны числу, то есть;

4)квадраты и числа равны корням, т. е. ;

5)квадраты и корни равны числу, т. е. ;

6)корни и числа равны квадратам, т. е. .


Задача . Квадрат и число 21 равны 10 корням. Найти корень.

Решение . Разделим пополам число корней – получишь 5, умножь 5 на само себя,

от произведения отними 21, останется 4.

Извлеки корень из 4 – получишь 2.

Отними 2 от 5 – получишь 3, это и будет искомый корень. Или же прибавь к 5, что даст 7, это тоже есть корень.



Фибоначчи родился в итальянском торговом центре городе Пиза, предположительно в 1170-е годы. . В 1192 году он был назначен представлять пизанскую торговую колонию в Северной Африке. По желанию отца, он переехал в Алжир и изучал там математику. В 1200 году Леонардо вернулся в Пизу и принялся за написание своего первого труда «Книги абака» [ . По словам историка математики А. П. Юшкевича Книга абака“ резко возвышается над европейской арифметико-алгебраической литературой XII-XIV веков разнообразием и силой методов, богатством задач, доказательностью изложения… Последующие математики широко черпали из неё как задачи, так и приёмы их решения ».







Построим график функции

  • Графиком является парабола, ветви которой направлены вверх, так как

2) Координаты вершины параболы



У. Соейр говорил :

«Человеку, изучающему алгебру, часто полезнее решать одну и ту же задачу тремя различными способами, чем решать три-четыре различных задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт».


«Город – единство не похожих»

Аристотель

«Число выраженное десятичным знаком, прочтет и немец, и русский, и араб, и янки одинаково»

Исследовательская работа

На тему

«Способы решения квадратных уравнений »

Выполнила:
группа 8 «Г » класса

Руководитель работы:
Беньковская Мария Михайловна

Цели и задачи проекта.

1. Показать, что в математике, как и во всякой другой науке, достаточно своих неразгаданных тайн.
2. Подчеркнуть, что математиков отличает нестандартное мышление. А иногда смекалка и интуиция хорошего математика просто приводят в восхищение!
3. Показать, что сама попытка решения квадратных уравнений содействовала развитию новых понятий и идей в математике.
4. Научиться работать с различными источниками информации.
5. Продолжить исследовательскую работу по математике

Этапы исследования

1. История возникновения квадратных уравнений.

2. Определение квадратного уравнения и его виды.

3. Решение квадратных уравнений, используя формулу дискриминанта.

4. Франсуа Виет и его теорема.

5. Свойства коэффициентов для быстрого нахождения корней квадратного уравнения.

6. Практическая направленность.

Посредством уравнений, теорем

Я уйму всяких разрешал проблем.

(Чосер, английский поэт, средние века.)

этап. История возникновения квадратных уравнений.

Необходимость решать уравнения не только первой, но и второй степени, ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать ещё около 2000 лет до нашей эры вавилоняне. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает, по существу, с современными, однако не известно, каким образом дошли вавилоняне до нахождения правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта содержится систематический ряд задач, сопровождаемых объяснениями и решаемые при помощи составления уравнений различных степеней, однако в ней нет систематического изложения алгебры.

Задачи на квадратные уравнения встречаются уже в астрономических трактатах «Ариабхаттиам», составленном в 499г. индейским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В алгебраическом трактате аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Для аль-Хорезми, незнавшего отрицательных чисел, члены каждого уравнения слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений, при решении неполного квадратного уравнения аль-Хорезми, как и все ученые до XVII века, не учитывает нулевого решения.

Трактат аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и формулы их решения.

Формулы решения квадратных уравнений по образцу аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Этот объёмистый труд отличается полнотой и ясностью изложения. Автор самостоятельно разработал некоторые новые алгебраические приёмы решения задач, и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI - XVII и частично XVIII веков.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду при всевозможных комбинациях знаков коэффициентов b,c было сформулировано в Европе лишь в 1544 году М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI веке учитывают, не только положительные, но и отрицательные корни. Лишь в XVII веке, благодаря трудам Жиррара, Декарта, Ньютона и других ученых, способ решения квадратных уравнений принимает современный вид.

ОКАЗЫВАЕТСЯ :

Задачи на квадратные уравнения встречаются уже в 499 г.

В Древней Индии были распространены публичные соревнования в решении трудных задач – ОЛИМПИАДЫ.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

HTML-версии работы пока нет.

Подобные документы

    История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.

    контрольная работа , добавлен 27.11.2010

    История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.

    реферат , добавлен 09.05.2009

    Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.

    реферат , добавлен 18.12.2012

    Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья , добавлен 05.01.2010

    Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат , добавлен 06.09.2006

    История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.

    презентация , добавлен 20.09.2015

    Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация , добавлен 20.09.2015

    Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация , добавлен 20.09.2015

    Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.

    контрольная работа , добавлен 17.09.2010

    История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.


Как составлял и решал Диофант квадратные уравнения «Найти два числа, зная, что их сумма равна 20, а произведение 96» Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, т.к. если бы они равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10+X, другое же меньше, т.е. 10-X. Разность между ними 2Х Отсюда Х=2. Одно из искомых чисел равно 12, другое 8. Решение Х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа. УРАВНЕНИЕ: или же:


Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются и в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c, a>0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата, 0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата,">


Квадратные уравнения в Древней Азии Вот как решал это уравнение среднеазиатский ученый ал-Хорезми: Он писал: "Правило таково: раздвои число корней, х=2х·5 получите в этой задаче пять, 5 умножь на это равное ему, будет двадцать пять, 5·5=25 прибавь это к тридцати девяти, будет шестьдесят четыре, 64 извлеки из этого корень, будет восемь, 8 и вычти из этого половину числа корней, т.е.пять, 8-5 останется 3 это будет корень квадрата, который ты искал." А второй корень? Второй корень не находили, так как отрицательные числа не были известны. х х = 39


Квадратные уравнения в Европе XIII-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0, было сформулировано в Европе лишь в 1544 г. Штифелем.. Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид


О теореме Виета Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если B+D, умноженное на А-А, равно BD, то А равно В и равно D». Чтобы понять Виета, следует помнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же B,D- кэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 + x 2 = -p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).


Метод разложения на множители привести квадратное уравнение общего вида к виду: А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Цель: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Способы: Пример:




Корни квадратного уравнения: Если D>0, Если D 0, Если D"> 0, Если D"> 0, Если D" title="Корни квадратного уравнения: Если D>0, Если D"> title="Корни квадратного уравнения: Если D>0, Если D">


X 1 и х 2 – корни уравнения Решение уравнений с помощью теоремы Виета Х 2 + 3Х – 10 = 0 Х 1 ·Х 2 = – 10, значит корни имеют разные знаки Х 1 + Х 2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х 1 = – 5, Х 2 = 2 Например:


0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" class="link_thumb"> 14 Решите уравнение: 2х х +15 = 0. Перебросим коэффициент 2 к свободному члену у у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски» 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнений способом «переброски»"> 0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени" title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени"> title="Решите уравнение: 2х 2 - 11х +15 = 0. Перебросим коэффициент 2 к свободному члену у 2 - 11у +30= 0. D>0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3. Ответ: 2,5; 3. Решение уравнени">


Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен второй по теореме Виета равен Если в квадратном уравнении a+c=b, то один из корней равен (-1), а второй по теореме Виета равен Пример: Свойства коэффициентов квадратного уравнения 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1; 137х х – 157 = 0. a = 137, b = 20, c = a + b+ c = – 157 =0. x 1 = 1, Ответ: 1;




Графический способ решения квадратного уравнения Не используя формул квадратное уравнение можно решить графическим способом. Решим уравнение Для этого построим два графика: X Y X 01 Y012 Ответ: Абсциссы точек пересечения графиков и будет корнями уравнения. Если графики пересекаются в двух точках, то уравнение имеет два корня. Если графики пересекаются в одной точке, то уравнение имеет один корень. Если графики не пересекаются, то уравнение корней не имеет. 1)y=x2 2)y=x+1




Решение квадратных уравнений с помощью номограммы Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 «Четырехзначные математические таблицы» Брадис В.М. Таблица XXII. Номограмма для решения уравнения Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения. Для уравнения номограмма дает корни


Геометрический способ решения квадратных уравнений В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. А вот, например, как древние греки решали уравнение: или Выражения и геометрически предоставляют собой один и тот же квадрат, а исходное уравнение одно и тоже уравнение. Откуда и получаем что, или


Заключение данные приёмы решения заслуживают внимания, поскольку они не все отражены в школьных учебниках математики; овладение данными приёмами поможет учащимся экономить время и эффективно решать уравнения; потребность в быстром решении обусловлена применением тестовой системы вступительных экзаменов;