I. Организационный момент

ЛЕКЦИЯ 7.

Кольцо многочленов от одного неизвестного

Определение многочлена . Из школьного курса известна задача решения уравнения второй степени вида

где
. Решить уравнение (7.1) – это значит найти такое значение неизвестного, которое при подстановке в уравнение (предикат ) (7.1) обращает его в числовое тождество (в истинное высказывание ).

Пример 7.1. Найти множество истинности предиката

.

Р е ш е н и е. Рассмотрим тождественное преобразование правой части указанного предиката:

.

Приравнивая последнее выражение к нулю, получаем формулу

,

которая даёт значения неизвестных, обращающих предикат
в истинное высказывание. Следовательно, множество истинностипредиката
в общем случае состоит из двух элементов

,

значения которых вычисляются через значения коэффициентов квадратного трёхчлена
. Выражение
, стоящее под знаком квадратного корня, называетсядискриминантом уравнения
. Возможны три случая:

1)
– в этом случае множество истинности предиката состоит из одного действительного числа
(квадратное уравнение
имеет один вещественный корень);

2)
– в этом случае множество истинности предиката состоит из двух вещественных чисел, которые вычисляются по выписанным выше формулам (квадратное уравнение
имеет два вещественных корня);

3)
– в этом случае множество истинности предиката состоит из двух комплексно сопряжённых чисел:

(уравнение
имеет комплексно сопряжённые корни).

В общем случае мы приходим к задаче решения уравнения - й степени относительно одного неизвестного

коэффициенты
которого будем считать произвольными комплексными числами , причём старший коэффициент
. Решить уравнение (7.2) – это значит найти такие значения неизвестного, которые, будучи подставлены в уравнение (7.2), обращают его в числовое тождество. Задачу решения уравнения (7.2) заменяют более общей задачейизучения левой части этого уравнения .

Определение 7.1. Многочленом , или полиномом степени от одного неизвестного (или буквы ) называется формальное выражение вида

, (7.3)

то есть формальная алгебраическая сумма целых неотрицательных степеней неизвестного , взятых с некоторыми, вообще говоря, комплексными коэффициентами,,
,,
.

Обозначают многочлены различными буквами латинского и греческого алфавитов, как большими , так и малыми.

Степенью многочлена (7.3) называется наивысшая степень неизвестного, при которой коэффициент
. Многочлен нулевой степени – это многочлен, состоящий из одного, неравного нулю комплексного числа. Число нуль – это тоже многочлен, степень которого не определена .

Степень многочлена , если это необходимо, обозначается нижним индексом, например
, или символом
. Наряду с записью многочленов в форме (7.3) часто применятся форма записи по возрастающим степеням, то есть

Равенство, сумма и произведение многочленов . Многочлены можно сравнивать и производить над ними действия сложения и умножения.

Определение 7.2. Два многочлена
и
считаются
равными и пишут
в том и только в том случае, если равны их коэффициенты при одинаковых степенях неизвестного
.

Никакой многочлен, хотя бы один коэффициент которого отличен от нуля, не может быть равным нулю. Поэтому знак равенства в записи уравнения -й степени не имеет отношения к равенству многочленов.

В математическом анализе равенство многочленов
рассматривается как равенство двух функций, то есть,


.

Если многочлены равны в смысле определения 7.2, то они равны и в смысле равенства функций. Обратное является следствием сформулированной ниже основной теоремы алгебры многочленов.

Введём две алгебраические операции над многочленами с комплексными (в общем случае) коэффициентами – сложение и умножение .

Определение 7.3. Пусть даны два многочлена

,
,

,
.

Для определённости положим
.
Суммой данных многочленов называется многочлен

коэффициенты которого равны сумме коэффициентов при одинаковых степенях неизвестного :


.

Причём, если
полагают
.

Отметим, что степень суммы двух многочленов при
равна, а при
может оказаться меньше, а именно при
.

Определение 7.4. Произведением многочленов

,
,

,

называется многочлен

коэффициенты которого находятся по формуле


,.
(7.4)

Таким образом, коэффициент произведения двух многочленов с индексом
равен сумме всевозможных произведений коэффициентов многочленов
и
, сумма индексов которых равна, а именно:

,
,
,
.

Из последнего равенства имеем
. Следовательно,степень произведения двух многочленов равна сумме степеней этих многочленов:

По определению полагают, что степень многочлена

.

Мы получили следующий результат.

Лемма 7.1. Пусть
и
– два многочлена. Тогда их произведение
.

Пример 7.2. Пусть даны два многочлена разной степени, например,

,
.

Тогда их сумма и произведение есть, соответственно:

.

Итак, во множестве многочленов с комплексными коэффициентами введены две бинарные алгебраические операции – сложение и умножение . Свойства этих операций устанавливаются следующей теоремой.

Теорема 7.1. Множество всех многочленов с комплексными коэффициентами является коммутативным и ассоциативным кольцом с единицей .

Доказательство теоремы сводится к проверке аксиом кольца, и мы его опустим. Отметим только, что нулём для операции сложения является число (многочлен) , а единицей для операции умножения является число (многочлен).

Кольцо многочленов обозначают
, где
– символ поля, над которым определён многочлен. Таким образом, теорема 7.1 утверждает: множество всех многочленов с комплексными коэффициентами является кольцом
.

Делимость многочленов . Многочлен
имеет обратный многочлен
, в том и только в том случае, если
– многочлен нулевой степени. Действительно, если
, то обратный многочлен
. Если же
, то степень левой части
при условии, что
существует, должна быть не меньше
, но правая часть последнего равенства является многочленом нулевой степени. Итак,в кольце многочленов
для операции умножения не существует обратной операции деления
. В кольце многочленов, однако, существует алгоритм деления с остатком .

Теорема 7.2. Для любых двух многочленов
и
существуют такие многочлены
и
, что

, (7.5)

где , или
. Представление (7.5) единственно
.

Д о к а з а т е л ь с т в о. Пусть
и
. Представим многочлены
и
в виде

Если
или
, то положим в (7.5)

,
.

Тогда, очевидно, (7.5) выполняется. Поэтому предположим, что
. Положим:

. (7.6)

Обозначим старший коэффициент многочлена
через. Очевидно, что
. Если
, то положим:

. (7.7)

Старший коэффициент многочлена
обозначим. Если
, то опять положим

(7.8)

и так далее. Степени
многочленов
, очевидно, убывают. После конечного числа шагов получим

, (7.9)

где или
, или
. После этого процесс прекращается.

Складывая равенства (7.6) – (7.9) , получаем

Обозначая сумму в круглых скобках
, а
, получаем (7.5), причём либо
, либо степень
.

Докажем единственность (7.5). Пусть

где или
, или. Из (7.5) и (7.11) имеем:

Степень многочлена в левой части последнего равенства не меньше степени
, а степень многочлена в правой части или нулевая, или меньше степени
. Поэтому последнее равенство выполняется лишь при равенств

,
.

Многочлен
в формуле (7.5) называетсячастным от деления многочлена
на многочлен
, а многочлен
называетсяостатком от этого деления. Если
, то говорят, что многочлен
делится на многочлен
, который называютделителем многочлена
. Выясним, когда многочлен
делится на многочлен
.

Теорема 7.3. Многочлен
делится на многочлен

в том и только в том случае, если существует такой многочлен
, что

. (7.12)

Д о к а з а т е л ь с т в о. Действительно, если
делится на
, то в качестве
следует взять частное от деления
на
. Обратно, пусть многочлен, удовлетворяющий равенству (7.12), существует. Тогда из доказанной в теореме 7.1. единственности многочленов
и
в представлении (7.5) и условия того, что степень
меньше степени
, следует, что частное от деления
на
равно
, а остаток
.

Следствие из теоремы 7.3. Если многочлен
и его делитель
имеют рациональные или действительные коэффициенты, то и частное
также будет иметь рациональные или действительные коэффициенты.

Пример 7.3. Выполнить деление с остатком многочлена

на многочлен
.

Р е ш е н и е. Алгоритм деления (7.6) – (7.9) реализуем в форме «деления уголком »:

Итак, частное
, остаток
. Поэтому имеет место представление следующего вида

которое можно проверить непосредственным умножением.

Определение 7.5. Пусть
и
– два многочлена. Многочлен
называется
наибольшим общим делителем (НОД ) этих многочленов, если он является их общим делителем и сам делится на любой другой общий делитель этих многочленов.

НОД многочленов
и
обозначается. Сформулируем и докажем теорему, дающую конструктивный алгоритм нахождения НОД для любых двух многочленов.

Теорема 7.4 (алгоритм Евклида). Для любых двух многочленов
и
существует наибольший общий делитель

Д о к а з а т е л ь с т в о. Сначала сформулируем алгоритм Евклида нахождения
, а потом докажем, что полученный в процессе реализации этого алгоритма многочлен является наибольшим общим делителем двух данных многочленов.

Сначала делим многочлен
на многочлен
и получаем в общем случае некоторый остаток
. Далее делим
на
и получаем остаток
, делим
на
и получаем остаток
и так далее. В результате таких последовательных делений мы придём к остатку
, на который делится предыдущий остаток
. Этот остаток и будет наибольшим общим делителем данных многочленов.

Для доказательства выпишем последовательно цепочку делений:

Последнее равенство показывает, что
является делителем для
. Поэтому оба слагаемых в правой части предпоследнего равенства делятся на
и, следовательно, на
делится и
. Поднимаясь по цепочке делений вверх, получим, что
является делителем и для
,
,
,
. Из второго равенства цепочки видим, что
является делителем и для
и, следовательно, на основании первого равенства – для
. Итак,
является общим делителем для
и
.

Урок на тему: "Понятие и определение многочлена. Стандартный вид многочлена"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Электронное учебное пособие по учебнику Ю.Н. Макарычева
Электронное учебное пособие по учебнику Ш.А. Алимова

Ребята, вы уже изучали одночлены в теме: Стандартный вид одночлена. Определения. Примеры. Давайте повторим основные определения.

Одночлен – выражение, состоящие из произведения чисел и переменных. Переменные могут быть возведены в натуральную степень. Одночлен не содержит ни каких других действий, кроме умножения.

Стандартный вид одночлена – такой вид, когда на первом месте стоит коэффициент (числовой множитель), а за ним степени различных переменных.

Подобные одночлены – это либо одинаковые одночлены, либо одночлены, которые отличаются друг от друга на коэффициент.

Понятие многочлена

Многочлен, как и одночлен, - это обобщенное название математических выражений определенного вида. Мы уже сталкивались с такими обобщениями ранее. Например, "сумма", "произведение", "возведение в степень". Когда мы слышим "разность чисел", нам и в голову не придет мысль об умножении или делении. Также и многочлен - это выражение строго определенного вида.

Определение многочлена

Многочлен - это сумма одночленов.

Одночлены, входящие в состав многочлена, называются членами многочлена . Если слагаемых два, то мы имеем дело с двучленом, еcли три, то с трехчленом. Если слагаемых больше говорят - многочлен.

Примеры многочленов.

1) 2аb + 4сd (двучлен);

2) 4аb + 3сd + 4x (трехчлен);

3) 4а 2 b 4 + 4с 8 d 9 + 2xу 3 ;

3с 7 d 8 - 2b 6 c 2 d + 7xу - 5xy 2 .


Посмотрим внимательно на последние выражение. По определению, многочлен это - сумма одночленов, но в последнем примере мы не только складываем, но и вычитаем одночлены.
Чтобы внести ясность рассмотрим небольшой пример.

Запишем выражение а + b - с (договоримся, что а ≥ 0, b ≥ 0 и с ≥0 ) и ответим на вопрос: это сумма или разность? Сложно сказать.
Действительно, если переписать выражение, как а + b + (-с) , мы получим сумму двух положительных и одного отрицательного слагаемых.
Если посмотреть на наш пример, то мы имеем дело именно с суммой одночленов с коэффициентами: 3, - 2, 7, -5. В математике есть термин "алгебраическая сумма". Таким образом, в определении многочлена имеется в виду "алгебраическая сумма".

А вот запись вида 3а: b + 7с многочленом не является потому, что 3а: b не является одночленом.
Не является многочленом и запись вида 3b + 2а * (с 2 + d), так как 2а * (с 2 + d) - не одночлен. Если раскрыть скобки, то полученное выражение будет являться многочленом.
3b + 2а * (с 2 + d) = 3b + 2ас 2 + 2аd.

Степенью многочлена является наивысшая степень его членов.
Многочлен а 3 b 2 +а 4 имеет пятую степень, так как степень одночлена а 3 b 2 равна 2 + 3= 5, а степень одночлена а 4 равна 4.

Стандартный вид многочлена

Многочлен, не имеющий подобных членов и записанный в порядке убывания степеней членов многочлена, является многочленом стандартного вида.

Многочлен приводят к стандартному виду, что бы убрать излишнюю громоздкость написания и упростить дальнейшие действия с ним.

Действительно, зачем к примеру писать длинное выражение 2b 2 + 3b 2 + 4b 2 + 2а 2 + а 2 + 4 + 4, когда его можно записать короче 9b 2 + 3а 2 + 8 .

Чтобы привести многочлен к стандартному виду, надо:
1. привести все его члены к стандартному виду,
2. сложить подобные (одинаковые или с разным числовым коэффициентом) члены. Данная процедура часто называется приведением подобных .

Пример.
Привести многочлен аba + 2у 2 х 4 х + у 2 х 3 х 2 + 4 + 10а 2 b + 10 к стандартному виду.

Решение.

а 2 b + 2 х 5 у 2 + х 5 у 2 + 10а 2 b + 14= 11а 2 b + 3 х 5 у 2 + 14.

Определим степени одночленов, входящих в состав выражения, и расставим их в порядке убывания.
11а 2 b имеет третью степень, 3 х 5 у 2 имеет седьмую степень, 14 – нулевую степень.
Значит, на первое место мы поставим 3 х 5 у 2 (7 степень), на второе - 12а 2 b (3 степень) и на третье - 14 (нулевая степень).
В итоге получим многочлен стандартного вида 3х 5 у 2 + 11а 2 b + 14.

Примеры для самостоятельного решения

Привести к стандартному виду многочлены.

1) 4b 3 аa - 5х 2 у + 6ас - 2b 3 а 2 - 56 + ас + х 2 у + 50 * (2 а 2 b 3 - 4х 2 у + 7ас - 6);

2) 6а 5 b + 3х 2 у + 45 + х 2 у + аb - 40 * (6а 5 b + 4ху + аb + 5);

3) 4ах 2 + 5bс - 6а - 24bс + хаx 4 x (5ах 6 - 19bс - 6а);

4) 7аbс 2 + 5асbс + 7аb 2 - 6bаb + 2саbс (14аbс 2 + аb 2).

- многочленами . В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Определение.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Записанное определение позволяет привести сколько угодно примеров многочленов. Любой из одночленов 5 , 0 , −1 , x , 5·a·b 3 , x 2 ·0,6·x·(−2)·y 12 , и т.п. является многочленом. Также по определению 1+x , a 2 +b 2 и - это многочлены.

Для удобства описания многочленов вводится определение члена многочлена.

Определение.

Члены многочлена – это составляющие многочлен одночлены.

Например, многочлен 3·x 4 −2·x·y+3−y 3 состоит из четырех членов: 3·x 4 , −2·x·y , 3 и −y 3 . Одночлен считается многочленом, состоящим из одного члена.

Определение.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

В школе наиболее часто приходится работать с линейным двучленом a·x+b , где a и b – некоторые числа, а x – переменная, а также с квадратным трехчленом a·x 2 +b·x+c , где a , b и c – некоторые числа, а x – переменная. Вот примеры линейных двучленов: x+1 , x·7,2−4 , а вот примеры квадратных трехчленов: x 2 +3·x−5 и .

Многочлены в своей записи могут иметь подобные слагаемые . Например, в многочлене 1+5·x−3+y+2·x подобными слагаемыми являются 1 и −3 , а также 5·x и 2·x . Они имеют свое особое название – подобные члены многочлена.

Определение.

Подобными членами многочлена называются подобные слагаемые в многочлене.

В предыдущем примере 1 и −3 , как и пара 5·x и 2·x , являются подобными членами многочлена. В многочленах, имеющих подобные члены, можно для упрощения их вида выполнять приведение подобных членов .

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Исходя из данного определения, можно привести примеры многочленов стандартного вида. Так многочлены 3·x 2 −x·y+1 и записаны в стандартном виде. А выражения 5+3·x 2 −x 2 +2·x·z и x+x·y 3 ·x·z 2 +3·z не являются многочленами стандартного вида, так как в первом из них содержатся подобные члены 3·x 2 и −x 2 , а во втором – одночлен x·y 3 ·x·z 2 , вид которого отличен от стандартного.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду .

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Определение.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Иными словами, если в записи многочлена стандартного вида есть число, то его называют свободным членом. Например, 5 – это свободный член многочлена x 2 ·z+5 , а многочлен 7·a+4·a·b+b 3 не имеет свободного члена.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов , находящихся в его составе.

Определение.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Приведем примеры. Степень многочлена 5·x 3 −4 равна 3 , так как входящие в его состав одночлены 5·x 3 и −4 имеют степени 3 и 0 соответственно, наибольшее из этих чисел есть 3 , оно и является степенью многочлена по определению. А степень многочлена 4·x 2 ·y 3 −5·x 4 ·y+6·x равна наибольшему из чисел 2+3=5 , 4+1=5 и 1 , то есть, 5 .

Теперь выясним, как найти степень многочлена произвольного вида.

Определение.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Пример.

Найдите степень многочлена 3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 .

Решение.

Сначала нужно представить многочлен в стандартном виде:
3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 = =(3·a 12 −2·a 12 −a 12)− 2·(a·a)·(b·b)·(c·c)+y 2 ·z 2 = =−2·a 2 ·b 2 ·c 2 +y 2 ·z 2 .

В полученный многочлен стандартного вида входят два одночлена −2·a 2 ·b 2 ·c 2 и y 2 ·z 2 . Найдем их степени: 2+2+2=6 и 2+2=4 . Очевидно, наибольшая из этих степеней равна 6 , она по определению является степенью многочлена стандартного вида −2·a 2 ·b 2 ·c 2 +y 2 ·z 2 , а значит, и степенью исходного многочлена. , 3·x и 7 многочлена 2·x−0,5·x·y+3·x+7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Цели: обобщение и закрепление пройденного материала: повторить понятие многочлена, правило умножения многочлена на многочлен и закрепить это правило в ходе выполнения тестовой работы, закрепить навыки решения уравнений и задач с помощью уравнений.

Оборудование: плакат «Кто смолоду делает и думает сам, тот и становится потом надёжнее, крепче, умнее» (В. Шукшин). Кодоскоп, магнитная доска, кроссворд, карточки-тесты.

План урока.

1. Организационный момент.
2. Проверка домашнего задания.
3. Устные упражнения (разгадывание кроссворда).
4. Решение упражнений по теме.
5. Тест по теме: « Многочлены и действия над ними» (4 варианта).
6. Итоги урока.
7. Домашнее задание.

Ход урока

I. Организационный момент

Учащиеся класса делятся на группы по 4-5 человек, выбирается старший в группе.

II. Проверка домашнего задания .

Домашнее задание учащиеся готовят на карточке дома. Каждый ученик проверяет свою работу через кодоскоп. Учитель предлагает оценить домашнюю работу самому ученику и поставит оценку в ведомости, сообщая критерий оценки: «5» ─ задание выполнено верно и самостоятельно; «4» ─ задание выполнено верно и полностью, но с помощью родителей или одноклассников; «3» ─ во всех остальных случаях, если задание выполнено. Если задание не выполнено, можно поставить прочерк.

III. Устные упражнения.

1) Для повторения теоретических вопросов учащимся предлагается кроссворд. Кроссворд решают группой устно, и ответы дают учащиеся из разных групп. Выставляем оценки: «5» ─ 7 верных слов, «4» ─ 5,6 верных слов, «3» ─ 4 верных слова.

Вопросы для кроссворда: (см. Приложение 1 )

  1. Свойство умножения, используемое при умножении одночлена на многочлен;
  2. способ разложения многочлена на множители;
  3. равенство, верное при любых значениях переменной;
  4. выражение, представляющее собой сумму одночленов;
  5. слагаемые, имеющие одну и ту же буквенную часть;
  6. значение переменной, при котором уравнение обращается в верное равенство;
  7. числовой множитель у одночленов.

2) Выполните действия:

3. Если длину прямоугольника уменьшить на 4 см, а ширину его увеличить на 7 см, то получится квадрат, площадь которого будет на 100 см 2 больше площади прямоугольника. Определить сторону квадрата. (Cторона квадрата равна 24 см).

Учащиеся решают задания в группах, обсуждая, помогая друг другу. Когда группы выполнили задание, осуществляется проверка по решениям, записанным на доске. После проверки выставляются оценки: за данную работу учащиеся получают две оценки: самооценка и оценка группы. Критерий оценки: «5» ─ всё решил верно, и помогал товарищам, «4» ─ допустил ошибки при решении, но исправил их с помощью товарищей, «3» ─ интересовался решением и всё решил с помощью одноклассников.

V. Тестовая работа.

I вариант

1. Представьте в стандартном виде многочлен 3а – 5а∙а – 5 + 2а 2 – 5а +3.

3. Найдите разность многочленов 2х 2 – х + 2 и ─ 3х 2 ─2х + 1.

5. Представьте в виде многочлена выражение: 2 – (3а – 1)(а + 5).

II вариант

1. Представьте в стандартном виде многочлен 5х 2 – 5 + 4х ─ 3х∙х + 2 – 2х.

3. Найдите разность многочленов 4у 2 – 2у + 3 и - 2у 2 + 3у +2.

5. Решите уравнение: ─3х 2 + 5х = 0.

1) х =
3) х = 0 и х = ─

2) х = 0 и х =
4) х = 0

6. Представьте в виде произведения: 5а 3 – 3а 2 – 10а + 6.

III вариант

1. Найдите значение многочлена ─ 6а 2 – 5аb + b 2 – (─3а 2 – 5аb + b 2) при а = ─ , b=─3.


1)

2. Упростите выражение: ─8х – (5х – (3х – 7)).

4. Выполните умножение: ─3х∙(─ 2х 2 + х – 3)

6. Представьте в виде произведения: 3х 3 – 2х 2 – 6х + 4.

1) (х 2 + 2)(3х + 2)
3) (х 2 + 2)(3х – 2)

2) (х 2 – 2)(3х + 2)
4) (х 2 – 2)(3х – 2)

7. Представьте в виде произведения выражение: а(х – у) ─2b(у – х)

1) (х – у)(а ─ 2b)
3) (х – у)(а + 2b)

2) (у – х)(а ─ 2b)
4) (у – х)(а + 2)

IV вариант

1. Найдите значение многочлена ─ 8а 2 – 2ах – х 2 – (─4а 2 – 2ах – х 2) при а= ─, х= ─ 2 .

2. Упростите выражение: ─ 5а – (2а – (3а – 5)).

4. Выполните умножение: ─4а ∙ (─5а 2 + 2а – 1).

6. Представьте в виде многочлена: (3х – 2)(─x 2 + х – 4).

1) ─3х 3 + 5х 2 – 10х – 8
3) ─3х 3 + 3х 2 – 14х + 8

2) ─3х 3 + 3х 2 – 12х
4) ─3х 3 + 5х 2 – 14х + 8

7. Представьте в виде произведения выражение: 2с(b – а) – d(а – b)

1) (а – b)(2с – d)
3) (b – а)(2с – d)

2) (b – а)(2с + d)
4) (а – b)(2с + d)

№ задания

№ варианта

VI. Итоги урока

В ходе урока каждый учащийся получает несколько оценок. Учащийся сам оценивает свои знания, сравнивая их со знаниями других. Оценка группы более эффективна, так как эта оценка обсуждается всеми членами группы. Ребята указывают на недостатки и недочёты в работе членов группы. Все оценки заносятся в рабочую карту старшим по группе.

Учитель выставляет итоговую оценку, сообщая её всему классу.

VII. Домашнее задание:

1. Выполните действия:

а) (а 2 + 3аb─b 2)(2а – b);
б) (х 2 + 2ху – 5у 2)(2х 2 – 3у).

2. Решите уравнение:

а) (3х – 1)(2х + 7) ─ (х + 1)(6х – 5) = 16;
б) (х – 4)(2х2 – 3х + 5) + (х2 – 5х + 4)(1 – 2х) = 20.

3. Если одну сторону квадрата уменьшить на 1,2 м, а другую на 1,5 м, то площадь полученного прямоугольника будет на 14,4 м 2 меньше площади данного квадрата. Определить сторону квадрата.