Гидрокси уксусный альдегид. Альдегиды и кетоны — номенклатура, получение, химические свойства. Способы получения ацетальдегида из этанола

Введение

На сегодняшний день известны миллионы химических соединений. И большинство из них относится к органическим. Эти вещества делят на несколько больших групп, название одной из них - альдегиды. Сегодня мы рассмотрим представителя этого класса - уксусный альдегид.

Определение

Уксусный альдегид является органическим соединением класса альдегидов. Его могут называть и по-другому: ацетальдегидом, этаналем или метилформальдегидом. Формула уксусного альдегида - CH 3 -CHO.

Свойства

Рассматриваемое вещество имеет вид бесцветной жидкости с резким удушливым запахом, которая хорошо растворима водой, эфиром и спиртом. Так как температура кипения обсуждаемого соединения низкая (около 20 о С), хранить и перевозить можно только его тример - паральдегид. Уксусный альдегид получают, нагрев упомянутое вещество с неорганической кислотой. Это - типичный алифатичетский аьдегид, и он может принимать участие во всех реакциях, которые характерны для данной группы соединений. Вещество имеет свойство таутомеризироваться. Этот процесс завершается образованием енола - винилового спирта. Из-за того что уксусный альдегид доступен как безводный мономер, его применяют в качестве электрофила. Вступать в реакции может как он, так и его соли. Последние, например при взаимодействии с реактивом Гриньяра и литий-органическими соединеними, образуют производные гидроксэтила. Уксусный альдегид при конденсации отличается своей хиральностью. Так, при реакции Штрекера он может конденсироваться с аммиаком и цианидами, а продуктом гидролиза станет аминокислота аланин. Еще уксусный альдегид вступает в такого же вида реакцию с другими соединениями - аминами, тогда продуктом взаимодействия становятся имины. В синтезе гетероциклических соединений уксусный альдегид является очень важным компонентом, основой всех проводящихся опытов. Паральдегид - циклический тример этого вещества - получается при конденсации трех молекул этаналя. Также уксусный альдегид может образовывать стабильные ацетали. Это происходит во время взаимодействия рассматриваемого химического вещества с этиловым спиртом, проходящего в безводных условиях.

Получение

В основном уксусный альдегид получают с помощью окисления этилена (процесс Вакера). В роли окислителя выступает хлорид палладия. Еще данное вещество можно получить во время гидратации ацетилена, в которой присутствуют соли ртути. Продуктом реакции является енол, который изомеризуется в искомое вещество. Еще один способ получения уксусного альдегида, который был наиболее популярным задолго до того, как стал известен процесс Вакера, - окисление или дегидратация этанола в присутствии медного или серебряного катализаторов. При дегидратации, помимо искомого вещества, образуется водород, а во время окисления - вода.

Применение

С помощью обсуждаемого соединения получают бутадиен, альдегидные полимеры и некоторые органические вещества, в том числе и одноименную кислоту. Она образуется при его окислении. Реакция выглядит так: "кислород + уксусный альдегид = уксусная кислота". Этаналь - важный прекурсор ко многим производным, и это свойство широко применяется в синтезе
многих веществ. В организмах человека, животных и растений ацетальдегид является участником некоторых сложных реакций. Также он входит в состав сигаретного дыма.

Заключение

Ацетальдегид может приносить как пользу, так и вред. Он плохо воздействует на кожу, является ирритантом и, возможно, канцерогеном. Поэтому его присутствие в организме нежелательно. Но некоторые люди сами провоцируют появление ацетальдегида, куря сигареты и употребляя алкоголь. Подумайте над этим!

УКСУСНЫЙ АЛЬДЕГИД (ацетальдегид, этаналь ) - алифатический альдегид, CH 3 CHO; метаболит, образующийся при спиртовом брожении, окислении этилового спирта, в т. ч. в организме человека, и в других обменных реакциях. У. а. используют при получении различных лекарственных средств (см.), уксусной кислоты (см.), надуксусной к-ты CH 3 COOOH, уксусного ангидрида (CH 3 CO) 2 O, этилацетата, а также в производстве синтетических смол и др. На соответствующих производствах представляет собой профессиональную вредность.

У. а. представляет собой бесцветную жидкость с резким запахом, t° пл -123,5°, t° кип 20,2°, его относительная плотность при 20° 0,783, коэффициент преломления при 20° 1,3316, концентрационные пределы взрываемости (КПВ) 3,97 - 57%. С водой, этиловым спиртом, эфиром и другими органическими растворителями У. а. смешивается в любых соотношениях.

У. а. вступает во все реакции, характерные для альдегидов (см.), в частности он окисляется до уксусной к-ты, претерпевает альдольную и кротоновую конденсации, образует уксусно-этиловый эфир по реакции Тищенко и характерные для альдегидов производные по карбонильной группе. В присутствии кислот У. а. полимеризуется до циклического кристаллического тетрамера метальдегида или жидкого паральдегида. В промышленном масштабе У. а. получают гидратацией ацетилена (см.) в присутствии катализаторов - солей ртути, окислением этилового спирта (см.) и наиболее экономичным способом - окислением этилена (см. Углеводороды) в присутствии палладиевого катализатора.

Качественное обнаружение У. а. основано на появлении синего окрашивания в результате взаимодействия У. а. с нитропруссидом натрия в присутствии аминов. Количественное определение состоит в получении какого-либо производного У. а. по карбонильной группе и его весового, объемного (см. Титриметрический анализ) или колориметрического определения (см. Колориметрия).

Образование У. а. как промежуточного продукта обмена веществ происходит как в растительных, так и в животных организмах. Первой стадией превращения этилового спирта в организме человека и животных является его окисление до У. а. в присутствии алкоголь-дегидрогеназы (см.). У. а. образуется также при декарбоксилировании (см.) пирувата (см. Пировиноградная кислота) при спиртовом брожении и при расщеплении треонина (см.) под действием треонин-альдолазы (КФ 4.1.2.5). В организме человека У. а. окисляется до уксусной к-ты гл. обр. в печени под действием НАД-зависимой альдегидоксидазы (КФ 1.2.3. 1), ацетальдегидооксидазы и ксантокиназы. У. а. участвует в биосинтезе треонина из глицина (см.). В наркол. практике применение те ту рама (см.) основано на способности этого препарата специфически блокировать ацетальдегид-оксидазу, что приводит к накоплению в крови У. а. и, как следствие, к сильной вегетативной реакции - расширению периферических сосудов, сердцебиению, головной боли, удушью, тошноте.

Уксусный альдегид как профессиональная вредность

При хрон. воздействии на человека невысоких концентраций паров У. а. отмечают преходящее раздражение слизистых оболочек верхних дыхательных путей и конъюнктивы. Пары У. а. во вдыхаемом воздухе в высоких концентрациях вызывают учащение пульса, повышенную потливость; признаки резкого раздражающего действия паров У. а. в этих случаях усиливаются (особенно ночью) и могут сочетаться с удушьем, сухим болезненным кашлем, головной болью. Последствием такого отравления бывают бронхит и пневмония.

Попадание на кожу жидкого У. а. может вызывать ее гиперемию и появление инфильтратов.

Первая помощь и неотложная терапия

При отравлении парами У. а. пострадавшего необходимо вывести на свежий воздух, обеспечить ингаляцию водяного пара с нашатырным спиртом, при показаниях - ингаляции увлажненного кислорода, сердечные средства, стимуляторы дыхания (лобелин, цитотон), настойка валерианы, препараты брома. При резком раздражении слизистых оболочек дыхательных путей - щелочные или масляные ингаляции. При болезненном кашле - кодеин, этил-морфина гидрохлорид (дионин), горчичники, банки. При раздражении конъюнктивы - обильное промывание глаз водой или изотоническим р-ром хлорида натрия. При отравлении через рот - немедленное промывание желудка водой с добавлением р-ра аммиака (нашатырного спирта), 3% р-ром гидрокарбоната натрия. Дальнейшее лечение - симптоматическое. При попадании У. а. на кожу - немедленное обмывание пораженного участка водой, но лучше 5% р-ром нашатырного спирта.

Пострадавший должен быть отстранен от работы с вредными веществами до выздоровления (см. Профессиональные болезни).

Меры профилактики интоксикаций У. а. заключаются в герметизации оборудования, безотказной работе вентиляции (см.), механизации и автоматизации работ по розливу и транспортировке У. а. Хранить У. а. необходимо в герметически закупоренных сосудах. На производствах и в лабораториях, связанных с контактом с У. а., должны неукоснительно соблюдаться меры личной гигиены, пользование специальной одеждой и обувью, защитными очками, универсальными респираторами.

Предельно допустимая концентрация паров У. а. в воздухе рабочей зоны 5 мг/м 3 .

Библиогр.: Вредные вещества в промышленности, под ред. Н. В. Лазарева и Э. Н. Левиной, т. 1, Л., 1976; Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза, М., 1981; Уайт А. и др. Основы биохимии, пер. с англ., т. 1-3, М., 1981,

А. Н. Климов, Д. В. Иоффе; Н. Г. Будковская (гиг.).,


Альдегиды
– органические вещества, молекулы которых содержат карбонильную группу С=O , соединенную с атомом водорода и углеводородным радикалом.
Общая формула альдегидов имеет вид:

В простейшем альдегиде – формальдегиде роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

Кетоны – органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой .
В простейшем кетоне – ацетоне – карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного радикала, связного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов

В молекуле альдегида или кетона вследствие большей электороотрицательности атома кислорода по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электронной плотности π -связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

1. Реакции восстановления .

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

Гидрирование альдегидов - реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

2. Реакции окисления . Альдегиды способны не только восстанавливаться, но и окисляться . При окислении альдегиды образуют карбоновые кислоты.

Окисление кислородом воздуха . Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

Окисление слабыми окислителями (аммиачный раствор оксида серебра).

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

3. Реакция полимеризации:

n СH 2 =O → (-CH 2 -O-) n параформ n=8-12

Получение альдегидов и кетонов

Применение альдегидов и кетонов

Формальдегид (метаналь, муравьиный альдегид) H 2 C=O:
а) для получение фенолформальдегидных смол;
б) получение мочевино-формальдегидных (карбамидных) смол;
в) полиоксиметиленовые полимеры;
г) синтез лекарственных средств (уротропин);
д) дезинфицирующее средство;
е) консервант биологических препаратов (благодаря способности свертывать белок).

Уксусный альдегид (этаналь, ацетальдегид) СН 3 СН=О:
а) производство уксусной кислоты;
б) органический синтез.

Ацетон СН 3 -СО-СН 3:
а) растворитель лаков, красок, ацетатов целлюлозы;
б) сырье для синтеза различных органических веществ.

АЦЕТАЛЬДЕГИД , уксусный альдегид , этаналь , СН 3 ·СНО, находится в винном спирте-сырце (образуется при окислении этилового алкоголя), а также в первых погонах, получающихся при ректификации древесного спирта. Прежде ацетальдегид получали окислением этилового спирта бихроматом, но теперь перешли к контактному способу: смесь паров этилового спирта и воздуха пропускается через нагретые металлы (катализаторы). Ацетальдегид, получающийся при разгонке древесного спирта, содержит около 4-5% различных примесей. Некоторое техническое значение имеет способ добывания ацетальдегида разложением молочной кислоты нагреванием ее. Все эти способы получения ацетальдегида постепенно теряют свое значение в связи с разработкой новых, каталитических методов получения ацетальдегида из ацетилена. В странах с развитой химической промышленностью (Германия) они получили преобладающее значение и дали возможность использования ацетальдегида в качестве исходного материала для получения других органических соединений: уксусной кислоты, альдоля и др. Основанием каталитического способа является реакция, открытая Кучеровым: ацетилен в присутствии солей окиси ртути присоединяет одну частицу воды и превращается в ацетальдегид - СН: СН + Н 2 О = СН 3 · СНО. Для получения ацетальдегида по немецкому патенту (химическая фабрика Грисгейм-Электрон в Франкфурте-на- Майне) в раствор окиси ртути в крепкой (45%) серной кислоте, нагретой не выше 50°, при сильном помешивании пропускается ацетилен; образующиеся при этом ацетальдегид и паральдегид периодически сливаются сифоном или отгоняются в вакууме. Наилучшим, однако, является способ, заявленный французским патентом 455370, по которому работает завод Консорциума электрической промышленности в Нюрнберге.

Там ацетилен пропускается в горячий слабый раствор (не выше 6%) серной кислоты, содержащий окись ртути; образующийся при этом ацетальдегид в течение хода процесса непрерывно перегоняется и сгущается в определенных приемниках. По способу Грисгейм-Электрон некоторая часть ртути, образующаяся в результате частичного восстановления окиси, теряется, т. к. находится в эмульгированном состоянии и не может быть регенерирована. Способ Консорциума в этом отношении представляет большое преимущество, т. к. здесь ртуть легко отделяется от раствора и затем электрохимическим путем превращается в окись. Выход почти количественный, и полученный ацетальдегид очень чист. Ацетальдегид - летучая, бесцветная жидкость, температура кипения 21°, удельный вес 0,7951. С водой смешивается в любом соотношении, из водных растворов выделяется после прибавления хлористого кальция. Из химических свойств ацетальдегида следующие имеют техническое значение:

1) Прибавление капли концентрированной серной кислоты вызывает полимеризацию с образованием паральдегида:

Реакция протекает с большим выделением тепла. Паральдегид - жидкость, кипящая при 124°, не обнаруживающая типичных альдегидных реакций. При нагревании с кислотами наступает деполимеризация, и получается обратно ацетальдегид. Кроме паральдегида, существует еще кристаллический полимер ацетальдегида - так называемый метальдегид, являющийся, вероятно, стереоизомером паральдегида.

2) В присутствии некоторых катализаторов (соляная кислота, хлористый цинк и особенно слабые щелочи) ацетальдегид превращается в альдоль . При действии крепких едких щелочей наступает образование альдегидной смолы.

3) При действии алкоголята алюминия ацетальдегид переходит в уксусноэтиловый эфир (реакция Тищенко): 2СН 3 ·СНО = СН 3 ·СОО·С 2 Н 5 . Этим процессом пользуются для получения этилацетата из ацетилена.

4) Особенно большое значение имеют реакции присоединения: а) ацетальдегид присоединяет атом кислорода, превращаясь при этом в уксусную кислоту: 2СН 3 ·СНО + О 2 = 2СН 3 ·СООН; окисление ускоряется, если к ацетальдегиду заранее прибавлено некоторое количество уксусной кислоты (Грисгейм-Электрон); наибольшее значение имеют каталитические способы окисления; катализаторами служат: окись-закись железа, пятиокись ванадия, окись урана и в особенности соединения марганца; б) присоединяя два атома водорода, ацетальдегид превращается в этиловый алкоголь: СН 3 ·СНО + Н 2 = СН 3 ·СН 2 ОН; реакция ведется в парообразном состоянии в присутствии катализатора (никель); в некоторых условиях синтетический этиловый спирт успешно конкурирует со спиртом, получаемым брожением; в) синильная кислота присоединяется к ацетальдегиду, образуя нитрил молочной кислоты: СН 3 ·СНО + HCN =СН 3 ·СН(ОН)CN, из которого омылением получается молочная кислота.

Эти многообразные превращения делают ацетальдегид одним из важных продуктов химической промышленности. Дешевое его получение из ацетилена в последнее время позволило осуществить целый ряд новых синтетических производств, из которых способ производства уксусной кислоты является сильным конкурентом старому способу ее добывания путем сухой перегонки дерева. Кроме того, ацетальдегид находит применение как восстановитель в производстве зеркал и идет для приготовления хинальдина - вещества, применяемого для получения красок: хинолиновой желтой и красной и др.; кроме того, он служит для приготовления паральдегида, применяющегося в медицине в качестве снотворного средства.

Уксусный альдегид относится к органическим соединениям и входит в класс альдегидов. Какими свойствами обладает это вещество, и как выглядит формула уксусного альдегида?

Общая характеристика

Уксусный альдегид имеет несколько названий: ацетальдегид, этаналь, метилформальдегид. Это соединение является альдегидом уксусной кислоты и этанола. Его структурная формула выглядит следующим образом: CH 3 -CHO.

Рис. 1. Химическая формула уксусного альдегида.

Особенностью этого альдегида является то, что он встречается как в природе, так и производится искусственным путем. В промышленности объем производства этого вещества может составлять до 1 миллиона тонн в год.

Этаналь встречается в пищевых продуктах, таких как кофе, хлеб, а также это вещество синтезируют растения в процессе метаболизма.

Уксусный альдегид представляет собой жидкость без цвета, но отличающуюся резким запахом. Растворим в воде, спирте и эфире. Является ядовитым.

Рис. 2. Уксусный альдегид.

Жидкость закипает при достаточно низкой температуре – 20,2 градуса по Цельсию. Из-за этого возникают проблемы с ее хранением и транспортировкой. Поэтому хранят вещество в виде паральдегида, а ацетальдегид из него получают в случае необходимости путем нагревания с серной кислотой (либо с любой другой минеральной кислотой). Паральдегид – это циклический тример уксусной кислоты.

Способы получения

Получить уксусный альдегид можно несколькими способами. Самый распространенный вариант – окисление этилена или, как еще называют этот способ, процесс Вакера:

2CH 2 =CH 2 +O 2 —2CH 3 CHO

Окислителем в данной реакции выступает хлорид палладия.

Также уксусный альдегид можно получить пр взаимодействии ацетилена с солями ртути. Данная реакция носит имя русского ученого и называется реакцией Кучерова. В результате химического процесса образуется енол, который изомеризуется в альдегид

C 2 H 2 +H 2 O=CH 3 CHO

Рис. 3. М. Г. Кучеров портрет.