Закон крутизны раздражения. Законы раздражения. Закон силы для сложных возбудимых систем


Закон физиологического электротона : действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и соседних с ним участках понижается вследствие деполяризации мембраны - возбудимость повышается. В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гиперполяризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодом называется катэлектротоном, а снижение возбудимости под анодом - анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая катодическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением - анодная экзальтация. При этом в области приложения катода происходит инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.(см. тетрадь лекция5)

Аккомодация – изменение порога раздражения во времени. Аккомодация определяет повышение порога раздражения в зависимости от скорости нарастания силы раздражителя. При медленном нарастании тока он может не вызвать возбуждения вследствие снижения возбудимости ткани. В основе аккомодации лежит явление инактивации натриевой и повышение калиевой проводимости мембраны.

Разные ткани обладают различной аккомодацией. Особенно отчётливо акоомодация проявляется при действии постоянного тока на ткань. В этом случае ответ ткани наблюдается только при замыкании и размыкании цепи тока.

Полярный закон Пфлюгера. – устанавливает место возбуждения в возбудимых тканях при действии постоянного тока:

При замыкании цепи постоянного тока возбуждение – под катодом

При размыкании цепи – на аноде

при замыкании тока возбуждение возникает под катодом, а при размыкании - под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя. Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает и потенциал покоя, воз вращаясь к исходной величине, достигает смещенного критического уровнями возникает возбуждение.

Кроме всеобщих законов раздражения, которые применимы к любым раздражителям, специфические законы характеризуют закономерности действия постоянного электрического тока, прохождение которого через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя и возбудимости у места приложения электродов имеющих разный заряд. Отметим, что речь идет именно о постоянном, а не о переменном токе, действие которого носит совершенно специфический характер

Закон полярного действия постоянного тока.

Закон не имеет однозначной формулировки и характеризует изменение мембранного потенциала и вероятность возникновения возбуждения мембраны у места приложения электродов. Поскольку при этом всегда возникает электрический ток, направленный от области положительного заряда к области отрицательного заряда, то в наиболее общем виде закон звучит так: возникновение возбуждения происходят при действии на клетку выходящего тока. При действии входящего тока происходит противоположные изменения – гиперполяризация и снижение возбудимости, возбуждение не возникает.

При внеклеточном раздражении возбуждение возникает в области катода (–). При внутриклеточном раздражении для возникновения возбуждения необходимо, чтобы внутриклеточный электрод имел положительный знак (рис. 6).

Рис. 6. Изменения, наступающие в нервном волокне при внутриклеточном раздражении (А, Г) и при внеклеточном раздражении в области анода (Б) и катода (В). Стрелкой показано направление электрического тока.

Следует отметить, что механизм инициации возбуждения определяется не столько направлением тока, сколько зарядом электрода. Кроме того, имеет значение, замыкается или размыкается электрическая цепь. Поэтому в более полном варианте закон полярного действия постоянного тока звучит так: при замыкании тока возбуждение возникает под катодом (-), а при размыкании - под анодом (+) .

Действительно, при замыкании цепи, в области приложения катода (-), положительный потенциал на наружной стороне мембраны уменьшается, заряд мембраны снижается, это активирует механизм переноса Na+ внутрь клетки, при этом мембрана деполяризация. Как только де­поляризация достигнет критического уровня (КУД)), ткань возбу­ждается - генерируется ПД.

В области же приложения анода (+), положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает.

При этом возбудимость ткани сначала снижается из-за увеличения порогового потенциала, а затем начинает повы­шаться в результате его уменьшения, так как анод уменьшает ко­личество инактивированных потенциалзависимых Na-каналов. КУД смещается в сторону увеличения и при определенной силе гиперполяризующего тока постепенно выходит на уровень исход­ной величины мембранного потенциала.

При размыкании постоянного тока мембранный потенциал под анодом возвращается к норме, одновременно выходя на КУД; при этом ткань возбуждается - запускается механизм генерации ПД.

Закон физиологического электротона .

Этот закон иногда объединяют с предыдущим, но в отличие от нег он характеризует изменения не мембранного потенциала, а возбудимости ткани, при прохождении через неё постоянного тока. Кроме того, он применим только в случае внеклеточного раздражения.

Изменения возбудимости достаточно сложные и зависят как от заряда приложенного к поверхности электрода, так и от времени действия тока, поэтому в общем виде закон можно сформулировать так: действие постоянного тока на ткань сопровождается изменением ее возбудимости (рис 7).

Рис. 7. Изменения возбудимости при действии на ткань постоянного тока под катодом (-) и анодом(+).

При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом (-) и соседних с ним участках понижается вследствие деполяризации мембраны - возбудимость повышается. В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гиперполяризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодом называется катэлектротоном, а снижение возбудимости под анодом - анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая катодическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением - анодная экзальтация. При этом в области приложения катода происходит инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

1. Анализ компонентов биологического потенциала.

Одиночный цикл возбуждения характеризуется электрографическими, функциональными и электрохимическими показателями.

Первый – регистрируется в виде кривой потенциала действия (ПД), отражающей изменение мембранного потенциала в процессе одиночного цикла возбуждения

Второй – связан с изменением возбудимости мембраны и графически отражается кривой изменения возбудимости

Третий – характеризует электрическое состояния плазматической мембраны возбудимой клетки обеспечиваемое её транспортными системами в каждую фазу развития потенциала действия.

Анализ процессов, которые обеспечивают эти состояния, в реальном времени позволяет понять физиологическую сущность и механизм процесса возбуждения, а значит, объяснить и предсказать реакцию клетки на её раздражение. Это может иметь важное значение в изучении механизмов, лежащих в основе деятельности нервной системы, в регуляции как физиологических, так и психических процессов.




Все возбудимые клетки (ткани) обладают рядом общих физиологических свойств (законы раздражения), краткая характеристика которых приводится ниже. Универсальным раздражителем для возбудимых клеток является электрический ток.

Закон силы для простых возбудимых систем
(закон «все или ничего»)

Простая возбудимая система – это одна возбудимая клетка, которая реагирует на раздражитель как единое целое.

В простых возбудимых системах подпороговые раздражители не вызывают возбуждения, сверхпороговые раздражители вызывают максимальное возбуждение (рис. 1). При подпороговых значениях раздражающего тока возбуждение (ЭП, ЛО) носит местный (не распространяется), градуальный (сила реакции пропорциональная силе действующего стимула) характер. При достижении порога возбуждения возникает ответ максимальной силы (ПД). Амплитуда ответа (амплитуда ПД) не изменяется при дальнейшем увеличении силы раздражителя.

Закон силы для сложных возбудимых систем

Сложная возбудимая система – система, состоящая из множества возбудимых элементов (мышца включает множество двигательных единиц, нерв – множество аксонов). Отдельные элементы системы имеют неодинаковые пороги возбуждения.

Для сложных возбудимых систем амплитуда ответа пропорциональна силе действующего раздражителя (при значениях силы раздражителя от порога возбуждения самого легковозбудимого элемента до порога возбуждения самого трудновозбудимого элемента) (рис. 2). Амплитуда ответа системы пропорциональна количеству вовлеченных в ответ возбудимых элементов. При возрастании силы раздражителя в реакцию вовлекается все большее число возбудимых элементов.

Закон силы-длительности

Эффективность раздражителя зависит не только от силы, но и от времени его действия. Сила раздражителя, вызывающего процесс распространяющегося возбуждения, находится в обратной зависимости от длительности его действия. Графически эта закономерность выражается кривой Вейсса (рис. 3).

Минимальную силу раздражителя, вызывающую возбуждение, называют реобазой . Наименьшее время, в течение которого должен действовать раздражитель силой в одну реобазу, чтобы вызвать возбуждение, называют полезным временем . Для более точной характеристики возбудимости используют параметр хронаксия. Хронаксия – минимальное время действия раздражителя в 2 реобазы, необходимое для того, чтобы вызвать возбуждение.

Закон крутизны раздражения
(закон крутизны нарастания силы раздражителя)

Для возникновения возбуждения имеет значение не только сила и время действия тока, но и скорость нарастания силы тока. Для возникновения возбуждения сила раздражающего тока должна нарастать достаточно круто (рис. 4). При медленном нарастании силы тока происходит явление аккомодации – возбудимость клетки снижается. В основе явления аккомодации лежит повышение КУД вследствие постепенной инактивации Na+ -каналов.

Полярный закон

Деполяризация, повышение возбудимости и возникновение возбуждения происходят при действии на клетку выходящего тока . При действии входящего тока происходят противоположные изменения – гиперполяризация и снижение возбудимости, возбуждение не возникает. За направление тока принимают направление от области положительного заряда к области отрицательного заряда.

При внеклеточном раздражении возбуждение возникает в области катода (–). При внутриклеточном раздражении для возникновения возбуждения необходимо, чтобы внутриклеточный электрод имел положительный знак (рис. 5).

Лабильность

Под лабильностью понимают функциональную подвижность, скорость протекания элементарных физиологических процессов в клетке (ткани). Количественной мерой лабильности является максимальная частота циклов возбуждения, которую может воспроизводить клетка. Частота циклов возбуждения не может возрастать беспредельно, так как в каждом цикле возбуждения имеется период рефрактерности. Чем короче рефрактерный период, тем больше лабильность клетки.

Прочитайте:
  1. А - нормальная плетизмограмма; б - плетизмограмма при воздействии холода; в- плетизмограмма при воздействии тепла; 1- начало воздействия; 2- конец воздействия.
  2. ВЕНИ ГОЛОВИ ТА ШИЇ. ГРУДНА ПРОТОКА. ПРАВА ЛІМФАТИЧНА ПРОТОКА. ЛІМФАТИЧНІ ВУЗЛИ І СУДИНИ ГОЛОВИ ТА ШИЇ.
  3. Выносящие сосуды чревных л.у. впадают в поясничные л.у., кишечный ствол или цистерну грудного протока.
  4. Выраженность катодической депрессии и анодической экзальтации на разных участках нервного ствола при длительном действии постоянного подпорогового тока.
  5. Г) закон крутизны нарастания тока. Явление и механизм аккомодации.
  6. Действие постоянного подпорогового тока на возбудимые ткани (Пфлюгер, Вериго)
  7. Закономерности взаимодействия раздражителя с мембраной возбудимой клетки (закон «силы», закон «силы - длительности», полярность постоянного тока как раздражителя и др.)
  8. Закономерности наследования при моногибридном скрещивании. 1-й и 2-й законы Менделя, их цитологические основы.
  9. Законы и механизмы проведения возбуждения по нервным волокнам. Классификация и морфофизиологическая характеристика нервных волокон.

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании - под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя. Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровнями возникает возбуждение.

При раздр. нерва или мышцы постоянным током возб-е возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания - только под анодом. Эти факты объединяют под названием полярного закона раздражения Пфлюгера. Полярный закон доказывается следующими опытами: Умерщвляют участок нерва под одним из электродов, а второй электрод устанавливают на неповрежденном участке. Если с неповрежденным участком соприкасается катод, возбуждение возникает в момент замыкания тока: если же катод устанавл-ют на поврежденном участке, а анод - на неповрежденном, возбуждение возникает только при размыкании тока. Порог раздражения при размыкании, когда возбуждение возникает под анодом, значительно выше, чем при замыкании, когда возбуждение возникает под катодом.

Постоянный ток близок к нервному импульсу, его применяют в медицине: рефлексотерапия, электропунктура. Законы были описаны в 1859 г Пфлюгером. 1. закон полярного действия постоянного тока 2. закон физиологического электротонуса. (Выявляет зависимость: в области катода при пропускании эл тока повышенная возбудимость и проводимость, а в области анода – пониженная.) Дополнения к закону: 1. если действует сильный ток, то вместо увеличения по анодом и катодом возбудимость и проводимость понижается – катотическая депрессия. Обеспечивает пресинаптическое торможение. 2. Не только под катодом и анодом меняется проводимость и возбудимость, но и вокруг полюсов Выделяют: Перекатэлектрон – повышение проводимости и возбудимости Переанэлектрон – понижение проводимости и возбудимости. 3. Закон сокращения. Эффект сокращения зависит от силы тока и направлении действий тока. По силе выделяют токи: -слабые пороговые средние -сильные По направлению: -восходящие -нисходящие

ПФЛЮГЕРА ЗАКОНЫ (Pfluger), предложенные П. в 1859 году, законы, устанавливающие зависимость фнкц. изменений в тканях тела от силы и направления действующего на них постоянного электрического тока. Законы эти могут быть сформулированы так: 1) при замыкании тока волна возбуждения всегда возникает только на катоде, 2) во время пропускания через ткань тока возбудимость повышена на катоде и понижена на аноде, 3) при размыкании тока понижение возбудимости на аноде сменяется рождающейся здесь волной возбуждения, 4) при размыкании же тока возбудимость на катоде оказывается пониженной и 5) интенсивность полярных влияний тока зависит от его силы. Катэлектротонусом называют происходящие под катодом изменения в сторону повышения возбудимости, анэлектротону-сом - изменения под анодом в сторону падения возбудимости. Пфлюгер дал для 1-го и 3-го из своих законов также и следующую формулировку: ткань возбуждается или возникновением катэлектротонуса или исчезновением ан-электротонуса. Если к двигательному нерву мышцы приложить электроды постоянного тока, то в зависимости от того, будет ли на пути волны возбуждения участок с пониженной возбудимостью, мы будем наблюдать сокращение мышцы (+) или же последнее не будет иметь места (-) (см. таблицу). Сила тока Нисходящий ток * Восходящий ток ** Замыкание Размыкание Замыкание Размыкание + + + + + + + + * Катод ближе к мыши е. ** Анод бл ише к л 1ышце. После Пфлюгера были внесены добавления в его законы; так, Вериго доказал, чтю при длительном действии тока повышение возбудимости на катоде сменяется падением возбудимости, могущим вызвать непроводимость и смерть нерва. Перна показал, что вторичное понижение возбудимости на катоде может рассматриваться"как парабиоз (см.). Введенский нашел у что на значительном расстоянии от первичных полюсов устанавливаются вторичные с обратг- юа ными знаками (периэлектротонические явления). Существующие теории кат- и анэлектро-тонуса, объясняющие наблюдаемые явления с точки зрения переноса токов (Леб, Лазарев) или изменения концентрации гипотетической фибриловой к-ты (Бете), не дают пока возможности правильно истолковать явления воздействия электрич. тока на ткани и тем подойти к кардинальнейшему вопросу современной физиологии-сущности явлений возбуждения и торможения.Г. Конради.

Смотрите также:

  • ПЫЛЕСОС , аппарат, служащий для удаления пыли с поверхностей или собирания ее в целях исследования запыленности воздуха путем его аспирации. П. бывают переносные, перевозимые на тележках и стационарные. Различаются системы, работающие...
  • ПЫЛЬ . Пыль атмосферная. П.-измельченное состояние какого-нибудь твердого вещества в виде частиц, не связанных или весьма слабо связанных друг с другом механически. Эти частицы б. или м. легко поднимаются в воздух, ...
  • ПЬЕЗОЭЛЕКТРИЧЕСТВО (от греч. piezo- давлю), электризация кристаллов под действием давления или растяжения. Явления П., открытые Аюи (Наиу) в 1817 г., наблюдаются в наиболее простой и ясной форме в кристаллах, обладающих...
  • ПЬЯВКИ , применяющиеся с мед. целями, принадлежат к типу кольчатых червей (Annelida), классу Hirudinea, отряду Gnathobdellida. Живут в пресных стоячих водах (болота, пруды, канавы). Продолжительность жизни-несколько лет. Для кровоизвлечения пригодны многие...
  • ПЯТАЯ БОЛЕЗНЬ , острая инфекционная б-нь по преимуществу детского возраста, которая характеризуется пятнисто-папулезной сыпью и почти полным отсутствием общих явлений; сыпь при своем развитии дает чрезвычайно изменчивую, разнообразную картину, образуя кольца, гирлянды...