Второй закон термодинамики несколько формулировок. Второй закон термодинамики. Энтропия. Определение энтропии. Эффективность теплового двигателя. Тепловой цикл Карно. Неубывание энтропии

Необратимым называется физический процесс , который может самопроизвольно протекать только в одном определенном направлении.

В обратном направлении такие процессы могут протекать только как одно из звеньев более сложного процесса.

Необратимыми являются практически все процессы, происходящие в природе. Это связано с тем, что в любом реальном процессе часть энергии рассеивается за счет излучения, трения и т. д. Например, тепло, как известно, всегда переходит от более горячего тела к более холодному — это наиболее типичный пример необратимого процесса (хотя обратный переход не противоречит закону сохранения энергии).

Также висящий на легкой нити шарик (маятник) никогда самопроизвольно не увеличит ам-плитуду своих колебаний, наоборот, приведенный однажды в движение посторонней силой, он обязательно, в конце концов, остановится в результате сопротивления воздуха и трения нити о подвес. Таким образом, сообщенная маятнику механическая энергия переходит во внутреннюю энергию хаотического движения молекул (воздуха, материала подвеса).

Математически необратимость механических процессов выражается в том, что уравнение движения макроскопических тел изменяется с изменением знака времени: они не инвариантны при замене t на - t . При этом ускорение и силы, зависящие от расстояний, не изменяют свои знаки. Знак при замене t на - t меняется у скорости . Соответственно знак меняет сила , зависящая от скорости, — сила трения . Именно поэтому при совершении работы силами трения кинетическая энергия тела необратимо переходит во внутреннюю.

Направленность процессов в природе указывает второй закон термодинамики.

Второй закон термодинамики.

Второй закон термодинамики — один из основных законов термодинамики , устанавливающий необратимость реальных термодинамических процессов.

Второй закон термодинамики был сформулирован как закон природы Н. Л. С. Карно в 1824 г., затем У. Томсоном (Кельвином) в 1841 г. и Р. Клаузиусом в 1850 г. Формулировки закона различны, но эквивалентны.

Немецкий ученый Р. Клаузиус формулировал закон так: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах. Это означает, что теплота не может самопроизвольно пере-ходить от более холодного тела к более горячему (принцип Клаузиуса ).

Согласно формулировке Томсона процесс, при котором работа переходит в тепло без каких-либо иных изменений состояния системы, необратим, т. е. невозможно преобразовать в работу все тепло, взятое от тела, не производя никаких других изменений состояния системы (принцип Томсона ).

Лекция 17

Второй закон термодинамики

Вопросы

    Тепловые двигатели и холодильные машины. Цикл Карно.

    Энтропия, второй закон термодинамики.

3. Реальные газы. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов. Фазовая диаграмма.

4. Внутренняя энергия реального газа.

Эффект Джоуля – Томсона.

1. Тепловые двигатели и холодильные машины. Цикл Карно

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

КПД двигателя

Обратный цикл

холодильныйкоэф-нт

отопительныйкоэф-нт

Цикл Карно – это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ 1 и холодильникаТ 2 , переход отТ 1 кТ 2 и обратно осуществляется в адиабатных условиях.

А ц = А 12 + А 23 + А 34 + А 41 (1)

, (2)

, (3)

, (4)

. (5)


. (6)



(7)

Теоремы Карно:

    Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

    Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

Зависимость КПД цикла Карно от температуры нагревателя (t 2 = 0 o C )

t 1 , o C

t , %

;


, (8)

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур , такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

  1. Энтропия, второй закон термодинамики

Энтропией называется отношение теплоты, подводимой к термодина­мической системе в некотором процессе, к абсолютной температуре этого тела.

(9)

Эта функция была впервые введена С.Карно под названием приведенной теплоты , затем названа Клаузиусом (1865 г.).

, (10)

тепло подводится,

тепло отводится.

Изменение энтропии в частных случаях политропного процесса

1.


изобарный процесс.

(11)

2 .




изотермический процесс

1-й закон термодинамики:


(12)

3. Адиабатный процесс.



процесс изоэнтропный (13)

4. Изохорный процесс.

Второй закон термодинамики устанавливаетнаправление протекания тепловых процессов.

Формулировка немецкого физика Р. Клаузиус а : невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Формулировка английского физика У. Кельвин а : в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Вероятностная формулировка австрийского физика Л.Больцмана : Он предложил рассматривать энтропию как меру статистического беспорядка замкнутой термодинамической системе. Всякое состояние системы c большим беспорядком характеризуется большим беспорядком. Термодинамическая вероятность W состояния системы – это число способов , которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний , осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

S = k ln W , (14)

где k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

(15)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Так как энтропия возрастает только в неравновесном процессе, то ее увеличение происходит до тех пор, пока система не достигнет равновесного состояния. Следовательно, равновесное состояние соответ­ству­ет максимуму энтропии. С этой точки зрения энтропия является мерой близости системы к состоянию равновесия, т.е. к состоянию с мини­маль­ной потенциальной энергией.

3. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовая диаграмма

Поведение реального газа отличается от поведения идеального газа. Так, радиус молекул большинства газов порядка 10 -10 м (1Ǻ), следовательно, объем молекул порядка 410  30 м 3 . В 1 м 3 газа при нормальных условиях содержится 2,710 25 молекул. Таким образом, собственный объем молекул в 1 м 3 при нормальных условиях будет порядка 1,210  4 м 3 , т.е. около 0,0001 от объема, занятого газом.

Любое вещество в зависимости от параметров состояния может находиться в различных агрегатных состояниях :твердом, жидком, газообразном, плазменном .

Нидерландский физик Ван-дер-Ваальс ввел две поправки в уравнение Менделеева-Клапейрона:

1. Учет собственного объема молекулы

Объем одной молекулы: ;

Недоступный объем пары молекул (в расчете на одну молекулу):

учетверенный объем молекулы.

Недоступный объем на все N A молекул одного киломоля:


внутреннее давление; а – постоянная Ван-дер-Ваальса, характери­зую­щая силы межмолекулярного притяжения.

Уравнение Ван-дер-Ваальса для одного моля газа (уравнение состояния реальных газов):

. (16)

Уравнение Ван-дер-Ваальса для произвольной массы газа



. (17)

При фиксированных значениях давления и температуры уравнение (16) имеет три корня относительно V (V 1 , V 2 , V 3)

(V V 1 )(V V 2)(V V 3 ) = 0.


Министерство образования и науки Российской Федерации

Государственной образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Кафедра Технологии пищевых продуктов и биотехнологии (ТППиБТ)

Реферат

по дисциплине «Техническая термодинамика и теплотехника»

II -ой закон термодинамики или «Тепловая смерть Вселенной»

Выполнил:

студент 3 курса

Ивлев Павел Андреевич

Руководитель:

к т н, доцент, кафедры ПиАХТ

Маркичев Николай Аркадьевич

Иваново 2010 г.

Введение__________________________________________________________________ 3

Часть 1. Второй закон термодинамики.

1.1. Второй закон термодинамики. Характеристика и формулировка._______________4

Часть 2. Энтропия

2.1. Понятие энтропии.______________________________________________________5

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.______________5

2.3 Возможность энтропии во Вселенной.______________________________________6

Часть 3. Теория «тепловой смерти» Вселенной

3.1. Появление идеи Теории «тепловой смерти» Вселенной._______________________8

3.2. Взгляд на Теорию «тепловой смерти» Вселенной из ХХ века.__________________9

3.3 «За» и «против» Теории «тепловой смерти» Вселенной_______________________10

Заключение_______________________________________________________________16

Список, использованной в работе литературы __________________________________17

Введение:

В данной работе поднимаеться проблема о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти», причиной которой являеться Второй закон термодинамики и истекающие из него выводы.

Часть1. Второй закон термодинамики

      Второй закон термодинамики. Характеристика и формулировка:

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических поцессов.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Он гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют формулировоки:

- передача теплоты от холодного источника к горячему невозможна без затраты работы;

- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

- природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки:

невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника.

Часть 2. Энтропия

2.1 Понятие энтропии.

Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией , определяющей меру обесценения энергии.

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:

.

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

Рисунок 1. Необратимый круговой термодинамический процесс

Пусть процесс 1-2 будет необратимым, а 2-1 процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид

Так как процесс 2-1 является обратимым, тогда

Подстановка этой формулы в неравенство (1) позволяет получить выражение

Сравнение выражений (1) и (2) позволяет записать следующее неравенство

в котором знак равенства имеет место в случае, если процесс 1-2 является обратимым, а знак больше, если процесс 1-2 - необратимый.

Неравенство (3) может быть также записано и в дифференциальной форме

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой, то выражение (4) примет вид

или в интегральной форме

Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом:

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

2.3 Возможность энтропии во Вселенной

В адиабтически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

С законом возрастания энтропии непосредственно связан парадокс, сформулированный в 1852 году Томсоном (лордом Кельвином) и названый им гипотезой тепловой смерти Вселенной. Подробный анализ этой гипотезы был выполнен Клаузиусом, который считал правомерным распространение на всю Вселенную закона возрастания энтропии. Действительно, если рассмотреть Вселенную как адиабатически изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Часть 3. Теория «тепловой смерти» Вселенной.

Тепловая смерть Вселенной (Т.С.В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. ... , «Аналитики» (I и II ) и др.; 3) ... закон исключенного тетьего (А или не – А, т.е. или А истинно, или ... очки" ... тепловой смерти Вселенной . Неуничтожимость материи нельзя понимать только в количественном отношении. Законы ... законы Кеплера, законы термодинамики , законы ...

  • Коцепции физики

    Реферат >> Физика

    Гидростатика Архимеда (III- II в. до н.э.) ... XIII веке очков , но... или начал, являющихся обобщением результатов многочисленных наблюдений и экспериментов. б) Первое начало термодинамики (закон ... формированию концепции "тепловой смерти" вселенной . Ее суть...

  • Физическая химия: конспект лекций Березовчук А В

    5. Процессы. Второй закон термодинамики

    Второй закон термодинамики, в отличие от первого закона термодинамики, изучает все процессы, которые протекают в природе, и эти процессы можно классифицировать следующим образом.

    Процессы бывают самопроизвольные, несамопроизвольные, равновесные, неравновесные.

    Самопроизвольные процессы делятся на обратимые и необратимые. Второй закон термодинамики называют законом направленности процесса в изолированной системе (закон роста S). Слово «энтропия» создано в 1865 г. Р. Ю. Э. Клаузиусом – «тропе» с греческого означает превращение. В 1909 г. профессор П. Ауербах назвал царицей всех функций внутреннюю энергию, а S тенью этой царицы. Энтропия – мера неупорядоченности системы.

    Обратимые и необратимые процессы

    Необратимые процессы идут без затраты работы, протекают самопроизвольно лишь в одном направлении, это такие изменения состояния в изолированной системе, когда при обращении процессов свойства всей системы меняются. К ним относятся:

    1) теплопроводность при конечной разности температур;

    2) расширение газа при конечной разности давлений;

    3) диффузия при конечной разности концентраций.

    Обратимыми процессами в изолированной системе называются такие процессы, которые можно обратить без каких-либо изменений в свойствах этой системы.

    Обратимые: механические процессы в системе, где отсутствует трение (идеальная жидкость, ее движение, незатухающие колебания маятника в вакууме, незатухающие электромагнитные колебания и распространение электромагнитных волн там, где нет поглощения), которые могут возвратиться в начальное состояние.

    Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, Na с большой скоростью движется по поверхности, так как идет выделение водорода проверить.).

    Несамопроизвольные

    Равновесие делится на устойчивое, неустойчивое и безразличное .

    1. Постулат Клаузиуса – не может быть перехода тепла от менее нагретого к более нагретому телу.

    2. Постулат Томсона – теплота наиболее холодного тела не может служить источником работы.

    Теорема Карно – Клаузиуса: все обратимые машины, совершающие цикл Карно с участием одного и того же нагревателя и одного и того же холодильника, имеют одинаковый коэффициент полезного действия, независимо от рода рабочего тела.

    Q 1 /Т 1 –

    Q 2 / T 2 –

    Q 1 /Т 1 = Q 2 /Т 2 –

    Это четвертое уравнение второго закона термодинамики Если процесс является замкнутым, то

    При необратимом процессе:

    Это шестое уравнение второго закона термодинамики, или уравнение Клаузиуса, для обратимого процесса равно нулю, для необратимого процесса оно меньше 0, но иногда может быть больше 0.

    S.

    S = k lnW.

    Действие, обратное логарифму – потенцирование :

    Первый закон термодинамики определяется постоянством функции U в изолированной системе. Найдем функцию, выражающую содержание второго закона, а именно, одностороннюю направленность протекающих в изолированной системе процессов. Изменение искомой функции должно иметь для всех реальных, т. е. необратимых процессов, протекающих в изолированных системах, один и тот же знак. Второй закон термодинамики в приложении к некруговым необратимым процессам должен выражатся неравенством. Вспомним Цикл Карно. Так как любой цикл можно заменить бесконечно большим числом бесконечно малых циклов Карно, то выражение:

    справедливо для любого обратимого цикла. Считая на каждом элементарном участке теплообмена Т = const, найдем, что:

    и для всего цикла

    Энергия Гельмгольца Изохорно-изотермический потенциал

    F = U – TS

    Величина (V – TS ) является свойством системы; она называется энергией Гельмгольца . Была введена Гельмгольцем в 1882 г.

    dF = dU – TdS – SdT,

    U = F + TS,

    dF = TdS – pdV – SdT,

    F – полный дифференциал.

    Увеличение объема приводит к тому, что изохорно-изотермический потенциал уменьшается (тот «минус», который стоит перед Р). Повышение температуры приводит к тому, что F уменьшается.

    ?А равн > ?А неравн

    Q = ?U + A,

    A = Q – ?U,

    A = T(S 2 – S 1) – (U 2 – U 1),

    А = F 1 – F 2 = – ?F,

    А равн = – ?F –

    физический смысл изохорно-изотермического потенциала.

    Убыль изохорно-изотермического потенциала равна максимальной работе, производимой системой в этом процессе; F – критерий направленности самопроизвольного процесса в изолированной системе . Для самопроизвольного процесса: AF T г < 0.

    Для несамопроизвольного процесса: ?F T,V > 0. Для равновесного процесса: ?F T,V = 0.

    ?F V,T ? 0.

    Изохорно-изотермический потенциал в самопроизвольных процессах уменьшается и, когда он достигает своего минимального значения, то наступает состояние равновесия (рис. 4).

    Рис. 4

    2 – несамопроизвольный процесс;

    3 – равновесный процесс.

    Изобарно-изотермический потенциал .

    1) G (P, Т= cоnst), энергия Гиббса

    G = U – TS + PV = H – TS = F + PV,

    ?Q = dU – Pdv + A?,

    ?A? = Q – dU – pdv,

    ?A? max = T(S 2 – S 1) – (U 2 – U 1) – p(V 2 – V 1),

    ?A? max = (U 1 – TS 1 + PV 1) – (U 2 – TS 2 + PV 2) = G 1 – G 2 = – ?G,

    U – TS + pV = G,

    A? max = – ?G.

    Работа изобарно-изотермического процесса равна убыли изобарно-изотермического потенциала – физический смысл этой функции;

    2) функция – полный дифференциал, однозначна, конечна, непрерывна.

    G = U – TS + pV,

    dG = dU – TdS – SdT + pdv + vdp,

    dG = TdS – pdV – TdS – SdT + pdv + vdp,

    dG = –SdT + Vdp,

    Повышение температуры приводит к тому, что изобарно-изотермический потенциал уменьшается, так как перед S стоит знак «минус». Повышение давления приводит к тому, что изобарно-изотермический потенциал увеличивается, так как перед V стоит знак «плюс»;

    3) G как критерий направленности процесса в изолированной системе.

    Для самопроизвольного процесса: (?G ) P,T < 0. Для несамопроизвольного процесса: (?G ) P,T > 0. Для равновесного процесса: (?G) P,T = 0

    ?G (P, T) ? 0.

    Изобарно-изотермический потенциал в самопроизвольных процессах уменьшается, и, когда он достигает своего минимума, то наступает состояние равновесия.

    Рис. 5

    где 1 – самопроизвольный процесс;

    2 – равновесный процесс;

    3 – несамопроизвольный процесс.

    Совершается работа за счет?U и?H .

    Противодействующие факторы. Энтальпийный фактор характеризует силу притяжения молекул. Энтропийный фактор характеризует стремление к разъединению молекул.

    Энтальпия – Н Внутренняя энергия – U.

    H = U + PV,

    dH = dU + pdv + vdp,

    U = TS – PV,

    dU = TdS – SdT + pdV + Vdp,

    dH = –pdV + pdV + Vdp; U = TdS + VdP.

    Рис. 6

    где 1 – самопроизвольный процесс,

    2 – несамопроизвольный процесс,

    3 – равновесный процесс,

    (dH) P,T ? 0,

    (dU) S,T ? 0.

    Уравнения Гиббса – Гельмгольца – уравнения максимальной работы .

    Они позволяют установить связь между максимальной работой равновесного процесса и теплотой неравновесного процесса

    уравнение Гельмгольца (уравнение связывающее функции F и G

    уравнение Гиббса (уравнение связывающее функции F и G с их температурными производными).

    Уравнение Клаузиуса-Клапейрона

    Оно позволяет применить второй закон термодинамики к фазовым переходам. Если рассчитать процессы, в которых совершается только работа расширения, то тогда изменение внутренней энергии

    U 2 – U 1 = T(S 2 – S 1) – P(V 2 – V 1),

    (U 1 – TS 1 + PV 1) = (U 2 – TS 2 + PV 2),

    G 1 = G 2 – в условиях равновесия.

    Предположим, что 1 моль вещества переходит из первой фазы во вторую.

    I фаза => dG 1 = V 1 dp – S 1 dT.

    II фаза => dG 2 = V 2 dp – S 2 dT, при равновесии dG 2 – dG 1 = 0

    dG 2 – dG 1 = dp(V 2 – V 1) – dT(S 2 – S1) –

    нет условного равновесия,

    где dP/dT – температурный коэффициент давления,

    где ? фп – теплота фазового перехода.

    уравнение Клаузиуса-Клапейрона, дифференциальная форма уравнения.

    Уравнение устанавливает взаимосвязь между теплотой фазового перехода, давлением, температурой и изменением молярного объема.

    эмпирическая форма уравнения Клаузиуса-Клапейрона.

    Рис. 7

    Рис. 8

    Уравнение Клаузиуса-Клапейрона изучает фазовые переходы. Фазовые переходы могут быть I рода и II рода.

    I рода – характеризуются равенством изобарных потенциалов и скачкообразными изменениями S и V.

    II рода – характеризуются равенством изобарных потенциалов, равенством энтропий и равенством молярных объемов.

    I рода – ?G = 0, ?S ? 0, ?V ? 0.

    II рода – ?G = 0, ?S = 0, ?V = 0.

    Алгебраическая сумма приведенных теплот для любого обратимого кругового процесса равна нулю.

    Эта подынтегральная величина – дифференциал однозначной функции состояния. Эта новая функция была введена Клаузиусом в 1865 г. и названа энтропией – S (от греч. «превращение»).

    Любая система в различном состоянии имеет вполне определенное и единственное значение энтропии, точно так же, как определенное и единственное значение Р, V, T и других свойств.

    Итак, энтропия выражается уравнением:

    где S – это функция состояний, изменение которой dSв обратимом изотермическом процессе перехода теплоты в количество Q равно приведенной теплоте процесса.

    При независимых переменных U (внутренняя энергия) может обозначаться U ВН и V (объем), или Р (давление) и Н (энтальпия). Энтропия является характеристической функцией. Характеристические функции – функции состояния системы, каждая из которых при использовании ее производных дает возможность выразить в явной форме другие термодинамические свойства системы. Напомним, в химической термодинамике их пять:

    1) изобарно-изотермический потенциал (энергия Гиббса) при независимых переменных Т, Р и числе молей каждого из компонентов и. ;

    2) изохорно-изотермический потенциал (энергия Гельмгольца) при независимых переменных Т, V, n i ;

    3) внутренняя энергия при независимых переменных: S, V, n i ;

    4) энтальпия при независимых переменных: S, Р, п i ;

    5) энтропия при независимых переменных Н, Р, n i . .

    В изолированных системах (U и V= const) при необратимых процессах энтропия системы возрастает, dS > 0; при обратимых – не изменяется, dS = 0.

    Связь энтропии с другими термодинамическими параметрами

    Для того, чтобы решить конкретную задачу, связанную с применением энтропии, надо установить зависимость между ней и другими термодинамическими параметрами. Уравнение dS = ?Q/T в сочетании с?Q = dU + PdV и?Q = dH – VdP дает уравнения:

    dU = TdS – PdV,

    dH = TdS + VdP.

    Записав уравнение:

    применительно к функциональной зависимости ?(Т, V, S) = 0, получим

    Теперь найдем зависимость энтропии от температуры из уравнений:

    Вот эти зависимости:

    Эти два уравнения являются практически наиболее важными частными случаями общего соотношения:

    TdS = CdT.

    Пользуясь разными зависимостями, можно вывести другие уравнения, связывающие термодинамические параметры.

    Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, натрий с большой скоростью движется по поверхности, так как идет выделение водорода), а калий буквально «прыгает» по воде.

    Несамопроизвольные – процессы, которые не могут идти сами собой, на них затрачивается работа.

    Равновесие делится на устойчивое, неустойчивое и безразличное.

    Постулаты второго закона термодинамики.

    1. Постулат Клаузиуса – «Не может быть перехода тепла от менее нагретого к более нагретому телу».

    2. Постулат Томсона – «Теплота наиболее холодного тела не может служить источником работы».

    Теорема Карно-Клаузиуса: «Все обратимые машины, совершающие цикл Карно с участием одного и того же нагревателя и одного и того же холодильника, имеют одинаковый коэффициент полезного действия, независимо от рода рабочего тела».

    Аналитические выражения второго закона термодинамики.

    1. Классическое уравнение второго закона термодинамики

    где Q /Т – приведенное тепло;

    Q 1 /Т 1 – приведенное тепло нагревателя;

    Q 2 / T 2 – приведенное тепло холодильника;

    Q 1 /Т 1 = Q 2 / T 2 – равенство приведенных теплот нагревателя и холодильника. Это второе уравнение термодинамики.

    Если делим адиабатами на множество циклов Карно, то получим

    Это третье уравнение второго закона термодинамики для бесконечно малого цикла Карно.

    Если процесс является конечным, то

    Это четвертое уравнение второго закона термодинамики

    Если процесс является замкнутым, то

    Это пятое уравнение второго закона термодинамики для обратимого процесса.

    Интеграл по замкнутому контуру – интеграл Клаузиуса.

    При необратимом процессе:

    шестое уравнение второго закона термодинамики, или уравнение Клаузиуса, для обратимого процесса равно нулю, для необратимого процесса оно меньше 0, но иногда может быть больше 0.

    это седьмое уравнение второго закона термодинамики. Второй закон термодинамики – закон роста S.

    S = k lnW.

    S = k lnW –

    это формула Больцмана,

    где S – энтропия – степень разупорядоченности системы;

    k– постоянная Больцмана;

    W – термодинамическая вероятность системы макросостояний.

    Термодинамическая вероятность – число микросостояний данной системы, с помощью которых можно реализовать данное макросостояние системы (Р, Т, V).

    Если W = 1, то S = 0, при температуре абсолютного нуля –273°С все виды движений прекращаются.

    Термодинамическая вероятность – это число способов, которыми атомы и молекулы можно распределить в объеме.

    Из книги Медицинская физика автора Подколзина Вера Александровна

    25. Второе начало термодинамики. Энтропия Существует несколько формулировок второго закона термодинамики: теплота сама собой не может переходить от тела с меньшей температурой к телу с большей температурой (формулировка Клаузиуса), или невозможен вечный двигатель

    Из книги Физическая химия: конспект лекций автора Березовчук А В

    29. Физические процессы в биологических мембранах Важной частью клетки являются биологические мембраны. Они отграничивают клетку от окружающей среды, защищают ее от вредных внешних воздействий, управляют обменом веществ между клеткой и ее окружением, способствуют

    Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

    3. Первый закон термодинамики. Калорические коэффициенты. Связь между функциями CP и Cv Формулировки первого закона термодинамики.1. Общий запас энергии в изолированной системе остается постоянным.2. Разные формы энергии переходят друг в друга в строго эквивалентных

    Из книги Атомная энергия для военных целей автора Смит Генри Деволф

    2. Электродные процессы Электродные процессы – процессы, связанные с переносом зарядов через границу между электродом и раствором. Катодные процессы связаны с восстановлением молекул или ионов реагирующего вещества, анодные – с окислением реагирующего вещества и с

    Из книги Курс истории физики автора Степанович Кудрявцев Павел

    3. Катодные и анодные процессы в гальванотехнике Основными процессами в гальванотехнике являются восстановление и снижение.На Kat – восстановление, где Kat – катод. На An – снижение, где An – анод.Электролиз H2O: Катодные реакции Последняя реакция протекает свыделением

    Из книги История лазера автора Бертолотти Марио

    4. Стохастические процессы и самоорганизующиеся системы Стохастические процессы и самоорганизующиеся системы являются предметом изучения электрохимической синергетики. Такие процессы имеют место во всех областях: переход от ламинарного к турбулентному процессу,

    Из книги Вечный двигатель - прежде и теперь. От утопии - к науке, от науки - к утопии автора Бродянский Виктор Михайлович

    ЛЕКЦИЯ № 15. Третий закон термодинамики Понятие химического сродства. Известно, что многие вещества реагируют друг с другом легко и быстро, другие вещества реагируют с трудом, а третьи – не реагируют. Исходя из этого, вывели предположение, что между веществами существует

    Из книги 4. Кинетика. Теплота. Звук автора Фейнман Ричард Филлипс

    Из книги Механика от античности до наших дней автора Григорьян Ашот Тигранович

    КАСКАДНЫЕ И КОМБИНИРОВАННЫЕ ПРОЦЕССЫ 9.32. Во всех статистических методах разделения изотопов для получения вещества, содержащего 90 % или больше U-235 или дейтерия, необходимо много последовательных ступеней разделения. Если поток движется непрерывно от одной ступени к

    Из книги автора

    Возникновение и развитие термодинамики. Карно Если в XVIII в. в физике (за исключением механики) господствовал эксперимент, так что физику определяли как науку «о всем том, что через опыты познать можно», то в XIX в. картина начинает меняться. Экспериментальная физика

    Из книги автора

    Второе начало термодинамики Прогресс теплотехники не только стимулировал открытие закона сохранения и превращения энергии, но и двинул вперед теоретическое изучение тепловых явлений. Уточнялись основные понятия, создавалась аксиоматика теории теплоты,

    Из книги автора

    Второй твердотельный лазер В сентябре 1959 г. Таунс организовал конференцию «Квантовая электроника - резонансные явления», на которой, хотя лазер еще не был создан, большинство неформальных дискуссий концентрировалось на лазерах.В этой конференции приняли участие Петер

    Из книги автора

    Глава третья. ИДЕЯ ppm-2 и ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ У кого не уяснены принципы во всей логической полноте и последовательности, у того не только в голове сумбур, но и в делах чепуха. Н. Г.

    Из книги автора

    Из книги автора

    Глава 45 ПРИМЕРЫ ИЗ ТЕРМОДИНАМИКИ § 1. Внутренняя энергия§ 2. Применения§ 3. Уравнение Клаузиуса –Клайперона§ 1. Внутренняя энергияКогда приходится использовать термоди­намику для дела, то оказывается, что она очень трудный и сложный предмет. В этой книге, однако, мы не

    Из книги автора

    IX. МЕХАНИКА В РОССИИ ВО ВТОРОЙ ПОЛОВИНЕ XIX-НАЧАЛЕ XX

    Второе начало термодинамики

    Исторически второе начало термодинамики возникло из анализа работы тепловых машин (С. Карно, 1824). Существует несколько его эквивалентных формулировок. Само название «второе начало термодинамики» и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу.

    Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются.

    Опыт показывает, что разные виды энергии неравноценны в отношении способности превращаться в другие виды энергии. Механическую энергию можно целиком превратить во внутреннюю энергию любого тела. Для обратных превращений внутренней энергии в другие виды существуют определённые ограничения: запас внутренней энергии, ни при каких условиях, не может превратиться целиком в другие виды энергии. С отмеченными особенностями энергетических превращений связано направление протекания процессов в природе.

    Второе начало термодинамики – принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью.

    В отличие от чисто механических (без трения) или электродинамических (без выделения джоулевой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении.

    Второе начало термодинамики отражает направленность естественных процессов и налагает ограничения на возможные направления энергетических превращений в макроскопических системах, указывая, какие процессы в природе возможны, а какие – нет.

    Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

    Формулировки второго закона термодинамики

    1). Формулировка Карно : наибольший КПД тепловой машины не зависит от рода рабочего тела и вполне определяется предельными температурами , между которыми машина работает.

    2). Формулировка Клаузиуса : невозможен процесс единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого , к телу более нагретому.

    Второе начало термодинамики не запрещает переход теплоты от менее нагретого тела к более нагретому. Такой переход осуществляется в холодильной машине, но при этом внешние силы осуществляют работу над системой, т.е. этот переход не является единственным результатом процесса.

    3). Формулировка Кельвина : невозможен круговой процесс , единственным результатом которого является превращение теплоты , полученной от нагревателя , в эквивалентную ей работу.

    На первый взгляд может показаться, что такой формулировке противоречит изотермического расширения идеального газа. Действительно, всё полученное идеальным газом от какого-то тела тепло превращается полностью в работу. Однако получение тепла и превращение его в работу не единственный конечный результат процесса; кроме того, в результате процесса происходит изменение объёма газа.

    P.S. : необходимо обратить внимание на слова «единственным результатом»; запреты второго начала снимаются, если процессы, о которых идёт речь, не являются единственными.

    4). Формулировка Оствальда : осуществление вечного двигателя второго рода невозможно.

    Вечным двигателем второго рода называется периодически действующее устройство , которое совершает работу за счёт охлаждения одного источника теплоты.

    Примером такого двигателя мог бы служить судовой двигатель, получающий тепло из моря и использующий его для движения судна. Такой двигатель был бы практически вечным, т.к. запас энергии в окружающей среде практически безграничен.

    С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

    Энтропия

    Понятие «энтропия» введено в науку Р.Клаузиусом в 1862 г. и образовано из двух слов: «эн » - энергия, «тропэ » - превращаю.

    Согласно нулевому началу термодинамики изолированная термодинамическая система с течением времени самопроизвольно переходит в состояние термодинамического равновесия и остаётся в нём сколь угодно долго, если внешние условия сохраняются неизменными.

    В равновесном состоянии все виды энергии системы переходят в тепловую энергию хаотического движения атомов и молекул, составляющих систему. Никакие макроскопические процессы в такой системе невозможны.

    Количественной мерой перехода изолированной системы в равновесное состояние служит энтропия. По мере перехода системы в равновесное состояние её энтропия возрастает и достигает максимума при достижении равновесного состояния.

    Энтропия является функцией состояния термодинамической системы, обозначается: .

    Теоретическое обоснование : приведённая теплота , энтропия

    Из выражения для КПД цикла Карно: следует, что или , где – количество теплоты, отдаваемое рабочим телом холодильнику, принимаем: .

    Тогда последнее соотношение можно записать в виде:

    Отношение теплоты, полученной телом в изотермическом процессе, к температуре теплоотдающего тела называется приведённым количеством теплоты :

    С учётом формулы (2) формулу (1) представим в виде:

    т.е. для цикла Карно алгебраическая сумма приведённых количеств теплоты равна нулю.

    Приведённое количество теплоты, сообщаемое телу на бесконечно малом участке процесса: .

    Приведённое количество теплоты для произвольного участка:

    Строгий теоретический анализ показывает, что для любого обратимого кругового процесса сумма приведённых количеств теплоты равна нулю:

    Из равенства нулю интеграла (4) следует, что подынтегральная функция есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние:

    Однозначная функция состояния , полным дифференциалом которой является ,называется энтропией .

    Формула (5) справедлива лишь для обратимых процессов, в случае неравновесных необратимых процессов такое представление несправедливо.

    Свойства энтропии

    1). Энтропия определяется с точностью до произвольной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий двух состояний:

    . (6)

    Пример : если система (идеальный газ) совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии равно:

    ,

    где ; .

    т.е. изменение энтропии идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода.

    В общем случае в формуле (6) приращение энтропии не зависит от пути интегрирования.

    2).Абсолютное значение энтропии можно установить с помощью третьего начала термодинамики (теоремы Нернста):

    Энтропия любого тела стремиться к нулю при стремлении к абсолютному нулю его температуры : .

    Таким образом, за начальную точку отсчёта энтропии принимают при .

    3). Энтропия величина аддитивная, т.е. энтропия системы из нескольких тел является суммой энтропий каждого тела: .

    4). Как и внутренняя энергия, энтропия есть функция параметров термодинамической системы .

    5), Процесс, протекающий при постоянной энтропии называетсяизоэнтропийным.

    В равновесных процессах без передачи тепла энтропия не меняется.

    В частности, изоэнтропийным является обратимый адиабатный процесс: для него ; , т.е. .

    6). При постоянном объёме энтропия является монотонно возрастающей функцией внутренней энергии тела.

    Действительно, из первого закона термодинамики следует, что при имеем: , тогда . Но температура всегда. Поэтому приращения и имеют один и тот же знак, что и требовалось доказать.

    Примеры изменения энтропии в различных процессах

    1). При изобарном расширении идеального газа

    2). При изохорном расширении идеального газа

    3). При изотермическом расширении идеального газа

    .

    4). При фазовых переходах

    Пример : найти изменение энтропии при превращении массы льда при температуре в пар .

    Решение

    Первый закон термодинамики: .

    Из уравнения Менделеева – Клапейрона следует: .

    Тогда выражения для первого закона термодинамики примет вид:

    .

    При переходе из одного агрегатного состояния в другое, общее изменение энтропии складывается из изменений в отдельных процессах:

    A). Нагревание льда от температуры до температуры плавления :

    ,где –удельная теплоёмкость льда.

    Б). Плавление льда: ,где – удельная теплота плавления льда.

    В). Нагревание воды от температуры до температуры кипения :

    , где –удельная теплоёмкость воды.

    Г). Испарение воды: ,где –удельная теплота парообразования воды.

    Тогда общее изменение энтропии:

    Принцип возрастания энтропии

    Энтропия замкнутой системы при любых, происходящих в ней процессах не убывает:

    или для конечного процесса: , следовательно: .

    Знак равенства относится к обратимому процессу, знак неравенства – к необратимому. Последние две формулы – математическое выражение второго закона термодинамики. Таким образом, введение понятия «энтропия» позволило строго математически сформулировать второе начало термодинамики.

    Необратимые процессы приводят к установлению равновесного состояния. В этом состоянии энтропия изолированной системы достигает максимума. Никакие макроскопические процессы в такой системе невозможны.

    Величина изменения энтропии является качественной характеристикой степени необратимости процесса.

    Принцип возрастания энтропии относится к изолированным системам. Если система неизолированная, то её энтропия может и убывать.

    Вывод : т.к. все реальные процессы необратимые, то все процессы в замкнутой системе ведут к увеличению её энтропии.

    Теоретическое обоснование принципа

    Рассмотрим замкнутую систему, состоящую из нагревателя, холодильника, рабочего тела и «потребителя» совершаемой работы (тело, обменивающееся с рабочим телом энергией только в форме работы), совершающую цикл Карно. Это обратимый процесс, изменение энтропии которого равно:

    ,

    где – изменение энтропии рабочего тела; – изменение энтропии нагревателя; – изменение энтропии холодильника; – изменение энтропии «потребителя» работы.