Внешний вид марса. Цвет неба на Марсе. Фобос, в будущем, врежется в планету

Марс – четвертая планета Солнечной системы: карта Марса, интересные факты, спутники, размер, масса, расстояние от Солнца, название, орбита, исследования с фото.

Марс - четвертая планета от Солнца и самая похожая на Землю в Солнечной системе. Мы знаем нашего соседа также по второму наименованию – «Красная планета». Свое имя получил в честь бога войны у римлян. Дело в его красном цвете, созданном оксидом железа. Каждые несколько лет планета располагается ближе всего к нам и ее можно отыскать в ночном небе.

Его периодическое появление привело к тому, что планета отобразилась во многих мифах и легендах. А внешний угрожающий вид стал причиной страха перед планетой. Давайте узнаем больше интересных фактов о Марсе.

Интересные факты о планете Марсе

Марс и Земля похожи по поверхностной массивности

  • Красная планета охватывает лишь 15% земного объема, но 2/3 нашей планеты покрыто водой. Марсианская гравитация – 37% от земной, а значит ваш прыжок будет втрое выше.

Обладает наивысшей горой в системе

  • Гора Олимп (самая высокая в Солнечной системе) вытягивается на 21 км, а в диаметре охватывает 600 км. На ее формирование ушли миллиарды лет, но лавовые потоки намекают на то, что вулкан все еще может быть активным.

Лишь 18 миссий завершились успехом

  • К Марсу направляли примерно 40 космических миссий, включая простые пролеты, орбитальные зонды и высадку роверов. Среди последних был аппарат Curiosity (2012), MAVEN (2014) и индийский Мангальян (2014). Также в 2016 году прибыли ExoMars и InSight.

Крупнейшие пылевые бури

  • Эти погодные бедствия способны месяцами не успокаиваться и покрывают всю планету. Сезоны становятся экстремальными из-за того, что эллиптический орбитальный путь крайне вытянут. В ближайшей точке на южном полушарии наступает короткое, но жаркое лето, а северное окунается в зиму. Потом они меняются местами.

Марсианские осколки на Земле

  • Исследователи смогли найти небольшие следы марсианской атмосферы в прибывших к нам метеоритах. Они плавали в пространстве миллионы лет, прежде чем добраться к нам. Это помогло провести предварительное изучение планеты еще до запуска аппаратов.

Название досталось от бога войны в Риме

  • В Древней Греции использовали имя Арес, который отвечал за все военные действия. Римляне практически все скопировали у греков, поэтому использовали Марс в качестве своего аналога. Такой тенденции послужил кровавый окрас объекта. К примеру, в Китае Красную планету называли «огненной звездой». Формируется из-за оксида железа.

Есть намеки на жидкую воду

  • Ученые убеждены, что долгое время планета Марс располагала водой в виде ледяных залежей. Первыми признаками выступают темные полосы или пятна на кратерных стенах и скалах. Учитывая марсианскую атмосферу, жидкость обязана быть соленой, чтобы не замерзнуть и не испариться.

Ожидаем появления кольца

  • В ближайшие 20-40 миллионов лет Фобос подойдет на опасно близкое расстояние и разорвется планетарной гравитацией. Его осколки сформируют кольцо вокруг Марса, которое сможет продержаться до сотни миллионов лет.

Размер, масса и орбита планеты Марс

Экваториальный радиус планеты Марс составляет 3396 км, а полярный – 3376 км (0.53 земного). Перед нами буквально половина земного размера, но масса – 6.4185 х 10 23 кг (0.151 от земной). Планета напоминает нашу по осевому наклону – 25.19°, а значит на ней также можно отметить сезонность.

Физические характеристики Марса

Экваториальный 3396,2 км
Полярный радиус 3376,2 км
Средний радиус 3389,5 км
Площадь поверхности 1,4437⋅10 8 км²
0,283 земной
Объём 1,6318⋅10 11 км³
0,151 земного
Масса 6,4171⋅10 23 кг
0,107 земной
Средняя плотность 3,933 г/см³
0,714 земной
Ускорение свободного

падения на экваторе

3,711 м/с²
0,378 g
Первая космическая скорость 3,55 км/с
Вторая космическая скорость 5,03 км/с
Экваториальная скорость

вращения

868,22 км/ч
Период вращения 24 часа 37 минут 22,663 секунды
Наклон оси 25,1919°
Прямое восхождение

северного полюса

317,681°
Склонение северного полюса 52,887°
Альбедо 0,250 (Бонд)
0,150 (геом.)
Видимая звёздная величина −2,91 m

Максимальное расстояние от Марса до Солнца (афелий) – 249.2 млн. км, а приближенность (перигелий) – 206.7 млн. км. Это приводит к тому, что на орбитальный проход планета тратит 1.88 лет.

Состав и поверхность планеты Марс

С показателем плотности в 3.93 г/см 3 Марс уступает Земли и имеет лишь 15% нашего объема. Мы уже упоминали, что красный цвет образуется из-за присутствия оксида железа (ржавчина). Но из-за присутствия других минералов он бывает коричневым, золотым, зеленым и т.д. Изучите строение Марса на нижнем рисунке.

Марс относится к планетам земного типа, а значит обладает высоким уровнем минералов, вмещающих кислород, кремний и металлы. Грунт слабощелочный и располагает магнием, калием, натрием и хлором.

В таких условиях поверхность не способна похвастаться водой. Но тонкий слой марсианской атмосферы позволил сохранить лед в полярных областях. Да и можно заметить, что эти шапки охватывают приличную территорию. Существует еще гипотеза о наличии подземной воды на средних широтах.

В структуре Марса присутствует плотное металлическое ядро с силикатной мантией. Оно представлено сульфидом железа и вдвое богаче на легкие элементы, чем земное. Кора простирается на 50-125 км.

Ядро охватывает 1700-1850 км и представлено железом, никелем и 16-17% серы. Небольшие размер и масса приводят к тому, что гравитация достигает лишь до 37.6% земной. Объект на поверхности будет падать с ускорением в 3.711 м/с 2 .

Стоит отметить, что марсианский пейзаж похож на пустыню. Поверхность пыльная и сухая. Есть горные хребты, равнины и крупнейшие в системе песчаные дюны. Также Марс может похвастаться наибольшей горой – Олимп, и самой глубокой пропастью – Долина Маринер.

На снимках можно заметить множество кратерных формирований, которые сохранились из-за медлительности эрозии. Эллада Планитиа – крупнейший кратер на планете, охватывающий в ширину 2300 км, а вглубь – 9 км.

Планета способна похвастаться оврагами и каналами, по которым ранее могла протекать вода. Некоторые тянутся на 2000 км в длину и на 100 км в ширину.

Спутники Марса

Рядом с Марсом вращаются две его луны: Фобос и Деймос. В 1877 году их нашел Асаф Холл, давший наименования в честь персонажей из греческой мифологии. Это сыновья бога войны Ареса: Фобос – страх, а Деймос – ужас. Марсианские спутники продемонстрированы на фото.

Диаметр Фобоса – 22 км, а отдаленность – 9234.42 – 9517.58 км. На орбитальный проход ему необходимо 7 часов и постепенно это время сокращается. Исследователи считают, что через 10-50 млн. лет спутник врежится в Марс или же будет разрушен гравитацией планеты и образует кольцевую структуру.

Деймос в диаметре имеет 12 км и вращается на дистанции в 23455.5 – 23470.9 км. На орбитальный маршрут уходит 1.26 дней. Марс также может располагать дополнительными лунами с шириной в 50-100 м, а между двумя крупными способно сформироваться пылевое кольцо.

Есть мнение, что ранее спутники Марса были обычными астероидами, которые поддались планетарной гравитации. Но у них наблюдаются круговые орбиты, что необычно для пойманных тел. Они также могли сформироваться из материала, вырванного от планеты в начале создания. Но тогда их состав должен была напоминать планетарный. Также мог произойти сильный удар, повторяя сценарий с нашей Луной.

Атмосфера и температура планеты Марс

Красная планета располагает тонким атмосферным слоем, который представлен углекислым газом (96%), аргоном (1.93%), азотом (1.89%) и примесями кислорода с водой. В ней много пыли, размер которой достигает 1.5 микрометра. Давление – 0.4-0.87 кПа.

Большое расстояние от Солнца к планете и тонкая атмосфера привели к тому, что температура Марса низкая. Она скачет между -46°C до -143°C зимой и может прогреваться до 35°C летом на полюсах и в полдень на экваториальной линии.

Марс отличается активностью пылевых бурь, которые способны имитировать мини-торнадо. Они образуются благодаря солнечному нагреву, где более теплые воздушные потоки поднимаются и формируют бури, простирающиеся на тысячи километров.

При анализе в атмосфере также нашли следы метана с концентрацией 30 частичек на миллион. Значит, он освобождался из конкретных территорий.

Исследования показывают, что планета способна создавать в год до 270 тонн метана. Он достигает атмосферного слоя и сохраняется 0.6-4 лет до полного разрушения. Даже небольшое наличие говорит о том, что на планете скрывается газовый источник. Нижний рисунок указывает концентрацию метана на Марсе.

Среди предположений намекали на вулканическую активность, падение комет или наличие микроорганизмов под поверхностью. Метан может создаваться и в небиологическом процессе – серпентинизация. В нем присутствует вода, углекислый газ и минеральный оливин.

В 2012 году провели несколько вычислений по метану при помощи ровера Curiosity. Если первый анализ показал определенное количество метана в атмосфере, то второй показал 0. А вот в 2014 году ровер натолкнулся на 10-кратный всплеск, что говорит о локализированном выбросе.

Также спутники зафиксировали наличие аммиака, но его срок разложения намного короче. Возможный источник – вулканическая активность.

Диссипация планетных атмосфер

Астрофизик Валерий Шематович об эволюции планетных атмосфер, экзопланетных системах и потере атмосферы Марса:

История изучения планеты Марс

Земляне давно следят за красным соседом, потому что планету Марс можно отыскать без использования инструментов. Первые записи сделаны еще в Древнем Египте в 1534 г. до н. э. Они уже тогда были знакомы с эффектом ретроградности. Правда для них Марс был причудливой звездой, чье движение отличалось от остальных.

Еще до появления неовавилонской империи (539 г. до н. э.) делались регулярные записи планетарных позиций. Люди отмечали перемены в движении, уровнях яркости и даже пытались предсказать, куда они направятся.

В 4 веке до н.э. Аристотель заметил, что Марс спрятался за земным спутником в период окклюзии, а это говорило о том, что планета расположена дальше Луны.

Птолемей решил создать модель всей Вселенной, чтобы разобраться в планетарном движении. Он предположил, что внутри планет есть сферы, которые и гарантируют ретроградность. Известно, что о планете знали и древние китайцы еще в 4-м веке до н. э. Диаметр оценили индийские исследователи в 5-м веке до н. э.

Модель Птолемея (геоцентрическая система) создавала много проблем, но она оставалась главной до 16-го века, когда пришел Коперник со своей схемой, где в центре располагалось Солнце (гелиоцентрическая система). Его идеи подкрепили наблюдения Галилео Галилея в новый телескоп. Все это помогло вычислить суточный параллакс Марса и удаленность к нему.

В 1672 году первые замеры сделал Джованни Кассини, но его оборудование было слабым. В 17-м веке параллаксом пользуется Тихо Браге, после чего его корректирует Иоганн Кеплер. Первую карту Марса представил Христиан Гюйгенс.

В 19 веке удалось повысить разрешение приборов и рассмотреть особенности марсианской поверхности. Благодаря этому Джованни Скиапарелли создал первую детализированную карту Красной планеты в 1877 году. На ней отобразились также каналы – длинные прямые линии. Позже поняли, что это всего лишь оптическая иллюзия.

Карта вдохновила Персиваля Лоуэлла на создание обсерватории с двумя мощнейшими телескопами (30 и 45 см). Он написал много статей и книг на тему Марса. Каналы и сезонные перемены (сокращение полярных шапок) натолкнули на мысли о марсианах. Причем даже в 1960-х гг. продолжали писать исследования на эту тему.

Исследование планеты Марс

Более продвинутые исследования Марса начались с освоением космоса и запуском аппаратов к другим солнечным планетам в системе. Космические зонды стали отправлять к планете в конце 20-го века. Именно с их помощью удалось познакомиться с чужим миром и расширить наше понимание планет. И хотя нам не удалось отыскать марсиан, жизнь могла существовать там ранее.

Активное изучение планеты развернулось в 1960-х гг. СССР отправили 9 беспилотных зондов, которые так и не добрались к Марсу. В 1964 году НАСА запустили Маринер 3 и 4. Первая провалилась, но вторая через 7 месяцев прилетела к планете.

Маринер-4 сумел получить первые масштабные снимки чужого мира и передал сведения об атмосферном давлении, отсутствии магнитного поля и радиационного пояса. В 1969 году к планете прибыли Маринеры 6 и 7.

В 1970-м году между США и СССР развернулась новая гонка: кто первым установим спутник на марсианской орбите. В СССР задействовали три аппарата: Космос-419, Марс-2 и Марс-3. Первый вышел из строя еще при запуске. Два других запустили в 1971 году, и они добирались 7 месяцев. Марс-2 разбился, но Марс-3 приземлился мягко и стал первым, кому это удалось. Но передача велась всего 14.5 секунд.

В 1971 году США отправляют Маринер 8 и 9. Первый упал в воды Атлантического океана, но второй успешно закрепился на марсианской орбите. Вместе с Марсом 2 и 3 они попали в период марсианской бури. Когда она закончилась, Маринер-9 сделал несколько снимков, намекающих на воду в жидком состоянии, которая могла наблюдаться в прошлом.

В 1973 году от СССР отправилось еще четыре аппарата, где все, кроме Марс-7, доставили полезную информацию. Больше всего пользы было от Марс-5, который прислал 60 снимков. Миссия Викингов США стартовала в 1975 году. Это были две орбитали и два посадочных аппарата. Они должны были отлеживать биосигналы и изучить сейсмические, метеорологические и магнитные характеристики.

Обзор Викинга показал, что когда-то на Марсе была вода, ведь именно масштабные наводнения могла вырезать глубокие долины и размыть углубления в скальных породах. Марс оставался загадкой до 1990-х гг., пока не отправился Mars Pathfinder, представленный космическим кораблем и зондом. Миссия приземлилась в 1987 году и протестировала огромное количество технологий.

В 1999 году прибыл Mars Global Surveyor, установивший слежку за Марсом на практически полярной орбите. Он изучал поверхность почти два года. Удалось запечатлеть овраги и мусорные потоки. Датчики показывали, что магнитное поле не создается в ядре, но есть частично на участках коры. Также удалось создать первые 3D-обзоры полярной шапки. Связь потеряли в 2006 году.

Марс Одиссей прибыл в 2001 году. Он должен был использовать спектрометры, чтобы обнаружить доказательства жизни. В 2002 году нашли огромные водородные запасы. В 2003 прибыл Марс-экспресс с зондом. Бигл-2 вошел в атмосферу и подтвердил наличие водяного и углекислого льда на территории южного полюса.

В 2003 году высадили известные роверы Spirit и Opportunity, которые изучали горные породы и почву. MRO достиг орбиты в 2006 году. Его инструменты настроены на поиск воды, льда и минералов на/под поверхностью.

MRO ежедневно исследует марсианскую погоду и поверхностные характеристики, чтобы отыскать наилучшие места для посадки. Ровер Curiosity высадился в кратере Гейл в 2012 году. Его инструменты важны, так как раскрывают прошлое планеты. В 2014 году за исследование атмосферы принялся MAVEN. В 2014 году прилетел Мангальян от индийской ISRO

В 2016 году началось активное изучения внутреннего состава и ранней геологической эволюции. В 2018 году Роскосмос планирует отправить свой аппарат, а в 2020 году подключатся Арабские Эмираты.

Государственные и частные космические агентства настроены серьезно на создание экипажных миссий в будущем. К 2030-му году НАСА рассчитывает отправить первых марсианских астронавтов.

В 2010 году Барак Обама настоял на том, чтобы сделать Марс приоритетной целью. ЕКА планируют отправить людей в 2030-2035 гг. Есть пара некоммерческих организаций, которые собираются отправить небольшие миссии с экипажем до 4-х человек. Причем они получают деньги от спонсоров, мечтающих превратить поездку в живое шоу.

Глобальную деятельность развернул генеральный директор SpaceX Илон Маск. Ему уже удалось совершить невероятный прорыв – система многоразовых запусков, которая экономит время и средства. Первый полет на Марс запланирован в 2022 году. Речь уже идет о колонизации.

Марс считается наиболее изученной чужой планетой в Солнечной системе. Роверы и зонды продолжают исследовать ее особенности, предлагая каждый раз новую информацию. Удалось подтвердить, что Земля и Красная планета сходятся по характеристикам: полярные ледники, сезонные колебания, атмосферный слой, проточная вода. И есть сведения, что ранее там могла располагаться жизнь. Поэтому мы продолжаем возвращаться к Марсу, который, скорее всего, станет первой колонизированной планетой.

Ученые все еще не утратили надежду найти жизнь на Марсе, даже если это будут первобытные останки, а не живые организмы. Благодаря телескопам и космическим аппаратам у нас всегда есть возможность полюбоваться на Марс онлайн. На сайте найдете много полезной информации, качественных фото Марса в высоком разрешении и интересные факты о планете. Вы всегда можете использовать 3D-модель Солнечной системы, чтобы проследить за внешним видом, характеристикой и движением по орбите всех известных небесных тел, включая Красную планету. Ниже расположена детализированная карта Марса.

Нажмите на изображение, чтобы его увеличить

Несмотря на множество научных открытий, красная планета по-прежнему остается весьма интересной как для ученых, так и для обывателей. И данный сборник, под названием 10 интересных фактов о Марсе это подтверждает.

Все факты о Марсе в одной статье, конечно, невозможно уместить, поэтому мы разделим статью на: планета Марс интересные факты для детей и интересные факты о Марсе для более искушенного читателя.

Интересные факты о Марсе для детей

1. Размер красной планеты весьма мал

Можно подумать, что он является близнецом Земли, но его диаметр всего лишь около половины диаметра Земли, — 6800 км в поперечнике.

2. Масса планеты

Общая масса составляет около 10% массы Земли. Сила тяжести на поверхности — 37%, от Земной.

3. Объём и плотность

Научные факты про Марс говорят, что средняя его плотность равна 3,94 грамма на кубический сантиметр (г/см3). Для сравнения, плотность Земли составляет 5,52 г/см3. Одна из причин низкой плотности, по сравнению с Землей, в том, что он имеет только 10% от массы Земли.

4. Строение планеты

Марс по строению похож на Землю, он также имеет ядро, которое в основном состоит из железа и серы, мантии, состоящей из силикатов и коры, сделанной из базальта с примесями оксида железа, которая дает планете характерный красноватый оттенок.

Его ядро, как и Земное, состоит из основного компонента — железа. На этом сходство заканчивается. Ядро Земли расплавлено и находится в постоянном движении. Внутреннее ядро вращается в противоположном направлении, в отличие от внешнего. Это взаимодействие создает магнитное поле, которое защищает нашу поверхность от солнечной радиации.

Марсианское ядро

Является твердым и не вращается. Считается, что оно имеет размер около 2960 км в диаметре. Планета не имеет магнитного поля из-за чего постоянно подвергается солнечному излучению.

Мантия

Мантия покрывает ядро. У планеты нет движения тектонических плит, поэтому поверхность не меняется и углерод не удаляется из атмосферы. Мантия считается довольно мягкой.

Земная кора образовалась в результате вулканической деятельности миллиарды лет назад. Ее размер колеблется между 50 и 125 км. Большая часть поверхности Марса покрыта порошком из оксида железа. Учитывая легкость пыли и высокую скорость ветра на Марсе, его поверхность постоянно подвергается изменению в относительно короткие сроки.

5. Орбита

Орбита Марса по эксцентричности занимает второе место в Солнечной системе. Только орбита Меркурия имеет больший эксцентриситет. В перигелии он находится на расстоянии 206,6 млн. км от Солнца, а в афелии 249,2 млн. км. Среднее расстояние от него до Солнца (так называемая большая полуось) равна 228 млн. км. На один оборот у Марса уходит 687 земных дней. Расстояние до Солнца изменяется в зависимости от гравитационного влияния других планет, а эксцентриситет может измениться с течением времени. Совсем недавно, примерно 1,350 млн. лет назад он имел почти круговую орбиту.

6. Ось вращения и сезоны

Марс, как и все планеты Солнечной системы, имеет наклон оси, составляющий около 25,19 градусов. Этот наклон, похож на Земной, так что у него есть сезоны. Марсианские сезоны дольше Земных, потому что год на нем почти вдвое длиннее земного года. Резко меняющееся расстояние между Марсом в афелии и перигелии означает, что его сезоны не сбалансированы.

7. Движение по орбите

Легче всего наблюдать Марс, когда он находится в оппозиции — ближайшей к нам точке своей орбиты. Расстояние, во время сближения, колеблется от 54 до 103 млн. км в связи с их положением планет на своих орбитах. Последняя оппозиция была 3 марта 2012.

Воздух на Марсе смертелен для человека. Размер его атмосферы всего лишь 1% от Земной. Он состоит из 95% двуокиси углерода, 3% азота, 1,6% аргона, и следовых количеств кислорода, водяного пара и других газов.

Марс это мир экстремальных погодных условий. В целом, там очень холодно, средняя температура поверхности около -47 °C. В течение лета, близ экватора, температура может достигать 20 °C в течение дня, но падать до -90 °С ночью. Это 110 ° градусов разницы температур создают ветра, которые достигают скорости торнадо. После того как начинаются эти ветры, в воздух поднимается пыль из оксида железа, которая охватывает всю планету.

10. Ваш вес

Сила притяжения на Марсе составляет всего 38% от Земного эталона, поэтому если на Земле вы весите 100 кг, то на Марсе весы покажут 38 кг!

Коротко про Марс

Как видите, планета Марс для детей, представляет собой целую сокровищницу загадок и интересных открытий!

Другие интересные факты

Интересные факты про Марс основаны на довольно удивительных явлениях и событиях, которые окружают эту планету.

1. Люди привыкли думать, что на Марсе есть каналы

Итак, в нашей номинации самые интересные факты о Марсе первое место мы отдаем довольно распространенному заблуждению про каналы. До прилета первого космического корабля, в 1965 году, никто и никогда не видел эту планету с близкого расстояния. Темные пятна на его поверхности были интерпретированы как озера и океаны, а некоторые люди даже думали, что смогли рассмотреть темные линии, пересекающие поверхность планеты. Им казалось, что это оросительные каналы умирающей цивилизации. Оказалось, что это была лишь оптическая иллюзия, и он представляет собой сухую пыльную пустыню.

2. На планете действительно есть вода

Марс не имеет океанов, рек и озер, но космический аппарат НАСА Mars Odyssey, обнаружил огромные запасы воды под поверхностью, по всей планете — в виде льда. Миссия Phoenix прибыла для поиска льда под почвой у северной полярной шапки.

Распределение воды по данным Mars Oddysey

Почему поиски воды на Марсе так важны? Геологи вместе с биологами говорят, что это ключевой шаг в поиске жизни на красной планете.

Признаки жизни

На Земле, ученые обнаружили, что жизнь может адаптироваться практически к любой среде – главное, чтобы была вода. Жизнь существует на дне океана, внутри ядерных реакторов, и глубоко внутри Земли при огромных температурах. Везде, где есть вода на Земле, ученые обнаружили жизнь.

Если есть жидкая вода, то там может быть жизнь или признаки того, что раньше эта жизнь существовала, что также будет грандиозным открытием.

Есть много примеров того, что вода раньше была на поверхности много миллиардов лет назад. Орбитальные космические корабли сняли древние русла, и, возможно, даже береговые линии давно умерших океанов. Совсем недавно, космический аппарат НАСА Mars Odyssey обнаружил огромное количество воды в виде льда, под поверхностью планеты.

Проведенные исследования

В последние несколько лет, марсоходы нашли примеры того, что жидкая вода была на поверхности в течение длительного периода времени. И если там раньше существовала жидкая вода, то вероятно и жизнь тоже.

Космический аппарат НАСА Phoenix Lander приземлился на Северном полюсе, где лед залегает под поверхностью. Он исследовал образцы почвы и льда. Марсоход Кьюриосити, в настоящий момент, также очень подробно исследует планету.

Поиски воды это поиски жизни в древнем прошлом планеты, а может быть жизнь на Марсе существует и сегодня.

3. Самая высокая гора в Солнечной системе

Продолжая наши невероятные факты стоит упомянуть о самой высокой горе в Солнечной системе – вулкане Олимп.

Она поднимается на высоту 27 километров над окружающими равнинами. Гора Олимп является щитовым вулканом, как например Маун-Кеа на Гавайях. Он формировался постепенно на протяжении миллионов лет.

Некоторые потоки лавы на вулкане настолько молоды, что планетарные ученые считают, что он все еще может быть активным.

4. Самый длинный и самый глубокий каньон в Солнечной системе

Стоит упомянуть о Долине Маринера, которая тянется на 4000 км вдоль экватора, ее глубина в некоторых местах доходит до 7 км.

5. Обломки Марса на Земле

Самый древний метеорит с Марса — NWA7533

Земля и Марс подвергались ударам астероидов в прошлом. Хотя большая часть материала при падении астероида падает обратно вниз, на планету, некоторые из них улетают прочь. Эти метеориты могут вращаться вокруг Солнечной системы в течение миллионов лет, прежде чем окончательно упадут на другие планеты.

6. Фобос, в будущем, врежется в планету

У него есть два крошечных спутника, называемые . Фобос вращается вокруг планеты на такой низкой высоте, что в конечном итоге упадет на него. Его обломки, в виде кольца, просуществуют еще в течение многих лет, а затем упадут метеоритным дождем на Марс. Ученые расходятся во мнениях, когда это произойдет. Это может произойти уже через 10 миллионов лет, но не позднее чем через 50 миллионов лет.

Анимация вращения Фобоса, получена из снимков переданных Европейским космическим аппаратом Mars Express, во время его сближения с этой луной.

7. Очень слабая атмосфера

Давление воздуха на поверхности составляет всего 1% давления над поверхностью Земли. Атмосфера состоит из 95% двуокиси углерода, 3% азота, 1,6% аргона и следовых количеств воды и кислорода.

Состав

На Земле кислород составляет 21% от воздуха, которым мы дышим. Люди могут выжить и при более низких концентрациях кислорода. Кислород распространяется по всему нашему телу красными кровяными клетками нашего организма. Высокая концентрация двуокиси углерода, в атмосфере Марса, может заменить кислород в красных кровяных клетках, и организм погибнет менее чем за 3 минуты. Конечно, мы не учитываем холод и другие факторы.

Общие сведения

Сегодня считается, что Марс это сухая и мертвая планета. Влажность это количество водяного пара в атмосфере. Она меняется ежедневно и зависит от температуры: теплый воздух может содержать больше водяного пара, чем холодный. Влажность измеряется в процентах от максимального количества воды, которую воздух может содержать при данной температуре. Чем больше разница между температурами, тем больше испарение. На Марсе, воздух на 100% влажный ночью, но сухой в течение дня. Это происходит из-за огромной разницы температур между днем и ночью.

Эволюция атмосферы

Атмосфера на планете сильно отличалась в самом начале существования Солнечной системы. Многие ученые полагают, что планета была теплой и имела более толстую атмосферу. К сожалению, планете не хватало двух важных компонентов: тектоники плит и магнитного поля. Если бы они были, то Марс мог бы накопить достаточно кислорода, чтобы поддерживать жизнь.

Самые интересные факты о планете Марс на этом не заканчиваются, теперь мы подходим к самому интересному.

8. На планете находятся два марсохода и три орбитальных аппарата

12 месяцев работы марсохода в двухминутном видео ролике

На поверхности планеты есть два работающих марсохода (Оппортьюнити и Кьюриосити) и три орбитальных аппарата: Mars Reconnaissance Orbiter, Mars Odyssey и Mars Express.

Видео получено навигационными камерами Европейского космического аппарат Mars Express во время его сближения с планетой.

9. К планете планируется запустить новые космические корабли

Зонд MAVEN уже на пути к красной планете!

Каждые два года Марс и Земля выстраиваются так, что запуск корабля в сторону красной планеты может быть осуществлен с минимальными затратами топлива. NASA, Европейское космическое агентство и Роскосмос, в ближайшие несколько лет, планируют запустить несколько интересных космических аппаратов к нему, в том числе с возвращением проб грунта спутника Фобоса.

Эта анимация сначала показывает работу марсохода Curiosity, а позже, прибывающий к красной планете зонд MAVEN, который займется изучением верхних слоев атмосферы.

10. Лицо на Марсе

Давайте поподробнее расскажем про и регион, в котором оно находится. Если вы увлекались изучением красной планеты, то наверняка натыкались на упоминание этого “Лица”.

Сидония

Это название региона на Марсе с очень интересными формами рельефа. Регион впервые был описан астрономами с помощью земных телескопов, а затем более подробно аппаратами Викинг.

Область, называемая Сидония, находится в северном полушарии, между большим количеством кратеров на юге и гладкими равнинами на севере. Вполне возможно, что Сидония была когда-то в прибрежных равнинах, когда планеты была покрыт водой, миллиарды лет назад.

Как все было

Лицо — детальный снимок

Сидония является самым известным регионом планеты из-за необычных изображений, отправленных на Землю космическим кораблем Викинг. В те далекие годы, благодаря пиару раздутому журналистами, новые факты выдавались с таким подтекстом, как будто мы открыли братьев по разуму. Викинги передали снимок холма, который выглядел как лицо. А еще на фото нашли нечто похожее на пирамиды. Трудно отрицать, глядя на исходное изображение, что оно не было похоже на лицо, но самые последние изображения, переданные Mars Reconnaissance Orbiter, показывают, что это не более чем холм.

Лицо на Google mars

На самом деле, холм выглядит как лицо из-за оптической иллюзии, известной как парейдолия. В этом случае, тени на холме были расположены так, что выглядели как глаза и рот. Но на снимках без тени, холм больше не выглядит как лицо.

Пирамиды

Также стоит упомянуть про «пирамиды», которые тоже находятся в регионе Сидония. В низком разрешении с орбитального аппарата Викинг, они и вправду выглядят как пирамиды. Но с борта Mars Reconnaissance Orbiter, ясно, что это причудливый естественный рельеф. Так что, те, кто ищет какие-либо скрытые факты, наверняка разочаруются.

11. Бонус

Бонусным пунктом стоит отметим песчаные бури красной планеты.

Бури на Марсе сильно отличаются от пылевых смерчей, которые многие видели на фотографиях с поверхности планеты. На Марсе пылевая буря может развиться в течение нескольких часов, и захватить всю планету в течение нескольких дней. Пылевая буря может продолжаться несколько недель. Ученые до сих пор пытаются узнать, почему бури становятся настолько большими, и длятся так долго.

Возникновение

Смерчи возникают из-за влияния Солнца. Солнечное тепло нагревает атмосферу и заставляет воздух двигаться, поднимая пыль с поверхности. Шанс возникновения бури увеличивается, когда происходят большие колебания температуры, как те, которые наблюдаются на экваторе летом. Из-за того, что атмосфера планеты очень тонкая, только микроскопические частицы пыли висят в воздухе.

Их расположение

Оказывается многие пылевые бури на планете возникают у одного ударного бассейна. Бассейн Hellas является самым глубоким кратером в Солнечной системе. Он образовался более трех миллиардов лет назад, когда очень крупный астероид упал на поверхность Марса. Температура на дне кратера может быть на 10 градусов теплее, чем на поверхности, к тому же кратер хорошо заполнен пылью. Разница в температуре создает ветер, который поднимает пыль.

Влияние на космические миссии

Пылевые бури являются предметом серьезной обеспокоенности, когда зонды отправляются к Марсу. Миссия Викинг в 1976 году легко выдержала две большие пылевые бури без повреждений. В 1971 году Маринер-9 прибыл к планете во время самой большой пылевой бури за всю историю. Ученые ждали несколько недель, пока буря утихнет, чтобы начать изучение планеты. Самая большая проблема заключается в том, что марсоходы на поверхности получают меньше солнечного света. Без света, нет достаточно тепла, чтобы марсоход нормально функционировал.

Инфографика

Давным-давно, когда был теплее, на его поверхности было много воды. С тех времен на планете остались следы речек, озер и даже целых морей. Однако вся эта вода замерзла миллиарды лет назад. С тех пор поверхность Марса терзали - по крайней мере, последние сто миллионов лет. Вулканы, верхушки которых выбивались выше пыльной атмосферы планеты, давно исчезли… Или может быть, все еще существуют? В некоторых местах на Марсе есть достаточно свежие потоки лавы.

Тем не менее живых существ и их следов на Марсе пока что не нашли. Но еще есть где искать. Основные на Марсе: южная зона, густо покрытая кратерами, северные равнины, сеть каньонов долины Маринера, две вулканических возвышенности, две южные впадины и громадные ледяные шапки на полюсах планеты.

Вопросы и ответы:

Насколько большая поверхность Марса? - Ее размер равняется площади всех континентов Земли, взятых вместе.

Марс - это самая далекая от Солнца твердая планета. Там очень холодно - так почему тогда на планете нет льда? -Лед на Марсе как раз таки есть. Но это не вода, а «сухой лед» - углекислый газ, который мы выдыхаем. А вот воды, H 2 O, на поверхности очень мало. Все она спрятана под землей у полюсов Марса. Кроме того, по долинам и кратерам планеты «путешествуют» осколки ледяных скал.

Что на Марсе моложе всего? - Каждый год ветер создает новые узоры на пыльной поверхности планеты. Сезонный цикл замерзаний и оттепелей оставляет по себе куда более необычные следы: круглые западины, пирамиды и даже многоугольники из трещин, напоминающие очертаниями карту городских кварталов. На крутых склонах каньонов и кратеров часто случаются оползни. Там же часто встречаются овраги и ложбины, которые словно вымыты водой. Во время также можно встретить россыпи небольших холмиков. Это либо остатки камней, выброшенных вулканами, либо же кочки изо льда и грязи. Они слишком маленькие, чтобы рисовать их на карте.

Пирамиды и «лицо» на Марсе

Откуда берутся потоки лавы? - Они вытекают из верхушек (жерл) вулканов или из глубоких трещин.

Что такое «сол»? - Сол - это название солнечных суток на Марсе. Они длятся немногим больше суток на Земле - 24 часа 39 минут 35,2 секунд. Год на планете долгий - на полный оборот вокруг Солнца уходит 669 с половиной солов.

Откуда на марсианских дюнах черные точки? - Дюны на планете состоят с черного вулканического песка, который покрывается зимой белым инеем. Весной, когда белый покров испаряется, черный песок постепенно показывается из-под него. И так как таяние происходит неравномерно, то и выглядит сверху проступающий сквозь иней песок как россыпь черных точек.

Откуда на Марсе извилистые долины? - Скорее всего, они были вымыты реками или же весенними потоками талой воды.

Откуда на Марсе ? - Это разломы в коре планеты, из которых извергалась лава. Каналы также могли образоваться вследствие движения литосферных плит. У нас, на Земле, это движение вызывает землетрясения.

Что такое гряда? - Это извилистый каменный гребень на поверхности планеты. Гряды образуются тогда, когда процессы внутри планеты сталкивают плиты коры планеты друг с другом, из-за чего их скалы нагромождаются друг на друга. Часто гряды связаны с вулканическими потоками.

Что такое «пылевой дьявол»? - Это небольшой вихрь, который движется по поверхности планеты, собирая с нее легкую пыль.

Что на карте обозначают значки в форме цветков? - Это метеоритный кратер с наносом, оставшимся со времен образования кратера. На Марсе осколки, разлетающиеся от удара метеорита, могут содержать воду. Грязь от воды растекается вокруг кратера, образуя структуры, с высоты птичьего полета напоминающие цветы.

Почему Марс ? - Красные места на планете покрыты мельчайшей пылью, которая оседает из воздуха. Цвет пыли придает ржавчина - в ней содержится много проржавевших частиц железа. Темные места на планете засыпаны свежим вулканическим песком, который тоже красный - но не такой яркий, как в пыльных зонах. Светлые места на Марсе появляются зимой - тогда поверхность окутывают туман и иней. Полярные шапки планеты, состоящие с вечных льдов, всегда остаются белыми.

Есть ли воздух на Марсе? - Да, у планеты есть - но она очень разреженная по сравнению с атмосферой нашей Земли. Тем не менее там дует ветер - его силы хватает на то, чтобы переносить песок и разрушать скалы. Порой на Марсе бушуют настоящие песчаные бури! С пыли и водяного пара иногда сбиваются небольшие тучи.

Что за черные штуки видны в некоторых кратерах? - Это дюны из песка, который насыпался в кратер.

Живут ли на Марсе инопланетяне? - Пока что на Марсе не нашли ни живых существ, ни следов какой-либо жизни вообще.

Солнечные панели на зонде «Феникс» сломали марсиане? - Солнечные батареи были все еще рабочие, когда зонд последний раз связывался с Землей. Сломались они после первой зимы - удалось это узнать при помощи снимков со спутника. Скорее всего, во время холодов на солнечных батареях осело столько инея, что они не выдержали всего веса и обрушились.

Почему северная и южная части Марса окрашены разными цветами на карте? - Цвет на карте обозначает неровности поверхности планеты. На севере расположены низкие равнины, а на юге - густо усеянные кратерами возвышенности.

Откуда на Южном полюсе Марса взялись пауки? - «Пауками» называются системы темных трещин на поверхности планеты, которые расходятся от одного общего центра. Они возникают весной, во время таяния «сухого льда» на полюсах. Тогда обнажается черная коренная порода Марса. Так как лед на полюсе подогревается еще изнутри теплом ядра планеты, он может таять и зимой, вырываясь из-под корки на поверхности столбами пара.

А что на Южном полюсе делает сыр? - Ледяная поверхность полюса постоянно испаряется, из-за чего очень сильно сжимается. Кое-где от этого остались круглые впадины, похожие на дырки в сыре. Поэтому эти районы называют Участками Швейцарского Сыра.

Как на северных равнинах Марса появились многоугольные узоры? - Узоры - это сеть изломанных трещин. Они образуются во время замерзания и оттаивания почвы Марса, когда та трескается из-за перепадов температур.

Почему Марсиане зеленые? - Около 100 лет назад писатели-фантасты представляли, что на Марсе живут люди с зеленой кожей, в противовес красной поверхности планеты. Хотя сейчас мы знаем, что марсиан не существует, художники и кинорежиссеры до сих пор изображают инопланетян зелеными.

Откуда на Марсе песок и пыль? - Они появляются из раздробленных скал, которые разрушают ветер, перепады температуры, лед и потоки воды. Образовавшимся песком будет миллионы лет играть ветер - собирать его в кучи и дюны, а потом рассеивать обратно.

Одна из марсианских дюн

Что это за белые зоны сверху и снизу Марса? - Это полярные ледяные шапки. Своим строением они похожи на торт - под белым покровом чередуются свои льда и пыли. Центр ледяной шапки никогда не растает, хотя его рассекают целые долины.

Откуда на Марсе верблюды? - Есть два вида верблюдов: одногорбые и двугорбые. Одногорбые водятся в жарких пустынях Африки, а двугорбые - в холодных азиатских пустынях. По карте ходят именно двугорбые верблюды: только они бы водились на холодном и сухом Марсе. Но сейчас настоящих верблюдов на планете нет.

· · ·

Марс — четвертая планета от Солнца и, наверное, самая известный представитель земной группы планет после Земли. Свою популярность, Марс получил благодаря своей относительной близости к Земле и схожести некоторых характеристик с нашей планетой, что дало ученым возможность предположить существование марсианской жизни! Однако, как говорить в одном известном фильме: “Есть ли жизнь на Марсе, нет ли жизни на Марсе. Науке это не известно”

История открытия планеты

Все планеты земной группы были известны людям еще тысячи лет назад. Первые детальные наблюдения за движением планеты по орбите провел Датский астроном Тихо Браге в 1580 годах. При помощи секстанта — самого точного на тот момент астрономического прибора, Тихо обнаружил несоответствие движения орбиты с имеющимися моделями Коперника и Птолемея. Для помощи в решении этой проблемы он обратился к Иоганну Кеплеру, чьи математические способности были намного выше Тихо. Именно Кеплер доказал что Марс движется по эллиптической орбите, в одном из фокусов которой находится Солнце.

10 вещей, которые необходимо знать о Марсе!

  1. Марс расположен на четвертой орбите от Солнца;
  2. На Красной планете находиться самый высокий вулкан в Солнечной системе;
  3. Из 40 исследовательских миссий отправленных на Марс, только 18 оказались успешными;
  4. На Марсе происходят самые большие пылевые бури в Солнечной системе;
  5. Через 30-50 млн лет, вокруг Марса будет расположена система колец, как у Сатурна;
  6. Обломки Марса были найдены на Земле;
  7. Солнце с поверхности Марса выглядит в два раза меньше чем с поверхности Земли;
  8. Марс является единственной планетой в Солнечной системе, которая имеет полярные льды;
  9. Вкруг Марса вращается два естественных спутника -Деймос и Фобос;
  10. Марс не имеет магнитного поля;

Астрономические характеристики

Значение имени планеты Марс

Свое настоящее имя, планета получила во времена Древнего Рима в честь бога войны Марса. Красно-оранжевый оттенок планеты, видимо, ассоциировался у древних с кровью и разрушениями, что и подвигло их выбрать такое название.

Физические характеристики Марс

Кольца и спутники

На орбите вокруг Марса движется два естественных спутника, Деймос и Фобос открытые Асафом Холом почти одновременно в августе 1877 года. Их названия соответствуют духу “Бога войны” и означают “Ужас” и “Страх”.

Оба спутника имеют неправильные формы и относительно небольшие размеры, что говорит в пользу теории их астероидного происхождения и гравитационного захвата Марсом.

Орбиты вращения спутников расположены очень близко к планете. Недавние исследования показывают, что Фобос теряет в высоте орбиты 2 метра каждые 100 лет. Это в ближайшие 30-50 млн лет приведет к его падению на поверхность Марса. Однако, другая теория говорит в пользу того, что Фобос, вероятнее всего, разрушится еще на подлете к поверхности из-за возрастающих приливных сил. В результате на орбите вокруг Марса может появиться кольцо из обломков Фобоса, наподобие того, которые мы наблюдаем у Сатурна.


Особенности планеты

Марс — небольшая скалистая планета, которая до недавнего времени считалась очень похожей на Землю. Как и другие планеты земной группы — Меркурий, Венера и Земля — ее поверхность была образована в процессе вулканической деятельности, воздействия других космических тел, движения коры и атмосферных процессов. Марс имеет полярные шапки на своих полюсах, которые увеличиваются или уменьшаются в зависимости от времени года на планете. Области слоистых почв в районе марсианских полюсов предполагают, что климат планеты изменялся несколько раз. Вероятнее всего, это было вызвано изменением орбиты планеты.

Марсианский тектонизм — процесс, который формирует и изменяет кору планеты, отличается от Земного. Земная тектоника основана на скользящих по горизонтали тектонических плитах. Марсианские тектонические плиты движутся по вертикали, выталкивая на поверхность лаву.

Периодически всю планету охватывают песчаные бури. Эффект от этих штормов довольно существенен. Благодаря им появляются гигантские дюны и различные выветренные особенности поверхности планеты.

Ученые считают, что около 3,5 млрд лет назад, Марс пережил самое большое наводнение в истории Солнечной системы. Воды на поверхности планеты могло быть столько, что она могла образовать озера и небольшие океаны.

Однако в настоящее время, Марс является слишком холодным, а его атмосфера слишком тонка, для того чтобы вода в жидком состоянии могла находиться на поверхности Марса. Вся вода находится в замороженном состоянии, причем большая ее часть расположена в полярных шапках планеты. Но то количество воды, которое образовывало в прошлом огромные моря и океаны на поверхности не обнаружены. По мнению ученых, ответ на этот вопрос скрыт глубоко под поверхностью Красной планеты.

Изучение истории марсианской воды является важным компонентом в понимании климатического прошлого планеты, которое поможет нам понять эволюцию большинства планет, включая нашу собственную. Кроме этого, наличие воды является главной составляющей для образования жизни в той форме, которую мы знаем.

На поверхности Марс имеются некоторые отличительные геологические особенности, в том числе самый крупный вулкан в Солнечной системе — Олимп. Его высота достигает 21,2 километра, что практически в два раза превышает самый высокий Земной вулкан Майна — Кея, высота которого около 10,2 километра. Вулканы в регионе Тарсис настолько велики, что визуально деформируют округлость планеты. Долина Маринер представляет собой самую большую систему каньонов в Солнечной системе. Ее размеры превышают знаменитый Большой каньон на Земле в 10 раз по длине и в 7 — по ширине.

Атмосфера планеты

Атмосфера на планете присутствует, но в более разреженной форме, чем на Земле (давление у поверхности в 160 раз меньше земного), однако, даже ее хватает чтобы образовать ветра и пылевые бури, скорость которых может достигать до 100 м/с.

Основным компонентом атмосферы является углекислый газ, который позволяет задержать солнечное тепло. Диапазон температур колеблется от -153 °C в районе полярных полюсов и до +20°C в районе экватора в полдень.

Полезные статьи, которые ответят на большинство интересных вопросов о Марсе.

Объекты глубокого космоса

Марс - четвёртая по удалённости от Солнца и седьмая (предпоследняя) по размерам планета Солнечной системы; масса планеты составляет 10,7 % массы Земли. Названа в честь Марса - древнеримского бога войны, соответствующего древнегреческому Аресу. Иногда Марс называют «красной планетой» из-за красноватого оттенка поверхности, придаваемого ей оксидом железа.

Марс - планета земной группы с разреженной атмосферой (давление у поверхности в 160 раз меньше земного). Особенностями поверхностного рельефа Марса можно считать ударные кратеры наподобие лунных, а также вулканы, долины, пустыни и полярные ледниковые шапки наподобие земных.

У Марса есть два естественных спутника - Фобос и Деймос (в переводе с древнегреческого - «страх» и «ужас» - имена двух сыновей Ареса, сопровождавших его в бою), которые относительно малы (Фобос - 26x21 км, Деймос - 13 км в поперечнике) и имеют неправильную форму.

Великие противостояния Марса, 1830-2035 гг.

Год Дата Расстояние, а. е.
1830 19 сентября 0,388
1845 18 августа 0,373
1860 17 июля 0,393
1877 5 сентября 0,377
1892 4 августа 0,378
1909 24 сентября 0,392
1924 23 августа 0,373
1939 23 июля 0,390
1956 10 сентября 0,379
1971 10 августа 0,378
1988 22 сентября 0,394
2003 28 августа 0,373
2018 27 июля 0,386
2035 15 сентября 0,382

Марс - четвёртая по удалённости от Солнца (после Меркурия, Венеры и Земли) и седьмая по размерам (превосходит по массе и диаметру только Меркурий) планета Солнечной системы. Масса Марса составляет 10,7 % массы Земли (6,423·1023 кг против 5,9736·1024 кг для Земли), объём - 0,15 объёма Земли, а средний линейный диаметр - 0,53 диаметра Земли (6800 км).

Рельеф Марса обладает многими уникальными чертами. Марсианский потухший вулкан гора Олимп - самая высокая гора в Солнечной системе, а долины Маринер - самый крупный каньон. Помимо этого, в июне 2008 года три статьи, опубликованные в журнале «Nature», представили доказательства существования в северном полушарии Марса самого крупного известного ударного кратера в Солнечной системе. Его длина - 10 600 км, а ширина - 8500 км, что примерно в четыре раза больше, чем крупнейший ударный кратер, до того также обнаруженный на Марсе, вблизи его южного полюса.

В дополнение к схожести поверхностного рельефа, Марс имеет период вращения и смену времён года аналогичные земным, но его климат значительно холоднее и суше земного.

Вплоть до первого пролёта у Марса космического аппарата «Маринер-4» в 1965 году многие исследователи полагали, что на его поверхности есть вода в жидком состоянии. Это мнение было основано на наблюдениях за периодическими изменениями в светлых и тёмных участках, особенно в полярных широтах, которые были похожи на континенты и моря. Тёмные борозды на поверхности Марса интерпретировались некоторыми наблюдателями как ирригационные каналы для жидкой воды. Позднее было доказано, что эти борозды были оптической иллюзией.

Из-за низкого давления вода не может существовать в жидком состоянии на поверхности Марса, но вполне вероятно, что в прошлом условия были иными, и поэтому наличие примитивной жизни на планете исключать нельзя. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе космическим аппаратом НАСА «Феникс» (англ. «Phoenix»).

В феврале 2009 орбитальная исследовательская группировка на орбите Марса насчитывала три функционирующих космических аппарата: «Марс Одиссей», «Марс-экспресс» и «Марсианский разведывательный спутник», это больше, чем около любой другой планеты, помимо Земли.

Поверхность Марса в настоящий момент исследовали два марсохода: «Спирит» и «Оппортьюнити». На поверхности Марса находятся также несколько неактивных посадочных модулей и марсоходов, завершивших исследования.

Собранные ими геологические данные позволяют предположить, что большую часть поверхности Марса ранее покрывала вода. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность. По наблюдениям с космического аппарата «Марс Глобал Сервейор», некоторые части южной полярной шапки Марса постепенно отступают.

Марс можно увидеть с Земли невооружённым глазом. Его видимая звёздная величина достигает 2,91m (при максимальном сближении с Землёй), уступая по яркости лишь Юпитеру (и то далеко не всегда во время великого противостояния) и Венере (но лишь утром или вечером). Как правило, во время великого противостояния, оранжевый Марс является ярчайшим объектом земного ночного неба, но это происходит лишь один раз в 15-17 лет в течение одной - двух недель.

Орбитальные характеристики

Минимальное расстояние от Марса до Земли составляет 55,76 млн км (когда Земля находится точно между Солнцем и Марсом), максимальное - около 401 млн км (когда Солнце находится точно между Землёй и Марсом).

Среднее расстояние от Марса до Солнца составляет 228 млн км (1,52 а. е.), период обращения вокруг Солнца равен 687 земным суткам. Орбита Марса имеет довольно заметный эксцентриситет (0,0934), поэтому расстояние до Солнца меняется от 206,6 до 249,2 млн км. Наклонение орбиты Марса равно 1,85°.

Марс ближе всего к Земле во время противостояния, когда планета находится в направлении, противоположном Солнцу. Противостояния повторяются каждые 26 месяцев в разных точках орбиты Марса и Земли. Но раз в 15-17 лет противостояния приходятся на то время, когда Марс находится вблизи своего перигелия; в этих так называемых великих противостояниях (последнее было в августе 2003 года) расстояние до планеты минимально, и Марс достигает наибольшего углового размера 25,1" и яркости 2,88m.

Физические характеристики

Сравнение размеров Земли (средний радиус 6371 км) и Марса (средний радиус 3386,2 км)

По линейному размеру Марс почти вдвое меньше Земли - его экваториальный радиус равен 3396,9 км (53,2 % земного). Площадь поверхности Марса примерно равна площади суши на Земле.

Полярный радиус Марса примерно на 20 км меньше экваториального, хотя период вращения у планеты больший, чем у Земли, что даёт повод предположить изменение скорости вращения Марса со временем.

Масса планеты - 6,418·1023 кг (11 % массы Земли). Ускорение свободного падения на экваторе равно 3,711 м/с (0,378 земного); первая космическая скорость составляет 3,6 км/с и вторая - 5,027 км/с.

Период вращения планеты - 24 часа 37 минут 22,7 секунд. Таким образом, марсианский год состоит из 668,6 марсианских солнечных суток (называемых солами).

Марс вращается вокруг своей оси, наклонённой к перпендикуляру плоскости орбиты под углом 24°56?. Наклон оси вращения Марса обеспечивает смену времён года. При этом вытянутость орбиты приводит к большим различиям в их продолжительности - так, северная весна и лето, вместе взятые, длятся 371 сол, то есть заметно больше половины марсианского года. В то же время, они приходятся на участок орбиты Марса, удалённый от Солнца. Поэтому на Марсе северное лето долгое и прохладное, а южное - короткое и жаркое.

Атмосфера и климат

Атмосфера Марса, фото орбитера «Викинг», 1976 г. Слева виден «кратер-смайлик» Галле

Температура на планете колеблется от -153 на полюсе зимой и до более +20 °C на экваторе в полдень. Средняя температура составляет -50°C.

Атмосфера Марса, состоящая, в основном, из углекислого газа, очень разрежена. Давление у поверхности Марса в 160 раз меньше земного - 6,1 мбар на среднем уровне поверхности. Из-за большого перепада высот на Марсе давление у поверхности сильно изменяется. Примерная толщина атмосферы - 110 км.

По данным НАСА (2004), атмосфера Марса состоит на 95,32 % из углекислого газа; также в ней содержится 2,7 % азота, 1,6 % аргона, 0,13 % кислорода, 210 ppm водяного пара, 0,08 % угарного газа, оксид азота (NO) - 100 ppm, неон (Ne) - 2,5 ppm, полутяжёлая вода водород-дейтерий-кислород (HDO) 0,85 ppm, криптон (Kr) 0,3 ppm, ксенон (Xe) - 0,08 ppm.

По данным спускаемого аппарата АМС «Викинг» (1976), в марсианской атмосфере было определено около 1-2 % аргона, 2-3 % азота, а 95 % - углекислый газ. Согласно данным АМС «Марс-2» и «Марс-3», нижняя граница ионосферы находится на высоте 80 км, максимум электронной концентрации 1,7·105 электрон/см3 расположен на высоте 138 км, другие два максимума находятся на высотах 85 и 107 км.

Радиопросвечивание атмосферы на радиоволнах 8 и 32 см АМС «Марс-4» 10 февраля 1974 г. показало наличие ночной ионосферы Марса с главным максимумом ионизации на высоте 110 км и концентрацией электронов 4,6·103 электрон/см3, а также вторичными максимумами на высоте 65 и 185 км.

Атмосферное давление

По данным НАСА на 2004 год, давление атмосферы на среднем радиусе составляет 6,36 мб. Плотность у поверхности ~0,020 кг/м3, общая масса атмосферы ~2,5·1016 кг.
Изменение атмосферного давления на Марсе в зависимости от времени суток, зафиксированное посадочным модулем Mars Pathfinder в 1997 году.

В отличие от Земли, масса марсианской атмосферы сильно изменяется в течение года в связи с таянием и намерзанием полярных шапок, содержащих углекислый газ. Во время зимы 20-30 процентов всей атмосферы намораживается на полярной шапке, состоящей из углекислоты. Сезонные перепады давления, по разным источникам, составляют следующие значения:

По данным НАСА (2004): от 4.0 до 8.7 мбар на среднем радиусе;
По данным Encarta (2000): от 6 до 10 мбар;
По данным Zubrin и Wagner (1996): от 7 до 10 мбар;
По данным посадочного аппарата Викинг-1: от 6,9 до 9 мбар;
По данным посадочного аппарата Mars Pathfinder: от 6,7 мбар.

Ударная впадина Эллада (Hellas Impact Basin) - самое глубокое место, где можно обнаружить самое высокое атмосферное давление на Марсе

В месте посадки зонда АМС Марс-6 в районе Эритрейского моря было зафиксировано давление у поверхности 6,1 миллибара, что на тот момент считалось средним давлением на планете, и от этого уровня было условлено отсчитывать высоты и глубины на Марсе. По данным этого аппарата, полученным во время спуска, тропопауза находится на высоте примерно 30 км, где давление составляет 5·10-7 г/см3 (как на Земле на высоте 57 км).

Область Эллада (Марс) настолько глубока, что атмосферное давление достигает примерно 12,4 миллибара, что выше тройной точки воды (~6,1 мб) и ниже точки кипения. При достаточно высокой температуре вода могла бы существовать там в жидком состоянии; при таком давлении, однако, вода закипает и превращается в пар уже при +10 °C.

На вершине высочайшего 27-километрового вулкана Олимп давление может составлять от 0,5 до 1 мбар (Zurek 1992).

До высадки на поверхность Марса посадочных модулей давление было измерено за счет ослабления радиосигналов с АМС Маринер-4, Маринер-6 и Маринер-7 при их захождении за марсианский диск - 6,5 ± 2,0 мб на среднем уровне поверхности, что в 160 раз меньше земного; такой же результат показали спектральные наблюдения АМС Марс-3. При этом в расположенных ниже среднего уровня областях (например, в марсианской Амазонии) давление, согласно этим измерениям, достигает 12 мб.

Начиная с 1930-х гг. советские астрономы пытались определять давление атмосферы методами фотографической фотометрии - по распределению яркости вдоль диаметра диска в разных диапазонах световых волн. Французские ученые Б.Лио и О.Дольфюс производили с этой целью наблюдения поляризации рассеянного атмосферой Марса света. Сводку оптических наблюдений опубликовал американский астроном Ж.-де Вокулер в 1951 году, и по ним получалось давление 85 мб, завышенное почти в 15 раз из-за помех со стороны атмосферной пыли.

Климат

Микроскопическое фото конкреции гематита размером 1,3 см, снятое марсоходом «Оппортьюнити» 2 марта 2004 г., показывает присутствие в прошлом жидкой воды

Климат, как и на Земле, носит сезонный характер. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Аппарат «Феникс» зафиксировал снегопад, однако снежинки испарялись, не достигая поверхности.

По сведениям НАСА (2004 г.), средняя температура составляет ~210 K (-63 °C). По данным посадочных аппаратов Викинг, суточный температурный диапазон составляет от 184 K до 242 K (от -89 до -31 °C) (Викинг-1), а скорость ветра: 2-7 м/с (лето), 5-10 м/с (осень), 17-30 м/с (пылевой шторм).

По данным посадочного зонда Марс-6, средняя температура тропосферы Марса составляет 228 K, в тропосфере температура убывает в среднем на 2,5 градуса на километр, а находящаяся выше тропопаузы (30 км) стратосфера имеет почти постоянную температуру 144 K.

По данным исследователей из Центра имени Карла Сагана, в последние десятилетия на Марсе идёт процесс потепления. Другие специалисты считают, что такие выводы делать пока рано.

Существуют сведения, что в прошлом атмосфера могла быть более плотной, а климат - тёплым и влажным, и на поверхности Марса существовала жидкая вода и шли дожди. Доказательством этой гипотезы является анализ метеорита ALH 84001, показавший, что около 4 миллиардов лет назад температура Марса составляла 18 ± 4 °C.

Пылевые вихри

Пыльные вихри, сфотографированные марсоходом «Оппортьюнити» 15 мая 2005 г. Цифры в левом нижнем углу отображают время в секундах с момента первого кадра

Начиная с 1970-х гг. в рамках программы «Викинг», а также марсоходом «Оппортьюнити» и другими аппаратами были зафиксированы многочисленные пыльные вихри. Это воздушные завихрения, возникающие у поверхности планеты и поднимающие в воздух большое количество песка и пыли. Вихри часто наблюдаются и на Земле (в англоязычных странах их называют пыльными демонами - dust devil), однако на Марсе они могут достигать гораздо больших размеров: в 10 раз выше и в 50 раз шире земных. В марте 2005 года вихрь очистил солнечные батареи у марсохода «Спирит».

Поверхность

Две трети поверхности Марса занимают светлые области, получившие название материков, около трети - тёмные участки, называемые морями. Моря сосредоточены, в основном, в южном полушарии планеты, между 10 и 40° широты. В северном полушарии есть только два крупных моря - Ацидалийское и Большой Сырт.

Характер тёмных участков до сих пор остаётся предметом споров. Они сохраняются, несмотря на то, что на Марсе бушуют пылевые бури. В своё время, это служило доводом в пользу предположения, что тёмные участки покрыты растительностью. Сейчас полагают, что это просто участки, с которых, в силу их рельефа, легко выдувается пыль. Крупномасштабные снимки показывают, что на самом деле, тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом.

Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1-2 км над средним уровнем и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров, и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. Такое различие полушарий остаётся предметом дискуссий. Граница между полушариями следует примерно по большому кругу, наклонённому на 30° к экватору. Граница широкая и неправильная и образует склон в направлении на север. Вдоль неё встречаются самые эродированные участки марсианской поверхности.

Выдвинуто две альтернативных гипотезы, объясняющих асимметрию полушарий. Согласно одной из них, на раннем геологическом этапе литосферные плиты «съехались» (возможно, случайно) в одно полушарие, подобно континенту Пангея на Земле, а затем «застыли» в этом положении. Другая гипотеза предполагает столкновение Марса с космическим телом размером с Плутон.
Топографическая карта Марса, по данным Mars Global Surveyor, 1999 г.

Большое количество кратеров в южном полушарии предполагает, что поверхность здесь древняя - 3-4 млрд лет. Выделяют несколько типов кратеров: большие кратеры с плоским дном, более мелкие и молодые чашеобразные кратеры, похожие на лунные, кратеры, окружённые валом, и возвышенные кратеры. Последние два типа уникальны для Марса - кратеры с валом образовались там, где по поверхности текли жидкие выбросы, а возвышенные кратеры образовались там, где покрывало выбросов кратера защитило поверхность от ветровой эрозии. Самой крупной деталью ударного происхождения является равнина Эллада (примерно 2100 км в поперечнике).

В области хаотического ландшафта вблизи границы полушарий поверхность испытала разломы и сжатия больших участков, за которыми иногда следовала эрозия (вследствие оползней или катастрофического высвобождения подземных вод), а также затопление жидкой лавой. Хаотические ландшафты часто находятся у истока больших каналов, прорезанных водой. Наиболее приемлемой гипотезой их совместного образования является внезапное таяние подповерхностного льда.

Долины Маринер на Марсе

В северном полушарии, помимо обширных вулканических равнин, находятся две области крупных вулканов - Фарсида и Элизий. Фарсида - обширная вулканическая равнина протяжённостью 2000 км, достигающая высоты 10 км над средним уровнем. На ней находятся три крупных щитовых вулкана - гора Арсия, гора Павлина и гора Аскрийская. На краю Фарсиды находится высочайшая на Марсе и в Солнечной системе гора Олимп. Олимп достигает 27 км высоты по отношению к его основанию и 25 км по отношению к среднему уровню поверхности Марса, и охватывает площадь 550 км диаметром, окружённую обрывами, местами достигающими 7 км высоты. Объём Олимпа в 10 раз превышает объём крупнейшего вулкана Земли Мауна-Кеа. Здесь же расположено несколько менее крупных вулканов. Элизий - возвышенность до шести километров над средним уровнем, с тремя вулканами - купол Гекаты, гора Элизий и купол Альбор.

По другим данным (Faure и Mensing, 2007), высота Олимпа составляет 21287 метров над нулевым уровнем и 18 километров над окружающей местностью, а диаметр основания - примерно 600 км. Основание охватывает площадь 282600 км2. Кальдера (углубление в центре вулкана) имеет ширину 70 км и глубину 3 км.

Возвышенность Фарсида также пересечена множеством тектонических разломов, часто очень сложных и протяжённых. Крупнейший из них - долины Маринер - тянется в широтном направлении почти на 4000 км (четверть окружности планеты), достигая ширины 600 и глубины 7-10 км; по размерам этот разлом сравним с Восточноафриканским рифтом на Земле. На его крутых склонах происходят крупнейшие в Солнечной системе оползни. Долины Маринер являются самым большим известным каньоном в Солнечной системе. Каньон, который был открыт космическим аппаратом «Маринер-9» в 1971 году, мог бы занять всю территорию США, от океана до океана.

Панорама кратера Виктория, снятая марсоходом «Оппортьюнити». Она была заснята за три недели, в период с 16 октября по 6 ноября, 2006.

Панорама поверхности Марса в районе Husband Hill, снятая марсоходом «Спирит 23-28 ноября 2005».

Лёд и полярные шапки

Северная полярная шапка в летний период, фото Марс Глобал Сервейор. Длинный широкий разлом, рассекающий шапку слева - Северный разлом

Внешний вид Марса сильно изменяется в зависимости от времени года. Прежде всего, бросаются в глаза изменения полярных шапок. Они разрастаются и уменьшаются, создавая сезонные явления в атмосфере и на поверхности Марса. Южная полярная шапка может достигать широты 50°, северная - также 50°. Диаметр постоянной части северной полярной шапки составляет 1000 км. По мере того, как весной полярная шапка в одном из полушарий отступает, детали поверхности планеты начинают темнеть.

Полярные шапки состоят из двух составляющих: сезонной - углекислого газа и вековой - водяного льда. По данным со спутника Марс Экспресс толщина шапок может составлять от 1 м до 3,7 км. Аппарат «Марс Одиссей» обнаружил на южной полярной шапке Марса действующие гейзеры. Как считают специалисты НАСА, струи углекислого газа с весенним потеплением вырываются вверх на большую высоту, унося с собой пыль и песок.

Фотографии Марса, на которых видна пыльная буря. Июнь - сентябрь 2001 г.

Весеннее таяние полярных шапок приводит к резкому повышению давления атмосферы и перемещению больших масс газа в противоположное полушарие. Скорость дующих при этом ветров составляет 10-40 м/с, иногда до 100 м/с. Ветер поднимает с поверхности большое количество пыли, что приводит к пылевым бурям. Сильные пылевые бури практически полностью скрывают поверхность планеты. Пылевые бури оказывают заметное воздействие на распределение температуры в атмосфере Марса.

В 1784 г. астроном У. Гершель обратил внимание на сезонные изменения размера полярных шапок, по аналогии с таянием и намерзанием льдов в земных полярных областях. В 1860-е гг. французский астроном Э.Лиэ наблюдал волну потемнения вокруг тающей весенней полярной шапки, что тогда было истолковано гипотезой о растекании талых вод и росте растительности. Спектрометрические измерения, которые были проведены в начале XX в. в обсерватории Ловелла во Флагстаффе В. Слайфером, однако, не показали наличия линии хлорофилла - зелёного пигмента земных растений.

По фотографиям Маринера-7 удалось определить, что полярные шапки имеют толщину в несколько метров, а измеренная температура 115 K (-158 °C) подтвердила возможность того, что она состоит из замерзшей углекислоты - «сухого льда».

Возвышенность, которая получила название гор Митчелла, расположенная близ южного полюса Марса, при таянии полярной шапки выглядит как белый островок, поскольку в горах ледники тают позднее, в том числе, и на Земле.

Данные аппарата «Марсианский разведывательный спутник» позволили обнаружить под каменистыми осыпями у подножия гор значительный слой льда. Ледник толщиной в сотни метров занимает площадь в тысячи квадратных километров, и его дальнейшее изучение способно дать информацию об истории марсианского климата.

Русла «рек» и другие особенности

На Марсе имеется множество геологических образований, напоминающих водную эрозию, в частности, высохшие русла рек. Согласно одной из гипотез, эти русла могли сформироваться в результате кратковременных катастрофических событий и не являются доказательством длительного существования речной системы. Однако последние данные свидетельствуют о том, что реки текли в течение геологически значимых промежутков времени. В частности, обнаружены инвертированные русла (то есть русла, приподнятые над окружающей местностью). На Земле подобные образования формируются благодаря длительному накоплению плотных донных отложений с последующим высыханием и выветриванием окружающих пород. Кроме того, есть свидетельства смещения русел в дельте реки при постепенном поднятии поверхности.

В юго-западном полушарии, в кратере Эберсвальде обнаружена дельта реки площадью около 115 км2. Намывшая дельту река имела в длину более 60 км.

Данные марсоходов НАСА «Спирит» и «Оппортьюнити» свидетельствуют также о наличии воды в прошлом (найдены минералы, которые могли образоваться только в результате длительного воздействия воды). Аппарат «Феникс» обнаружил залежи льда непосредственно в грунте.

Кроме того, обнаружены тёмные полосы на склонах холмов, свидетельствующие о появлении жидкой солёной воды на поверхности в наше время. Они появляются вскоре после наступления летнего периода и исчезают к зиме, «обтекают» различные препятствия, сливаются и расходятся. «Сложно представить, что подобные структуры могли сформироваться не из потоков жидкости, а из чего-то иного», - заявил сотрудник НАСА Ричард Зурек.

На вулканической возвышенности Фарсида обнаружено несколько необычных глубоких колодцев. Судя по снимку аппарата «Марсианский разведывательный спутник», сделанному в 2007 году, один из них имеет диаметр 150 метров, а освещённая часть стенки уходит в глубину не менее, чем на 178 метров. Высказана гипотеза о вулканическом происхождении этих образований.

Грунт

Элементный состав поверхностного слоя марсианской почвы по данным посадочных аппаратов неодинаков в разных местах. Основная составляющая почвы - кремнезём (20-25 %), содержащий примесь гидратов оксидов железа (до 15 %), придающих почве красноватый цвет. Имеются значительные примеси соединений серы, кальция, алюминия, магния, натрия (единицы процентов для каждого).

Согласно данным зонда НАСА «Феникс» (посадка на Марс 25 мая 2008 года), соотношение pH и некоторые другие параметры марсианских почв близки к земным, и на них теоретически можно было бы выращивать растения. «Фактически, мы обнаружили, что почва на Марсе отвечает требованиям, а также содержит необходимые элементы для возникновения и поддержания жизни как в прошлом, так и в настоящем и будущем», сообщил ведущий исследователь-химик проекта Сэм Кунейвс. Также по его словам, данный щелочной тип грунта многие могут встретить на «своём заднем дворе», и он вполне пригоден для выращивания спаржи.

В месте посадки аппарата в грунте имеется также значительное количество водяного льда. Орбитальный зонд «Марс Одиссей» также обнаружил, что под поверхностью красной планеты есть залежи водяного льда. Позже это предположение было подтверждено и другими аппаратами, но окончательно вопрос о наличии воды на Марсе был решен в 2008 году, когда зонд «Феникс», севший вблизи северного полюса планеты, получил воду из марсианского грунта.

Геология и внутреннее строение

В прошлом на Марсе, как и на Земле происходило движение литосферных плит. Это подтверждается особенностями магнитного поля Марса, местами расположения некоторых вулканов, например, в провинции Фарсида, а также формой долины Маринер. Современное положение дел, когда вулканы могут существовать гораздо более длительное время, чем на Земле и достигать гигантских размеров говорит о том, что сейчас данное движение скорее отсутствует. В пользу этого говорит тот факт, что щитовые вулканы растут в результате повторных извержений из одного и того же жерла в течение длительного времени. На Земле из-за движения литосферных плит вулканические точки постоянно меняли своё положение, что ограничивало рост щитовых вулканов, и возможно не позволяло достичь им высоты, как на Марсе. С другой стороны, разница в максимальной высоте вулканов может объясняться тем, что из-за меньшей силы тяжести на Марсе возможно построение более высоких структур, которые не обрушились бы под собственным весом.

Сравнение строения Марса и других планет земной группы

Современные модели внутреннего строения Марса предполагают, что Марс состоит из коры со средней толщиной 50 км (и максимальной до 130 км), силикатной мантии толщиной 1800 км и ядра радиусом 1480 км. Плотность в центре планеты должна достигать 8,5 г/см2. Ядро частично жидкое и состоит в основном из железа с примесью 14-17 % (по массе) серы, причём содержание лёгких элементов вдвое выше, чем в ядре Земли. Согласно современным оценкам формирование ядра совпало с периодом раннего вулканизма и продолжалось около миллиарда лет. Примерно то же время заняло частичное плавление мантийных силикатов. Из-за меньшей силы тяжести на Марсе диапазон давлений в мантии Марса гораздо меньше, чем на Земле, а значит в ней меньше фазовых переходов. Предполагается, фазовый переход оливина в шпинелевую модификацию начинается на довольно больших глубинах - 800 км (400 км на Земле). Характер рельефа и другие признаки позволяют предположить наличие астеносферы, состоящей из зон частично расплавленного вещества. Для некоторых районов Марса составлена подробная геологическая карта.

Согласно наблюдениям с орбиты и анализу коллекции марсианских метеоритов поверхность Марса состоит главным образом из базальта. Есть некоторые основания предполагать, что на части марсианской поверхности материал является более кварцесодержащим, чем обычный базальт и может быть подобен андезитным камням на Земле. Однако эти же наблюдения можно толковать в пользу наличия кварцевого стекла. Значительная часть более глубокого слоя состоит из зернистой пыли оксида железа.

Магнитное поле Марса

У Марса было зафиксировано слабое магнитное поле.

Согласно показаниям магнетометров станций Марс-2 и Марс-3, напряжённость магнитного поля на экваторе составляет около 60 гамм, на полюсе 120 гамм, что в 500 раз слабее земного. По данным АМС Марс-5, напряжённость магнитного поля на экваторе составляла 64 гаммы, а магнитный момент - 2,4·1022 эрстед·см2.

Магнитное поле Марса крайне неустойчиво, в различных точках планеты его напряжённость может отличаться от 1,5 до 2 раз, а магнитные полюса не совпадают с физическими. Это говорит о том, что железное ядро Марса находится в сравнительной неподвижности по отношению к его коре, то есть механизм планетарного динамо, ответственный за магнитное поле Земли, на Марсе не работает. Хотя на Марсе не имеется устойчивого всепланетного магнитного поля, наблюдения показали, что части планетной коры намагничены и что наблюдалась смена магнитных полюсов этих частей в прошлом. Намагниченность данных частей оказалась похожей на полосовые магнитные аномалии в мировом океане.

По одной теории, опубликованной в 1999 году и перепроверенной в 2005 году (с помощью беспилотной станции Марс Глобал Сервейор), эти полосы демонстрируют тектонику плит 4 миллиарда лет назад до того, как динамо-машина планеты прекратила выполнять свою функцию, что послужило причиной резкого ослабления магнитного поля. Причины такого резкого ослабления неясны. Существует предположение, что функционирование динамо-машины 4 млдр. лет назад объясняется наличием астероида, который вращался на расстоянии 50-75 тысяч километров вокруг Марса и вызывал нестабильность в его ядре. Затем астероид снизился до предела Роша и разрушился. Тем не менее, это объяснение само содержит неясные моменты, и оспаривается в научном сообществе.

Геологическая история

Глобальная мозаика из 102 изображений орбитера Викинг-1 от 22 февраля 1980.

Возможно, в далёком прошлом в результате столкновения с крупным небесным телом произошла остановка вращения ядра, а также потеря основного объёма атмосферы. Считается, что потеря магнитного поля произошла около 4 млрд лет назад. Вследствие слабости магнитного поля солнечный ветер практически беспрепятственно проникает в атмосферу Марса, и многие из фотохимических реакций под действием солнечной радиации, которые на Земле происходят в ионосфере и выше, на Марсе могут наблюдаться практически у самой его поверхности.

Геологическая история Марса заключает в себя три нижеследующие эпохи:

Ноачианская эпоха (названа в честь «Ноачиской земли», района Марса): формирование наиболее старой сохранившейся до наших дней поверхности Марса. Продолжалась в период 4,5 млрд - 3,5 млрд лет назад. В эту эпоху поверхность была изрубцована многочисленными ударными кратерами. Плато провинции Фарсида было вероятно сформировано в этот период с интенсивным обтеканием водой позднее.

Гесперийская эра: от 3,5 млрд лет назад до 2,9 - 3,3 млрд лет назад. Эта эпоха отмечена образованием огромных лавовых полей.

Амазонийская эра (названа в честь «Амазонской равнины» на Марсе): 2,9-3,3 млрд лет назад до наших дней. Районы, образовавшиеся в эту эпоху, имеют очень мало метеоритных кратеров, но во всём остальном они полностью различаются. Гора Олимп сформирована в этот период. В это время в других частях Марса разливались лавовые потоки.

Спутники Марса

Естественными спутниками Марса являются Фобос и Деймос. Оба они открыты американским астрономом Асафом Холлом в 1877 году. Фобос и Деймос имеют неправильную форму и очень маленькие размеры. По одной из гипотез, они могут представлять собой захваченные гравитационным полем Марса астероиды наподобие (5261) Эврика из Троянской группы астероидов. Спутники названы в честь персонажей, сопровождающих бога Ареса (то есть Марса), - Фобоса и Деймоса, олицетворяющих страх и ужас, которые помогали богу войны в битвах.

Оба спутника вращаются вокруг своих осей с тем же периодом, что и вокруг Марса, поэтому всегда повёрнуты к планете одной и той же стороной. Приливное воздействие Марса постепенно замедляет движение Фобоса, и в конце концов приведёт к падению спутника на Марс (при сохранении текущей тенденции), или к его распаду. Напротив, Деймос удаляется от Марса.

Оба спутника имеют форму, приближающуюся к трёхосному эллипсоиду, Фобос (26,6x22,2x18,6 км) несколько крупнее Деймоса (15x12,2x10,4 км). Поверхность Деймоса выглядит гораздо более гладкой за счёт того, что большинство кратеров покрыто тонкозернистым веществом. Очевидно, на Фобосе, более близком к планете и более массивном, вещество, выброшенное при ударах метеоритов, либо наносило повторные удары по поверхности, либо падало на Марс, в то время как на Деймосе оно долгое время оставалось на орбите вокруг спутника, постепенно осаждаясь и скрывая неровности рельефа.

Жизнь на Марсе

Популярная идея, что Марс населён разумными марсианами, широко распространилась в конце XIX века.

Наблюдения Скиапарелли так называемых каналов, в сочетании с книгой Персиваля Лоуэлла по той же теме сделали популярной идею о планете, климат которой становился всё суше, холоднее, которая умирала и в которой существовала древняя цивилизация, производящая ирригационные работы.

Другие многочисленные наблюдения и объявления известных лиц породили вокруг этой темы так называемую «Марсианскую лихорадку» («Mars Fever»). В 1899 году, во время изучения атмосферных помех в радиосигнале, используя приёмники в Колорадской обсерватории, изобретатель Никола Тесла наблюдал повторяющийся сигнал. Затем он высказал догадку, что это может быть радиосигнал с других планет, например, Марса. В интервью 1901 года Тесла сказал, что ему пришла в голову мысль о том, что помехи могут быть вызваны искусственно. Хотя он не смог расшифровать их значение, для него было невозможным то, что они возникли совершенно случайно. По его мнению, это было приветствие одной планеты другой.

Теория Теслы вызвала горячую поддержку известного британского учёного-физика Уильяма Томсона (лорда Кельвина), который, посетив США в 1902 году, сказал, что по его мнению Тесла поймал сигнал марсиан, посланный в США. Однако затем Кельвин стал решительно отрицать это заявление перед тем, как покинул Америку: «На самом деле я сказал, что жители Марса, если они существуют, несомненно могут видеть Нью-Йорк, в частности свет от электричества».

На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности. Также существует требование, чтобы орбита планеты находилась в так называемой обитаемой зоне, которая для Солнечной системы начинается за Венерой и кончается большой полуосью орбиты Марса. Во время перигелия Марс находится внутри этой зоны, однако тонкая атмосфера, с низким давлением препятствует появлению жидкой воды на значительной территории на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни.

Отсутствие магнитосферы и крайне тонкая атмосфера Марса также являются проблемой для поддержания жизни. На поверхности планеты идёт очень слабое перемещение тепловых потоков, она плохо изолирована от бомбардировки частицами солнечного ветра, кроме того, при нагревании вода мгновенно испаряется, минуя жидкое состояние из-за низкого давления. Марс также находится на пороге т. н. «геологической смерти». Окончание вулканической активности по всей видимости остановило круговорот минералов и химических элементов между поверхностью и внутренней частью планеты.

Свидетельства говорят о том, что планета ранее была значительно более предрасположена к наличию жизни, чем теперь. Однако на сегодняшний день остатков организмов на ней не обнаружено. Согласно программе «Викинг», осуществлённой в середине 1970-х годов, была проведена серия экспериментов для обнаружения микроорганизмов в марсианской почве. Она дала положительные результаты, например, временное увеличение выделения CO2 при помещении частиц почвы в воду и питательную среду. Однако затем данное свидетельство жизни на Марсе было оспорено некоторыми учёными[кем?]. Это привело к их продолжительным спорам с учёным из NASA Гильбертом Левиным, который утверждал, что «Викинг» обнаружил жизнь. После переоценки данных «Викинга» в свете современных научных знаний об экстремофилах было установлено, что проведённые эксперименты были недостаточно совершенны для обнаружения этих форм жизни. Более того, эти тесты могли даже убить организмы, даже если они содержались в пробах. Тесты, проведённые в рамках программы «Феникс», показали, что почва имеет очень щелочной pH фактор и содержит магний, натрий, калий и хлорид. Питательных веществ в почве достаточно для поддержания жизни, однако жизненные формы должны иметь защиту от интенсивного ультрафиолетового света.

Интересно, что в некоторых метеоритах марсианского происхождения обнаружены образования, по форме напоминающие простейших бактерий, хотя и уступают мельчайшим земным организмам по размерам. Одним из таких метеоритов является ALH 84001, найденный в Антарктиде в 1984 году.

По результатам наблюдений с Земли и данных космического аппарата «Марс Экспресс» в атмосфере Марса обнаружен метан. В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий.

Астрономические наблюдения с поверхности Марса

После посадок автоматических аппаратов на поверхность Марса появилась возможность вести астрономические наблюдения непосредственно с поверхности планеты. Вследствие астрономического положения Марса в Солнечной системе, характеристик атмосферы, периода обращения Марса и его спутников картина ночного неба Марса (и астрономических явлений, наблюдаемых с планеты) отличается от земной и во многом представляется необычной и интересной.

Цвет неба на Марсе

Во время восхода и захода Солнца марсианское небо в зените имеет красновато-розовый цвет, а в непосредственной близости к диску Солнца - от голубого до фиолетового, что совершенно противоположно картине земных зорь.

В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба - свойства тонкой, разрежённой, содержащей взвешенную пыль атмосферы Марса. На Марсе Рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб. Предположительно, жёлто-оранжевая окраска неба также вызывается присутствием 1 % магнетита в частицах пыли, постоянно взвешенной в марсианской атмосфере и поднимаемой сезонными пылевыми бурями. Сумерки начинаются задолго до восхода Солнца и длятся долго после его захода. Иногда цвет марсианского неба приобретает фиолетовый оттенок в результате рассеяния света на микрочастицах водяного льда в облаках (последнее - довольно редкое явление).

Солнце и планеты

Угловой размер Солнца, наблюдаемый с Марса, меньше видимого с Земли и составляет 2/3 от последнего. Меркурий с Марса будет практически недоступен для наблюдений невооружённым глазом из-за чрезвычайной близости к Солнцу. Самой яркой планетой на небе Марса является Венера, на втором месте - Юпитер (его четыре крупнейших спутника можно наблюдать без телескопа), на третьем - Земля.

Земля по отношению к Марсу является внутренней планетой, так же как Венера для Земли. Соответственно, с Марса Земля наблюдается как утренняя или вечерняя звезда, восходящая перед рассветом или видимая на вечернем небе после захода Солнца.

Максимальная элонгация Земли на небе Марса составит 38 градусов. Для невооружённого глаза Земля будет видна как яркая (максимальная видимая звёздная величина около -2,5) зеленоватая звезда, рядом с которой будет легко различима желтоватая и более тусклая (около 0,9) звёздочка Луны. В телескоп оба объекта покажут одинаковые фазы. Обращение Луны вокруг Земли будет наблюдаться с Марса следующим образом: на максимальном угловом удалении Луны от Земли невооружённый глаз легко разделит Луну и Землю: через неделю «звёздочки» Луны и Земли сольются в неразделимую глазом единую звезду, ещё через неделю Луна будет снова видна на максимальном расстоянии, но уже с другой стороны от Земли. Периодически наблюдатель на Марсе сможет видеть проход (транзит) Луны по диску Земли либо, наоборот, покрытие Луны диском Земли. Максимальное видимое удаление Луны от Земли (и их видимая яркость) при наблюдении с Марса будет значительно изменяться в зависимости от взаимного положения Земли и Марса, и, соответственно, расстояния между планетами. В эпохи противостояний оно составит около 17 минут дуги, на максимальном удалении Земли и Марса - 3,5 минуты дуги. Земля, как и другие планеты, будет наблюдаться в полосе созвездий Зодиака. Астроном на Марсе также сможет наблюдать прохождение Земли по диску Солнца, ближайшее произойдёт 10 ноября 2084 года.

Спутники - Фобос и Деймос


Прохождение Фобоса по диску Солнца. Снимки «Оппортьюнити»

Фобос при наблюдении с поверхности Марса имеет видимый диаметр около 1/3 от диска Луны на земном небе и видимую звёздную величину порядка -9 (приблизительно как Луна в фазе первой четверти). Фобос восходит на западе и садится на востоке, чтобы снова взойти через 11 часов, таким образом, дважды в сутки пересекая небо Марса. Движение этой быстрой луны по небу будет легко заметно в течение ночи, так же, как и смена фаз. Невооружённый глаз различит крупнейшую деталь рельефа Фобоса - кратер Стикни. Деймос восходит на востоке и заходит на западе, выглядит как яркая звезда без заметного видимого диска, звёздной величиной около -5 (чуть ярче Венеры на земном небе), медленно пересекающая небо в течение 2,7 марсианских суток. Оба спутника могут наблюдаться на ночном небе одновременно, в этом случае Фобос будет двигаться навстречу Деймосу.

Яркость и Фобоса, и Деймоса достаточна для того, чтобы предметы на поверхности Марса ночью отбрасывали чёткие тени. Оба спутника имеют относительно малый наклон орбиты к экватору Марса, что исключает их наблюдение в высоких северных и южных широтах планеты: так, Фобос никогда не восходит над горизонтом севернее 70,4° с. ш. или южнее 70,4° ю. ш.; для Деймоса эти значения составляют 82,7° с. ш. и 82,7° ю. ш. На Марсе может наблюдаться затмение Фобоса и Деймоса при их входе в тень Марса, а также затмение Солнца, которое бывает только кольцеобразным из-за малого углового размера Фобоса по сравнению с диском Солнца.

Небесная сфера

Северный полюс на Марсе, вследствие наклона оси планеты, находится в созвездии Лебедя (экваториальные координаты: прямое восхождение 21h 10m 42s, склонение +52° 53.0? и не отмечен яркой звездой: ближайшая к полюсу - тусклая звезда шестой величины BD +52 2880 (другие её обозначения - HR 8106, HD 201834, SAO 33185). Южный полюс мира (координаты 9h 10m 42s и -52° 53,0) находится в паре градусов от звезды Каппа Парусов (видимая звёздная величина 2,5) - её, в принципе, можно считать Южной Полярной звездой Марса.

Зодиакальные созвездия марсианской эклиптики аналогичны наблюдаемым с Земли, с одним отличием: при наблюдении годичного движения Солнца среди созвездий оно (как и другие планеты, включая Землю), выйдя из восточной части созвездия Рыб, будет проходить в течение 6 дней через северную часть созвездия Кита перед тем, как снова вступить в западную часть Рыб.

История изучения Марса

Исследование Марса началось давно, ещё 3,5 тысячи лет назад, в Древнем Египте. Первые подробные отчеты о положении Марса были составлены вавилонскими астрономами, которые разработали ряд математических методов для предсказания положения планеты. Пользуясь данными египтян и вавилонян, древнегреческие (эллинистические) философы и астрономы разработали подробную геоцентрическую модель для объяснения движения планет. Спустя несколько веков индийскими и исламскими астрономами был оценен размер Марса и расстояние до него от Земли. В XVI веке Николай Коперник предложил гелиоцентрическую модель для описания Солнечной системы с круговыми планетарными орбитам. Его результаты были пересмотрены Иоганном Кеплером, который ввел более точную эллиптическую орбиту Марса, совпадающую с наблюдаемой.

В 1659 году Франческо Фонтана, рассматривая Марс в телескоп, сделал первый рисунок планеты. Он изобразил чёрное пятно в центре чётко очерченной сферы.

В 1660 году к чёрному пятну прибавились две полярные шапки, добавленные Жаном Домиником Кассини.

В 1888 году Джованни Скиапарелли, учившийся в России, дал первые имена отдельным деталям поверхности: моря Афродиты, Эритрейское, Адриатическое, Киммерийское; озёра Солнца, Лунное и Феникс.

Расцвет телескопических наблюдений Марса пришёлся на конец XIX - середину XX века. Во многом он обусловлен общественным интересом и известными научными спорами вокруг наблюдавшихся марсианских каналов. Среди астрономов докосмической эры, проводивших телескопические наблюдения Марса в этот период, наиболее известны Скиапарелли, Персиваль Ловелл, Слайфер, Антониади, Барнард, Жарри-Делож, Л. Эдди, Тихов, Вокулёр. Именно ими были заложены основы ареографии и составлены первые подробные карты поверхности Марса - хотя они и оказались практически полностью неверными после полётов к Марсу автоматических зондов.

Колонизация Марса

Предполагаемый вид Марса после терраформирования

Относительно близкие к земным природные условия несколько облегчают выполнение этой задачи. В частности, на Земле есть места, в которых природные условия похожи на марсианские. Крайне низкие температуры в Арктике и Антарктиде сравнимы даже с самыми низкими температурами на Марсе, а на экваторе Марса в летние месяцы бывает так же тепло (+20 °C), как и на Земле. Также на Земле есть пустыни, схожие по виду с марсианским ландшафтом.

Но между Землёй и Марсом есть существенные различия. В частности, магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разрежённой (в сотни раз в сравнении с Землёй) атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения. Измерения, проведённые американским беспилотным аппаратом The Mars Odyssey, показали, что радиационный фон на орбите Марса в 2,2 раза превышает радиационный фон на Международной космической станции. Средняя доза составила примерно 220 миллирада в день (2,2 миллигрея в день или 0,8 грея в год). Объём облучения, полученного в результате пребывания в таком фоне на протяжении трёх лет, приближается к установленным пределам безопасности для космонавтов. На поверхности Марса радиационный фон несколько ниже и доза составляет 0,2-0,3 Гр в год, значительно изменяясь в зависимости от местности, высоты и локальных магнитных полей.

Химический состав распространённых на Марсе минералов разнообразнее, чем у других небесных тел поблизости от Земли. По мнению корпорации 4Frontiers, их достаточно для снабжения не только самого Марса, но и Луны, Земли и астероидного пояса.

Время полёта с Земли до Марса (при нынешних технологиях) составляет 259 суток по полуэллипсу и 70 - по параболе. Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3-4 мин в каждом направлении во время максимального сближения планет (которое повторяется каждые 780 дней) и около 20 мин. при максимальном удалении планет; см. Конфигурация (астрономия).

К настоящему времени никаких практических шагов для колонизации Марса не предпринято, однако идёт разработка колонизации, например, проект Столетний космический корабль, разработка жилого модуля для пребывания на планете Deep Space Habitat.

И седьмой по величине:

Расстояние орбиты от Солнца: 227 940 000 км (1,52 А.Е.)

Диаметр: 6794 км

Марс был известен с доисторических времен. Планета была тщательно изучена с помощью наземных обсерваторий.

Первый космический корабль, который посетил Марс, был Mariner 4 (США) в 1965 году. За ним последовали другие, так Марс-2 (СССР), - это первый космический аппарат, который приземлился на Марсе, за ним последовали два корабля Viking (США) со спускаемыми аппаратами в 1976 году.

Затем последовал 20 летний перерыв в запусках кораблей на Марс и 4 июля 1997 года успешно приземлился аппарат Mars Pathfinder

В 2004 году на марсе приземлился планетоход "Opportunity", который провел геологические исследования и отправил на Землю множество снимков.

В 2008 году космический модуль Phoenix приземлился на северных равнинах Марса, для поиска воды.

Затем на орбиту Марса были отправлены три орбитальные станции Mars Reconnaissance Orbiter , Mars Odyssey и Mars Express, которые в настоящее время находятся в эксплуатации.

Космический аппарат MSL Curiosity (CIF) 6 августа 2012, успешно совершил посадку на Марс. Трансляция посадки велась в прямом эфире на сайте NASA. Аппарат приземлился в заданном районе - в кратере Гейла.
Марсоход "Кьюриосити" (от английского "любопытство", "любознательность") был запущен с 26 ноября 2011 года. Он является крупнейшим роботизированным аппаратом за всю историю исследования Марса - его масса составляет более 900 килограмм.
Одна из главных задач "Кьюриосити" - анализ химического состава грунта на поверхности и на небольшой глубине. Среди его аналитических инструментов имеются квадрупольный масс-спектрометр, газовый хроматограф и рентгеновские спектрометры. Кроме того, он оснащен созданным в России нейтронным детектором DAN, предназначенным для поиска льда под поверхностью планеты.

Орбита Марса эллиптическая. Это значительно влияет на температуру с разницей в 30 C , со стороны Солнца, замеренной в афелии орбиты и перигелии. Это имеет большое влияние на климат Марса. В то время как средняя температура на Марсе составляет около -55 C, температура поверхности Марса колеблется от -133 C на зимнем полюсе почти до 27 C, на дневной стороне в течение лета.

Несмотря на то, что Марс намного меньше, чем Земля, его площадь примерно такая же, как площадь поверхности суши Земли.

Марс имеет один из наиболее разнообразных и интересных ландшафтов местности среди планет:

Гора Олимп : самая большая гора в Солнечной системе, ее высота 24 км над окружающей равниной. Подножие горы имеет 500 км в диаметре и обрамлено скалами высотой 6 км.

Тарсис : огромная выпуклость на поверхности Марса, размером около 4000 км в поперечнике и 10 км высотой.

Долина Маринера : система каньонов длинной в 4000 км и от 2 до 7 км в глубину;

Равнина Эллада : кратер от падения метеорита в южном полушарии более 6 км глубиной и 2000 км в диаметре.

Значительная часть поверхности Марса покрыта очень старыми кратерами, но есть и гораздо молодые рифтовые долины, хребты, холмы и равнины.

Южное полушарие покрыто кратерами, очень похоже на Луну. Северное полушарие состоит из равнин, которые намного моложе, меньше в высоту и имеют гораздо более сложную историю. Резкое изменение высоты в несколько километров, происходит на границе полушарий. Причины этой глобальной дихотомии и наличия резких границ неизвестны.

Разрез планеты выглядит примерно так, кора в южном полушарии около 80 км и около 30 км в северном полушарии, ядро очень плотное около 1700 км в радиусе.

Относительно низкая плотность Марса по сравнению с другими планетами земной группы указывает, на то, что его ядро, возможно, содержит относительно большую долю серы и железа (железо и сульфид железа).

У Марса, так же как и у Меркурия и Луны нет активных тектонических пластов в настоящее время, нет никаких признаков последнего горизонтального движения поверхности. На Земле свидетельством этого движения являются складчатые горы.

В настоящее время нет признаков текущей вулканической активности. Тем не менее, данные космического аппарата Mars Global Surveyor показывают, что Марс очень вероятно имел тектоническую активность когда-то в прошлом.

Существует очень четкое свидетельство эрозии во многих местах на Марсе, в том числе крупных наводнений и небольших речных систем. В прошлом на поверхности планеты была какая-то жидкость.

На Марсе, возможно, были моря, и даже океаны, аппарат Mars Global Surveyor передал очень четкие снимки слоистой системы грунта. Это скорее вызвано наличием жидкости в прошлом. Возраст эрозии каналов оценивается примерно в 4 миллиарда лет.

Mars Express в начале 2005 года прислало изображение высохшего моря, которое было наполнено жидкость совсем недавно, возможно 5 миллионов лет назад.


В начале своей истории, Марс был гораздо больше похож на Землю. Как и на Земле, почти вся двуокись углерода была использована, для формирования карбонатных пород.

Марс имеет очень разряженную атмосферу, состоящую в основном из небольшого количества оставшегося углекислого газа (95,3%), азота (2,7%), аргона (1,6%), следов кислорода (0,15%), воды (0,03%).

Среднее давление на поверхности Марса составляет лишь около 7 миллибар (это менее 1% от давления на Земле), но она сильно меняется в зависимости от высоты. Так, 9 миллибар в самых глубоких впадинах и 1 миллибар на вершине горы Олимп.

Тем не менее, на Марсе дуют очень сильные ветры и огромные пыльные бури, которые иногда охватывают всю планету в течение нескольких месяцев.

Телескопические наблюдения показали, что Марс имеет постоянные шапки на обоих полюсах, они видны даже с помощью небольшого телескопа. Они состоят из водяного льда и твердой углекислоты ("сухого льда"). Ледяные шапки обладают слоистой структурой с чередующимися слоями льда и различной концентрацией темной пыли.

Космическим кораблем Viking (США) со спускаемых аппаратов были проведены исследования для определения существования жизни на Марсе. Результаты были несколько неоднозначные, но большинство ученых в настоящее время считают, что у них нет никаких доказательств существования жизни на Марсе. Оптимисты отмечают, что только два крошечных образца грунта были проанализированы, и не из самых благоприятных мест.

Большие, но не глобальные, слабые магнитные поля существуют в различных регионах Марса. Это неожиданное открытие было сделано Mars Global Surveyor через несколько дней после того, как он вышел на орбиту Марса. Возможно, это остатки ранее глобального магнитного поля.

Если магнитное поле было на Марсе, то становится более вероятным существование жизни на нем.

Характеристики Марса:

Масса(10 24 кг): 0,64185

Объем (10 10 км кубических): 16,318

Экваториальный радиус: 3397 км

Полярный радиус: 3375 км

Объемный средний радиус: 3390 км

Средняя плотность: 3933 кг/м 3

Радиус: 1700 км

Гравитация (ed.) (м/с): 3,71

Ускорение свободного падения (ed.) (м/с): 3,69

Вторая космическая скорость (км/с): 5,03

Альбедо: 0,250

Визуальное альбедо: 0,150

Солнечная энергия (W/m 2 ): 589,2

Температура абсолютно черного тела (k): 210,1

Число естественных спутников: 2

Параметры орбиты Марса

Полуглавная ось (расстояние от Солнца) (106 км): 227,92

Сидерический период орбиты (дней): 686,98

Тропический период орбиты (дней): 686,973

Перигелий (106 км): 206,62

Афелий (106 км): 249,23

Синодический период (дней): 779,94

Максимальная орбитальная скорость (км/с): 26,5

Минимальная орбитальная скорость (км/с): 21,97

Наклон орбиты (градусы): 1,850

Период вращения вокруг своей оси (часы): 24,6229

Продолжительность светового дня (часы): 24,6597

Наклон оси (градусы): 25,19

Минимальное расстояние до Земли (106 км): 55,7

Максимальное расстояние до Земли (106 км): 401,3

Параметры атмосферы

Поверхностное давление (bar): 6.36 mb (варьируется от 4 до 8,7 mb в зависимости от мезона)

Плотность атмосферы около поверхности (кг/м 3): 0,020

Высота атмосферы (км): 11,1

Средняя температура (k): - 55 C

Температурный диапазон: -133С - +27С

Основные параметры спутников Марса