В чем заключается сущность аксиоматического метода. Практическое применение метода. Формальный аксиоматический метод

Сущность аксиоматического метода

Евклид

П.Дирак

Если теорему так и не смогли доказать – она становится аксиомой.

Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Определить математическое понятие – это значит указать его характерные признаки или свойства, которые выделяют это понятие среди остальных. Обычный способ определения математического понятия заключается в указании: 1) ближнего рода, то есть более общего понятия, к которому относится определяемое понятие; 2) видового отличия, то есть тех характерных признаков или свойств, которые присущи именно этому понятию.

Пример 1. Определение: «Квадрат – это прямоугольник, у которого все стороны равны». Ближайшим родом, то есть более общим понятием является понятие прямоугольника, а видовым отличием будет указание, что у квадрата все стороны равны. В свою очередь для прямоугольника более общим понятием является понятие параллелограмма, для параллелограмма - понятие четырехугольника, для четырехугольника - понятие многоугольника и так далее. Но указанная цепочка не является бесконечной.

Существуют понятия, которые нельзя определить через другие, более общие понятия. Их в математике называют основными неопределяемыми понятиями . Примерами основных понятий являются точка, прямая, плоскость, расстояние, множество и так далее.

Связи и отношения между основными понятиями формулируются с помощью аксиом.

Аксиома - это математическое предложение, принимаемое в данной теории без доказательств.

К системе аксиом, на которой строится та или иная математическая теория, предъявляются требования непротиворечивости, независимости, полноты.

Система аксиом называется непротиворечивой , если из нее нельзя одновременно вывести два взаимоисключающих друг друга предложения: А , неА .

Система аксиом называется независимой , если ни одна из аксиом этой системы не является следствием других аксиом этой системы.

Система аксиом называется полной , если в ней доказуемо обязательно одно из двух: либо утверждение А , либо неА.

Предложение, которого нет в списке аксиом, должно быть доказано. Такое предложение называется теоремой .

Теорема - это математическое предложение, истинность которого устанавливается в процессе рассуждения, называемого доказательством.

Аксиома: «Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки, не принадлежащие ей».

Теорема: «Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм».


Одним из основных методов современной математики является аксиоматический метод . Сущность его состоит в следующем:

1) перечисляются основные неопределяемые понятия и отношения строящейся теории (примеры отношений: следовать за..., лежать между...);

2) формулируются аксиомы, принимаемые в данной теории без доказательства, которые выражают связь между основными понятиями и их отношениями;

3) предложения, которых нет среди основных понятий и основных отношений, должны быть определены;

4) предложения, которых нет в списке аксиом, должны быть доказаны на основе этих аксиом и ранее доказанных предложений.

1.2 Геометрия Евклида – первая естественно научная теория

Исторический обзор обоснования геометрии. Геометрия, прежде чем стать аксиоматической теорией, прошла долгий путь эмпирического развития.

Первые сведения о геометрии были получены цивилизациями Древнего Востока (Египет, Китай, Индия) в связи с развитием земледелия, ограниченностью плодородных земель и др. В этих странах геометрия носила эмпирический характер и представляла собой набор отдельных «рецептов-правил» для решения конкретных задач. Уже во II тысячелетии до н.э. египтяне умели точно вычислить площадь треугольника, объем усеченной пирамиды, площадь круга, а вавилоняне знали теорему Пифагора. Заметим, что доказательств не было, а указывались правила для вычислений.

Греческий период развития геометрии начался в VII-VI вв. до н.э. под влиянием египтян. Отцом греческой математики считается знаменитый философ Фалес (640-548 гг. до н.э.). Фалесу, точнее, его математической школе принадлежат доказательства свойств равнобедренного треугольника, вертикальных углов. В дальнейшем геометром Древней Греции были получены результаты, охватывающие почти все содержание современного школьного курса геометрии.

Философская школа Пифагора (570-471 гг. до н.э.) открыла теорему о сумме углов треугольника, доказала теорему Пифагора, установила существование пяти типов правильных многогранников и несоизмеримых отрезков. Демокрит (470-370 гг. до н.э.) открыл теоремы об объемах пирамиды и конуса. Евдокс (410-356 гг. до н.э.) создал геометрическую теорию пропорций (т.е. теорию пропорциональных чисел).

Менехм и Аполлоний изучили конические сечения. Архимед (289-212 гг. до н.э.) открыл правила вычисления площади поверхности и объема шара и других фигур. Он же нашел приближенное значение числа π.

Особая заслуга древнегреческих ученых состоит в том, что они первыми поставили задачу строгого построения геометрических знаний и решили ее в первом приближении. Проблему поставил Платон (428-348 гг. до н.э.). Аристотелю (384-322 гг. до н.э.) – крупнейшему философу, основателю формальной логики – принадлежит четкое оформление идеи построения геометрии в виде цепи предложений, которые вытекают одно из другого на основе лишь правил логики. Эту задачу пытались решить многие греческие ученые (Гиппократ, Федий).

Евклид (330-275 гг. до н. э.) – крупнейший геометр древности, воспитанник школы Платона, жил в Египте (в Александрии). Составленные им «Начала» дают систематическое изложение начал геометрии, выполненное на таком научном уровне, что многие века преподавание геометрии велось по его сочинению. «Начала» состоят из 13 книг (глав):

I-VI – планиметрия;

VII-IХ – арифметика в геометрическом изложении;

X – несоизмеримые отрезки;

ХI-ХII – стереометрия.

В «Начала» были включены не все сведения, известные в геометрии. Например, в эти книги не вошли: теория конических сечений, кривые высших порядков.

Каждая книга начинается с определения тех понятий, которые в ней встречаются. Например, в книге I даны 23 определения. Приведем определения первых четырех понятий:

1 Точка есть то, что не имеет частей.

2 Линия есть длина без ширины.

3 Границы линии суть точки.

Евклид приводит предложения, принимаемые без доказательства, разделяя их на постулаты и аксиомы. Постулатов у него пять, а аксиом – семь. Вот некоторые из них:

IV И чтобы все прямые углы были равны.

V И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Аксиомы

I Равные порознь третьему равны между собой.

II И если к равным прибавить равные, то получим равные.

VII И совмещающиеся равны.

Евклид не указал, в чем заключается различие между постулатами и аксиомами. До сих пор нет окончательного решения этого вопроса.

Евклид излагает теорию геометрии так, как требовали греческие ученые, особенно Аристотель, т.е. теоремы расположены так, что каждая следующая доказывается только на основе предыдущих. Иначе говоря, Евклид развивает геометрическую теорию строго логическим путем. В этом и заключается историческая заслуга Евклида перед наукой.

«Начала» Евклида сыграли огромную роль в истории математики и всей человеческой культуры. Эти книги переведены на все основные языки мира, после 1482 г. они выдержали около 500 изданий.

Недостатки системы Евклида. С точки зрения современной математики изложение «Начал» следует признать несовершенным. Назовем основные недостатки этой системы:

1) многие понятия включают такие, которые в свою очередь должны быть определены (например, в определениях 1-4 главы 1 используются понятия ширины, длины, границы, которые также должны быть определены);

2) список аксиом и постулатов недостаточен для построения геометрии строго логическим путем. Например, в этом списке нет аксиом порядка, без которых нельзя доказать многие теоремы геометрии; заметим, что на это обстоятельство обратил внимание Гаусс. В указанном списке отсутствуют также определения понятия движения (совмещения) и свойств движения, т.е. аксиом движения. В списке не хватает также аксиомы Архимеда (одной из двух аксиом непрерывности), которая играет важную роль в теории измерений длин отрезков, площадей фигур и объектов тел. Заметим, что на это обратил внимание современник Евклида Архимед;

3) постулат IV явно лишний, его можно доказать как теорему. Особо отметим пятый постулат. В книге I «Начал» первые 28 предложений доказаны без ссылок на пятый постулат. Попытка минимизировать список аксиом и постулатов, в частности доказать постулат V как теорему, проводилась со времен самого Евклида. Прокл (V в. н. э.), Омар Хайям (1048-1123 гг.), Валлис (XVII в.), Саккери и Ламберт (XVIII в.), Лежандр (1752-1833 гг.) также пытались доказать постулат V как теорему. Их доказательства были ошибочными, но они привели к положительным результатам – к рождению еще двух геометрий (Римана и Лобачевского).

Неевклидовы геометрические системы. Н.Лобачевский (1792-1856 гг.), который открыл новую геометрию – геометрию Лобачевского, также начал с попытки доказательства постулата V.

Николай Иванович развил свою систему до объема «Начал» в надежде получить противоречие. Не получил, но сделал в 1826 г. правильный вывод: существует геометрия, отличная от геометрии Евклида.

На первый взгляд этот вывод кажется недостаточно обоснованным: может быть, развивая его дальше, можно прийти к противоречию. Но этот же вопрос относится и к геометрии Евклида. Иначе говоря, обе геометрии равноправны перед вопросом о логической непротиворечивости. Дальнейшие исследования показали, что из непротиворечивости одной следует непротиворечивость другой геометрии, т.е. имеет место равноправие логических систем.

Лобачевский был первым, но не единственным, кто сделал вывод о существовании другой геометрии. Гаусс (1777-1855 гг.) высказал эту идею еще в 1816 г. в частных письмах, но в официальных публикациях заявление не сделал.

Три года спустя после публикации результатов Лобачевского (в 1829 г.), т.е. в 1832 г., вышла работа венгра Я. Бойяи (1802-1860 гг.), который в 1823 г. пришел к выводу о существовании другой геометрии, но опубликовал позже и в менее развитом, чем у Лобачевского, виде. Поэтому справедливо, что эта геометрия носит имя Лобачевского.

Общему признанию геометрии Лобачевского в значительной степени способствовали работы геометров после Лобачевского. В 1868 г. итальянский математик Э.Бельтрами (1825-1900 гг.) доказал, что на поверхности постоянной отрицательной кривизны (так называемая псевдосфера) имеет место геометрия Лобачевского. Уязвимым местом доказательства непротиворечивости геометрии Лобачевского, основанного на интерпретации Бельтрами, было то, что, как показал Д.Гильберт (1862-1943 гг.), в евклидовом пространстве не существует полной поверхности постоянной отрицательной кривизны без особенностей. Поэтому на поверхности постоянной отрицательной кривизны можно интерпретировать только часть плоской геометрии Лобачевского. Этот недостаток был устранен А.Пуанкаре (1854-1912 гг.) и Ф.Клейном (1849-1925 гг.).

Доказательство непротиворечивости геометрии Лобачевского было вместе с тем и доказательством независимости пятого постулата от остальных. Действительно, в случае зависимости геометрия Лобачевского была бы противоречивой, так как она содержала бы два взаимно исключающих утверждения.

Дальнейшие исследования евклидовой геометрии показали неполноту системы аксиом и постулатов Евклида. Исследование аксиоматики Евклида завершил в 1899 г. Гильберт.

Аксиоматика Гильберта состоит из пяти групп:

Аксиомы связи (принадлежности);

Аксиомы порядка;

Аксиомы конгруэнтности (равенства, совпадения);

Аксиомы непрерывности;

Аксиома параллельности.

Эти аксиомы (всего их 20) относятся к объектам трех родов: точек, прямых, плоскостей, а также к трем отношениям между ними: «принадлежит», «лежит между», «конгруэнтен». Конкретный смысл точек, прямых, плоскостей и отношений не указан. Они косвенно определены через аксиомы. Благодаря этому построенная на основе аксиом Гильберта геометрия допускает различные конкретные реализации.

Геометрическая система, построенная на перечисленных аксиомах, называется евклидовой геометрией, так как совпадает с геометрией, изложенной Евклидом в «Началах».

Геометрические системы, отличные от евклидовой, называются неевклидовыми геометриями. Согласно общей теории относительности, в пространстве ни та, ни другая не являются абсолютно точными, однако в малых масштабах (земные масштабы являются также достаточно «малыми») они вполне пригодны для описания пространства. Причиной того, что на практике применяются евклидовы формулы, является их простота.

Гильберт всесторонне исследовал свою систему аксиом, показал, что она непротиворечива, если не противоречива арифметика (т.е. на самом деле доказана содержательная или так называемая внешняя непротиворечивость). Он завершил многовековые исследования геометров по обоснованию геометрии. Эта работа была высоко оценена и в 1903 г. отмечена премией имени Лобачевского.

В современном аксиоматическом изложении геометрии Евклида не всегда пользуются аксиомами Гильберта: учебники по геометрии построены на различных модификациях этой системы аксиом.

В XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики как одна из возможных геометрий, но и непосредственно связана с приложениями математики. Оказалось, что взаимосвязь пространства и времени, открытая А.Эйнштейном и другими учеными в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского.

Приведём примеры аксиоматических теорий возникших разными путями.

Пример1. Теория групп - одна из теорий, возникших на втором пути. Было известно не мало объектов, обладающих многочисленными общими чертами. Среди них, в частности, множество F1-1(М) всех взаимнооднозначных отображений множества М на себя, рассматриваемое вместе с операцией суперпозиции отображений, множество Z всех целых чисел, рассматриваемое вместе с операцией сложения целых чисел, множество V2 всех векторов плоскости, рассматриваемое вместе с операцией сложения векторов по правилу треугольника или параллелограмма. Обозначив каждое из этих множеств через G, а каждую из операций через * (и называя её композицией элементов из G), обнаруживаем, что все три указанные объекта обладают следующими свойствами:

G0. Для любых а и в из G композиция а? в есть однозначно определённый элемент из G.

G1. Для любых а и в и с из G (а? в) ? с = а? (в? с).

G2. В G имеется такой элемент е, что для любого а из G а? е = е? а = а.

G3. Для любого а из G имеется такой а" из G, что а? а" = а"? а = е.

Например, элемент е, существование которого утверждается в свойстве G2, в случае F1-1(М) есть тождественное отображение М на М, в случае Z - целое число 0, в случае V2 - нуль вектор. В свойстве G3 элемент а" есть обратное преобразование f-1, противоположное число -m, противоположный вектор ВА для преобразования f, целого числа m и вектора АВ соответственно. Утверждения G0 - G3 и составляют систему аксиом теории групп. Из этих аксиом можно выводить разнообразные теоремы и тем самым строить аксиоматическую теорию групп. Докажем несколько теорем этой теории.

Теорема 1. В группе имеется точно один единичный элемент.

Доказательство: Ввиду G2 нужно доказать лишь единственность. Допустим, что в G имеется два единичных элемента -е1 и е2, т.е. на основании G2, для любого ае1?=а и а?е2= а. Тогда, в частности, е1* е2= е2 и е1* е2= е1. Следовательно, в силу G0 и свойств равенства е1= е2.

Теорема 2. Для каждого элемента группы имеется точно один обратный.

Доказательство: Ввиду G3 остаётся доказать лишь его единственность. Допустим, что в G для элемента а имеется два обратных а" и а"", т.е. таких элементов, что а"" ? а = е и а? а" = е. Тогда, в силу G1 (а"" ? а) ? а" = а"" и, следовательно, е? а" = а"" ? е. Отсюда следует, согласно G2, что а" = а"".

В мультипликативной терминологии обратный элемент для а обозначается через а-1, так что а-1? а = а? а-1= е, где единственный единичный элемент из G.

Теорема 3. Для любых элементов а, в, с, группы G из а * в = а * с следует в = с, и из в * а = с * а следует в = с.

Доказательство: Пусть а * в = а * с. Тогда а-1 * (а * в)=(а-1 * а) * в = е * в = в. С другой стороны, а-1 * (а * в)= а-1 * (а * с) = (а-1 * а) * с = е * с = с. следовательно, в = с. Пусть в * а = с * а. Тогда (в * а) * а-1= в * (а * а-1) = в * е = в. С другой стороны (с * а) * а-1= с * (а * а-1) = с * е = в. Значит в = с.

Пример 2. Теория конгруэнтности (равенства) отрезков. S множество всех отрезков и? отношение, называемое отношением конгруэнтности, так, что выражение х? у читается так: отрезок х конгруэнтен отрезку у. Выберем в качестве аксиом следующие утверждения:К1. Для всякого х из S х? х.

К2. Для любых элементов х, у, z из S, если х? z и у? z, то х? у.

Докажем теорему.

Теорема 1. Для любых элементов у и z из S, если у? z, то z ? у.

Доказательство: По аксиоме К2, подставив z вместо х, получим, что если z ? z и у? z, то z ? у. Поскольку член конъюнкции z ? z истинен на основании аксиомы К1, то из конъюнкции его можно убрать. Получим, что если у? z, то z ? у.

Пример 3. Аксиоматическая теория натуральных чисел построена итальянским математиком Дж. Пеано на рубеже XIX и XX веков. Её первоначальными понятиями являются: непустое множество N, бинарное отношение " и выделенный элемент 1. Аксиомы выбираются следующие:

(Р1) (? х) (х" ? 1).

(Р2) (? х, у) (х = у? х" = у")

(Р3) (? х, у) (х" = у" ? х = у)

(Р4) (Аксиома индукции) (1?М ^ (? х)(х?М? х"?М)) ?М=N.

Правилами вывода служат обычные логические правила Modus Ponens и правило подстановки.

Приведём доказательства двух теорем, непосредственно вытекающих из этих аксиом.

Теорема 1. (? х) (х" ? х)

Доказательство: Рассмотрим множество. М = {х? N: х" ? х }. Покажем, используя аксиому индукции (Р4), что М = N.

А) 1?М, так как 1"? 1 по аксиоме Р1.

Б) Пусть х?М, т.е. х" ? х. Тогда, по аксиоме Р3, (х") " ? х". Следовательно, по определению, х" ?М.

Условия аксиомы Р4 выполнены. Тогда, по аксиоме Р4, М = N. Это и означает, что (? х) (х" ? х).

Пример 4. Аксиоматическое построение канторовской («наивной») теории множеств на основе нескольких систем аксиом. Всего рассмотрим три системы аксиом.

Первоначальными понятиями теории Т, являются бинарные операции?, ? (пересечение и объединение), унарная операция " (дополнение), нульарные операции 0 и 1, фиксирующие два различных элемента - нулевой и единичный. Система аксиом?1 этой теории симметрична относительно операций?, ?, 0, 1.

(А1) х? у = у? х.

(А2) х? у = у? х.

(А3) х? (у? z) = (х? у) ? (х? z).

(А4) х? (у? z) = (х? у) ? (х? z).

(А5) х? 1 = х.

(А6) х? 0 = х.

(А7) х? х" = 0.

(А8) х? х" = 1.

Первоначальными понятиями второй теории Т2 являются бинарная операция? и унарная операция ". Система аксиом?2 этой теории, наоборот, ассиметрична, «смещена» в сторону операции?.

(В1) х? у = у? х.

(В2) (х? у) ? z = х? (у? z).

(В3) х? у" = z ? z" ? х? у = х.

(В4) х? у = х? х? у" = z ? z".

Наконец, в третий теории Т3 , в которой первоначальными понятиями являются бинарное отношение С, бинарные операции? и?, унарная операция " и нульарные операции 0 и 1, система аксиом?3 следующая:

(С2) х? у ^ у? z = х? z.

(С3) х? у? z ? х? z ^ у? z.

(С4) z ? х? у? z ? х ^ z ? у.

(С5) х? (у? z) ? (х? у) ? (х? z).

(С8) 1 ? х? х".

АКСИОМАТИЧЕСКИЙ МЕТОД - метод построения научной теории, при котором выбирается ряд исходных утверждений, называемых аксиомами, а дальнейшие утверждения (теоремы) получаются из них с помощью чисто логических рассуждений (доказательств). Классический образец применения аксиоматического метода - изложенная в «Началах» Евклида (около 300 года до нашей эры) аксиоматическая система, которая охватывала всю известную в то время математику. Влияние аксиоматического метода распространилось и на другие области знания: физику, биологию, философию, богословие.

На протяжении многих столетий «Начала» Евклида были единственным примером аксиоматической теории. Начиная с 19 века, создаются новые теории, например Лобачевского геометрия, аксиоматические теории действительных и натуральных чисел. В начале 20 века были построены аксиоматические теории множеств, повлиявшие на развитие всей математики.

Формальное определение аксиоматической теории было дано Д. Гильбертом. При формальном описании теории задаётся её язык (правила построения выражений различных типов, в том числе формул, которые соответствуют содержательным утверждениям), выделяется класс формул, называемых аксиомами теории, и описываются правила вывода, позволяющие строить доказательства теорем. Доказательство есть последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих по одному из правил вывода. Теория называется непротиворечивой, если в ней нельзя получить противоречие, т. е. отрицания её теорем не являются теоремами; и полной, если для любой формулы А, либо А, либо отрицание А является теоремой. При построении формальных теорий вопрос о непротиворечивости является ключевым. Для установления непротиворечивости обычно используется метод интерпретаций. При синтаксической интерпретации теории Т выбирается другая теория Т1, непротиворечивость которой предполагается известной; интерпретация переводит формулы Т в формулы Т1, а теоремы Т в теоремы Т1. При семантической интерпретации строится модель теории: теоремы превращаются в истинные содержательные утверждения об объектах некоторого универсума. Если теория имеет модель, то она непротиворечива. Путём интерпретации доказательство непротиворечивости евклидовой геометрии сводится к доказательству непротиворечивости теории действительных чисел, а доказательство непротиворечивости геометрии Лобачевского - к доказательству непротиворечивости евклидовой геометрии.

Вопросы о непротиворечивости стали особенно актуальны в начале 20 века после обнаружения парадоксов множеств теории. В связи с этим в начале 20 века Д. Гильбертом выдвинута программа обоснования математики, целью которой было доказательство непротиворечивости формальных теорий, использующих бесконечные множества. Программа Гильберта существенно переосмыслена после открытий К. Гёделя (1931-32). Для любой непротиворечивой теории S, содержащей арифметику и заданной алгоритмически перечислимым списком аксиом, установлено, что теория S неполна (теорема Гёделя о неполноте) и непротиворечивость теории S нельзя доказать средствами самой теории S (теорема Гёделя о непротиворечивости). Первый результат, по существу, означает, что окончательная формализация научного знания невозможна, и в любой достаточно сильной аксиоматической теории имеются проблемы, которые неразрешимы в самой этой теории. Второй результат показывает, что такой проблемой является непротиворечивость теории S, и для её доказательства требуются неарифметические средства. С помощью дополнительных принципов были получены доказательства непротиворечивости арифметики, анализа и ряда других теорий. Была усилена теорема Гёделя о неполноте: найдены арифметические утверждения, которые истинны, но недоказуемы в формальной арифметике.

Формальная аксиоматическая теория называется алгоритмически разрешимой, если для любой формулы А существует алгоритм, который за конечное число шагов определяет, является ли формула А теоремой. Программа Гильберта подразумевала, что формальное доказательство теорем можно механизировать. Однако неразрешима даже простейшая теория - исчисление предикатов, неразрешима всякая непротиворечивая теория, содержащая арифметику, и многие другие теории. С другой стороны, обнаружены и нетривиальные примеры разрешимых теорий, например евклидова геометрия и теория конечных полей.

Альтернативным аксиоматическим методом является генетический (конструктивный) метод, при котором новые научные законы находятся опытным путём, а не как логические следствия известных результатов. Генетический метод развивался в 20 веке в интуиционистском (французский математик Г. Вейль, голландский математик Л. Брауэр) и конструктивном (А. А. Марков) направлениях математики.

Аксиоматический метод сыграл и продолжает играть важную роль в основаниях математики.

Лит.: Бурбаки Н. Начала математики. М., 1965. Ч. 1. Кн. 1: Теория множеств; Клини С. К. Математическая логика. М., 1973; Новиков П. С. Элементы математической логики. М., 1973; Ефимов Н.В. Высшая геометрия. 6-е изд. М., 1978; Гильберт Д., Бернайс П. Основания математики: Теория доказательств. М., 1982; Справочная книга по математической логике: В 3 часть М., 1982; Успенский В. А. Что такое аксиоматический метод? 2-е изд. Ижевск, 2001.

Аксиоматический метод – способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, которые называют аксиомами теории, а все остальные положения теории вытекают как логические следствия аксиом.

Большинство направлений современной математики, теоретическая механика, ряд разделов физики построены на основе аксиоматического метода. В математике аксиоматический метод дает возможность создания законченных, логичнозавершиних научных теорий. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, часто находит применение в других науках.

В математике аксиоматический метод зародился в работах древнегреческих геометров. Блестящим образцом его применения вплоть до XIX в. была геометрическая система, известная под названием «Начала» Евклида (ок. 300 до н.э.). Хотя в то время не стоял еще вопрос об описании логических средств, применяемых для получения содержательных последствий из аксиом, в системе Евклида уже достаточно четко прослеживается идея получения всего основного содержания геометрической теории чисто дедуктивным путем, с определенного, относительно небольшого, числа утверждений – аксиом, истинность которых представлялась наглядно очевидной.

Открытие в начале XIX в. неевклидовой геометрии Н. И. Лобачевским и Я. Бойяи стало толчком к дальнейшему развитию аксиоматического метода. Они установили, что, заменив привычный и, казалось бы, единственно «объективно истинный» V постулат Евклида о параллельных прямых его отрицанием, можно развивать чисто логическим путем геометрическую теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков XIX в. обратить особое внимание на дедуктивный способ построения математических теорий, что привело к возникновению связанной с самим понятием аксиоматического метода и формальной (аксиоматической) математической теории новой проблематики, на основе которой выросла так называемая теория доказательств как основной раздел современной математической логики.

Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более или менее отчетливой форме уже в XIX в. Уточнение основных понятий анализа и сведения сложных понятий к простейшему на точной и логически все более прочной основе, а также открытие неевклидовых геометрий стимулировали развитие аксиоматического метода и возникновения проблем общего математического характера, таких, как непротиворечивость, полнота и независимость той или системы аксиом.

Первые результаты в этой области принес метод интерпретаций, который может быть описан следующим образом. Пусть каждому выходному понятию и соотношению данной аксиоматической теории Т поставлен в соответствие определенный конкретный математический объект. Совокупность таких объектов называется полем интерпретации. Всякому утверждению U теории Т естественным образом ставится в соответствие определенное высказывание U * об элементах поля интерпретации, которое может быть истинным или ложным. Тогда говорят, что утверждения U теории Т соответствии истинное или ложное в данной интерпретации. Поле интерпретации и его свойства обычно сами являются объектом рассмотрения определенной математической теории T 1, которая, в частности, может быть тоже аксиоматической.

Метод интерпретаций позволяет устанавливать факт относительной непротиворечивости, то есть доказать утверждения типа: «если теория T 1 непротиворечива, то непротиворечивая и теория Т». Пусть теория Т проинтерпретированы в теории T 1 таким образом, что все аксиомы А и теории Т интерпретируются истинными утверждениями А и * теории Т 1. Тогда всякая теорема теории Т, то есть всякое утверждение А, логически выведено из аксиом А и в Т, интерпретируется в T 1 определенным утверждением А *, которое можно вывести в Т из интерпретаций А * и аксиом А и, и следовательно истинным. Последнее утверждение опирается на еще одно предположение, что делается неявно нами, определенного сходства логических средств, применяемых в теориях Т и Т 1. Практически это условие обычно выполняется. Пусть теперь теория Т противоречива, то есть некое утверждение А этой теории выведено в ней вместе со своим отрицанием. Тогда из вышесказанного следует, что утверждение А * и «не А *» будут одновременно истинными утверждениями теории Т 1, т.е. теория Т 1 противоречива. Этим методом была, например, доказано (Ф. Клейн, А. Пуанкаре) непротиворечивость неевклидовой геометрии Лобачевского в предположении, что непротиворечивая геометрия Евклида, а вопрос о непротиворечивость гильбертово аксиоматизациы евклидовой геометрии был возведен (Д. Гильберт) к проблеме непротиворечивости арифметики.

Метод интерпретаций позволяет также решать вопрос о независимости систем аксиом: для доказательства того, что аксиома А теории Т не виводима из других аксиом этой теории и, следовательно, существенно необходима для получения всего объема данной теории, достаточно построить такую интерпретацию теории Т, в которой аксиома А была бы ошибочна, а все остальные аксиомы данной теории истинны. Вышеупомянутое возведения проблемы непротиворечивости геометрии Лобачевского к проблеме непротиворечивости евклидовой геометрии, а этой последней – к вопросу о непротиворечивость арифметики имеет своим следствием утверждение, что V постулат Евклида не виводимий из других аксиом геометрии, если только непротиворечивой является арифметика натуральных чисел.

Слабая сторона метода интерпретаций заключается в том, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получать только результаты, носят относительный характер. Важным достижением этого метода стал тот факт, что с его помощью была обнаружена особая роль арифметики как такой математической теории, к вопросу о непротиворечивости которой сводится аналогичный вопрос для целого ряда других теорий.

Дальнейшее развитие – в известном смысле это была вершина – аксиоматический метод получил в работах Д. Гильберта и его школы. В рамках этого направления было произведено дальнейшее уточнение понятия аксиоматической теории, а само понятие формальной системы. В результате этого уточнения оказалось возможным представлять сами математические теории как точные математические объекты и строить общую теорию, или метатеорию, таких теорий. При этом привлекательной представлялась перспектива (и Д. Гильберт был в свое время ею увлечен) решить на этом пути все главные вопросы обоснования математики. Всякая формальная система строится как точно очерченное класс выражений формул, в котором определенным точным образом выделяется подкласс формул, называют теоремами данной формальной системы. При этом формулы формальной системы сами не несут в себе никакой смысловой смысла, их можно строить по произвольным знаков или элементарных символов, руководствуясь только соображениями технической удобства. На самом деле способ построения формул и понятия теоремы той или формальной системы выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применять для как можно более адекватного и полного выражения той или конкретной математической (или не математической) теории, точнее, как ее фактического содержания, так и ее дедуктивной структуры. Всякую конкретную математическую теорию Т можно перевести на язык пригодной формальной системы S таким образом, что каждое осмысленное (ложное или истинное) выражения теории Т выражается известной формулой системы S.

Естественно ожидать, что метод формализации позволит строить весь положительный смысл математических теорий на такой точной и, казалось бы, надежной основе, как понятие выведенной формулы (теоремы формальной системы), а принципиальные вопросы типа проблемы непротиворечивости математических теорий решать форме доказательств соответствующих утверждений формальных систем, которые формализуют эти теории. Чтобы получить доказательства утверждений о непротиворечивость, не зависящих от тех мощных средств, которые в классических математических теориях раз и является причиной осложнений их обоснования, Д. Гильберт предлагал исследовать формальные системы т.н. финитными методами (см. метаматематики).

Однако результаты К. Геделя начале 30-х г. XX в. привели к краху основных надежд, что связывались с этой программой. К. Гедель показал следующее.

1) Всякая естественная, непротиворечивая формализация S арифметики или любой другой математической теории, содержащей арифметику (напр., теории множеств), неполная и непополняемые в том смысле, что: а) в S содержатся (содержательно истинные неразрешимые формулы, есть такие формулы А, ни А, ни отрицания А не виводими в S (неполнота формализованной арифметикы), б) какой бы конечным множеством дополнительных аксиом (напр., неразрешимыми в S формулам) расширять систему S, в новой, усиленной таким образом формальной системе неизбежно появятся свои неразрешимые формулы (непоповнюванисть; см. также Геделя теорема о неполноте).

2) Если формализованная арифметика действительности непротиворечива, то, хотя утверждение о ее непротиворечивость может быть выражено ее собственным языком, доведение этого утверждения невозможно провести средствами, формализуются в ней самой.

Это означает, что уже для арифметики принципиально невозможно исчерпать весь объем ее содержательно истинных суждений классом виводимих формул какой бы формальной системой и что нет никакой надежды получить какое-либо финитных доведение непротиворечивости арифметики, потому что, очевидно, всякое разумное уточнение понятия финитного доведение оказывается формализуемим в формальной арифметике.

Все это ставит определенные границы можливстям А. м. в том его виде, который он приобрел в рамках гильбертовського формализма. Однако и в этих границах он сыграл и продолжает играть важную роль в основании математики. Так, например, уже после описанных результатов К. Геделя им же в 1938-40 гг, а затем П. Коэном в 1963 г. на основе аксиоматического подхода с применением метода интерпретаций были получены фундаментальные результаты о совместимости (т.е. относительную непротиворечивость) и независимость аксиомы выбора и континуум-гипотезы в теории множеств. Что касается такого основного вопроса основ математики, как проблема непротиворечивости, и после результатов К. Геделя стало ясно, что для его решения, очевидно, не обойтись без других, отличных от финитистських, средств и идей. Здесь оказались возможными различные подходы, учитывая существование различных взглядов на допустимость тех или иных логических средств.

Из результатов о непротиворечивость формальных систем следует указать на доведение непротиворечивости формализованной арифметики, опирающегося на бесконечную индукцию к определенному счетно трансфинитной числа.

По П. С. Новиковым.

Математика - это орудие, специально приспособленное для того, чтобы иметь дело с отвлеченными понятиями любого вида, и в этой области нет предела ее могуществу.

П.Дирак

Если теорему так и не смогли доказать – она становится аксиомой.

Евклид

1.1 Сущность аксиоматического метода

Математика строится на основе понятий. Понятия бывают определяемые и неопределяемые. Под определением понимают точную формулировку того или иного понятия. Определить математическое понятие – это значит указать его характерные признаки или свойства, которые выделяют это понятие среди остальных. Обычный способ определения математического понятия заключается в указании: 1) ближнего рода, то есть более общего понятия, к которому относится определяемое понятие; 2) видового отличия, то есть тех характерных признаков или свойств, которые присущи именно этому понятию.

Пример 1. Определение: «Квадрат – это прямоугольник, у которого все стороны равны». Ближайшим родом, то есть более общим понятием является понятие прямоугольника, а видовым отличием будет указание, что у квадрата все стороны равны. В свою очередь для прямоугольника более общим понятием является понятие параллелограмма, для параллелограмма - понятие четырехугольника, для четырехугольника - понятие многоугольника и так далее. Но указанная цепочка не является бесконечной.

Существуют понятия, которые нельзя определить через другие, более общие понятия. Их в математике называют основными неопределяемыми понятиями . Примерами основных понятий являются точка, прямая, плоскость, расстояние, множество и так далее.

Связи и отношения между основными понятиями формулируются с помощью аксиом.

Аксиома - это математическое предложение, принимаемое в данной теории без доказательств.

К системе аксиом, на которой строится та или иная математическая теория, предъявляются требования непротиворечивости, независимости, полноты.

Система аксиом называется непротиворечивой , если из нее нельзя одновременно вывести два взаимоисключающих друг друга предложения: А , неА .

Система аксиом называется независимой , если ни одна из аксиом этой системы не является следствием других аксиом этой системы.

Система аксиом называется полной , если в ней доказуемо обязательно одно из двух: либо утверждение А , либо неА.

Предложение, которого нет в списке аксиом, должно быть доказано. Такое предложение называется теоремой .

Теорема - это математическое предложение, истинность которого устанавливается в процессе рассуждения, называемого доказательством.

Пример 2.

Аксиома: «Какова бы ни была прямая, существуют точки, принадлежащие этой прямой и точки, не принадлежащие ей».

Теорема: «Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм».

Одним из основных методов современной математики является аксиоматический метод . Сущность его состоит в следующем:

      перечисляются основные неопределяемые понятия и отношения строящейся теории (примеры отношений: следовать за..., лежать между...);

      формулируются аксиомы, принимаемые в данной теории без доказательства, которые выражают связь между основными понятиями и их отношениями;

      предложения, которых нет среди основных понятий и основных отношений, должны быть определены;

      предложения, которых нет в списке аксиом, должны быть доказаны на основе этих аксиом и ранее доказанных предложений.