Ускорение точки при прямолинейном движении. Равноускоренное движение: формулы, примеры

«Класс!ная физика» переехала с "народа"!
«Класс!ная физика» - это сайт для тех, кто любит физику, учится сам и учит других.
«Класс!ная физика» - всегда рядом!
Интересные материалы по физике для школьников, учителей и всех любознательных.

Исходный сайт "Класс!ная физика" (class-fizika.narod.ru) с 2006 года входит в выпуски каталога «Образовательные ресурсы сети-интернет для основного общего и среднего (полного) общего образования», одобрено Министерством образования и науки РФ, Москва.


Читай, познавай, исследуй!
Мир физики интересен и увлекателен, он приглашает всех любознательных в путешествие по страницам сайта «Класс!ная физика».

А для начала - наглядная карта физики, которая показывает, откуда берут начало и как связаны между собой различные области физики, что они изучают, и для чего они нужны.
Карта Физики создана по видеоролику The Map of Physics от Доминика Вилиммана канала Domain of Science.


Физика и секреты художников

Тайны мумий фараонов и изобретения Ребрандта, подделки шедевров и секреты папирусов Древнего Египта - искусство скрывает в себе много тайн, но современные физики с помощью новых методов и приборов находят объяснения все большему числу удивительных секретов прошлого......... читать

Азбука физики

Всемогущее трение

Оно - всюду, да куда без него и денешься?
А вот три помощника-богатыря: графит, молебденит и тефлон. Эти удивительные вещества, обладающие очень высокой подвижностью частиц, применяются в настоящее время в качестве великолепной твердой смазки......... читать


Воздухоплавание

"Так поднимаются к звездам!" - начертано на гербе основателей воздухоплавания братьев Монгольфье.
Известный писатель Жюль Верн летал на воздушном шаре всего лишь 24 минуты, но это помогло ему создать увлекательнейшие художественные произведения......... читать


Паровые двигатели

"Этот могучий исполин был трёхметрового роста: гигант с лёгкостью тянул фургон с пятерыми пассажирами. На голове у Парового Человека была труба дымохода, откуда валил густой чёрный дым... всё, даже лицо, было сделано из железа, и все это непрерывно скрежетало и грохотало..." О ком это? Кому эти дифирамбы? ......... читать


Тайны магнита

Фалес Милетский наделял его душой, Платон сравнивал его с поэтом, Орфей находил его подобным жениху... В эпоху Возрождения магнит считали отображением неба и приписывали ему способность искривлять пространство. Японцы считали, что магнит - это сила, которая поможет повернуть к вам фортуну......... читать


По ту сторону зеркала

Знаете ли Вы, сколько интересных открытий может подарить "зазеркалье"? У изображения Вашего лица в зеркале правая и левая половины переставлены местами. А ведь лица редко бывают полностью симметричными, поэтому окружающие видят Вас совершенно иным. Задумывались ли Вы над этим? ......... читать


Секреты обыкновенного волчка

"Сознание того, что чудесное было рядом с нами, приходит слишком поздно." - А.Блок.
Знаете ли Вы, что малайцы могут часами завороженно наблюдать за вращением волчка. Однако, требуется немалое умение, чтобы правильно раскрутить его, ведь вес малайского волчка может достигать нескольких килограммов......... читать


Изобретения Леонардо да Винчи

" Я хочу создавать чудеса!"-говорил он и спрашивал себя: "Но скажи мне, сделано ли тобою хоть что-нибудь?" Леонардо да Винчи писал свои трактаты тайнописью с помощью обыкновенного зеркала, поэтому его зашифрованные рукописи впервые смогли прочитать лишь три столетия спустя.........

Ускорение - физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения. Ускорение является важной кинематической характеристикой материальной точки.

Самый простой вид движения - равномерное движение по прямой линии, когда скорость тела постоянна и тело за любые равные промежутки времени проходит одинаковый путь.

Но большинство движений неравномерны. На одних участках скорость тела больше, на других меньше. Машина начиная движение двигается все быстрее. а останавливаясь замедляется.

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 5 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 5 м/с , т. е. в 5 раз быстрее, чем при ускорении 1 м/с 2 .

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным .

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. б).

Среднее и мгновенное ускорение

Среднее ускорение материальной точки на некотором промежутке времени - это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:

\(\lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)

Мгновенное ускорение материальной точки в некоторый момент времени - это лимит его среднего ускорения при \(\Delta t \to 0 \) . Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:

\(\vec a = \dfrac {d\vec v} {dt} \)

Тангенциальное и нормальное ускорение

Если записать скорость как \(\vec v = v\hat \tau \) , где \(\hat \tau \) - орт касательной к траектории движения, то (в двухмерной системе координат):

\(\vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \) ,

где \(\theta \) - угол между вектором скорости и осью абсцисс; \(\hat n \) - орт перпендикуляра к скорости.

Таким образом,

\(\vec a = \vec a_{\tau} + \vec a_n \) ,

где \(\vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) - тангенциальное ускорение, \(\vec a_n = \dfrac {d\theta} {dt} v \hat n \) - нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \(\hat n \) - это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное - по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \(\omega = \dfrac v r \) , где r - радиус кривизны траектории. В таком случае

\(a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Измерение ускорения

Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с 2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с 2 за каждую секунду изменяет свою скорость на 1 м/с.

Единицы измерения ускорения

  • метр в секунду в квадрате, м/с², производная единица системы СИ
  • сантиметр в секунду в квадрате, см/с², производная единица системы СГС
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

При прямолинейном равноускоренном движении тело

  1. двигается вдоль условной прямой линии,
  2. его скорость постепенно увеличивается или уменьшается,
  3. за равные промежутки времени скорость меняется на равную величину.

Например, автомобиль из состояния покоя начинает двигаться по прямой дороге, и до скорости, скажем, в 72 км/ч он двигается равноускоренно. Когда заданная скорость достигнута, то авто движется без изменения скорости, т. е. равномерно. При равноускоренном движении его скорость возрастала от 0 до 72 км/ч. И пусть за каждую секунду движения скорость увеличивалась на 3,6 км/ч. Тогда время равноускоренного движения авто будет равно 20 секундам. Поскольку ускорение в СИ измеряется в метрах на секунду в квадрате, то надо ускорение 3,6 км/ч за секунду перевести в соответствующие единицы измерения. Оно будет равно (3,6 * 1000 м) / (3600 с * 1 с) = 1 м/с 2 .

Допустим, через какое-то время езды с постоянной скоростью автомобиль начал тормозить, чтобы остановиться. Движение при торможении тоже было равноускоренным (за равные промежутки времени скорость уменьшалась на одинаковую величину). В данном случае вектор ускорения будет противоположен вектору скорости. Можно сказать, что ускорение отрицательно.

Итак, если начальная скорость тела нулевая, то его скорость через время в t секунд будет равно произведению ускорения на это время:

При падении тела «работает» ускорение свободного падения, и скорость тела у самой поверхности земли будет определяться по формуле:

Если известна текущая скорость тела и время, которое понадобилось, чтобы развить такую скорость из состояния покоя, то можно определить ускорение (т. е. как быстро менялась скорость), разделив скорость на время:

Однако тело могло начать равноускоренное движение не из состояния покоя, а уже обладая какой-то скоростью (или ему придали начальную скорость). Допустим, вы бросаете камень с башни вертикально вниз с приложением силы. На такое тело действует ускорение свободного падения, равное 9,8 м/с 2 . Однако ваша сила придала камню еще скорости. Таким образом, конечная скорость (в момент касания земли) будет складываться из скорости, развившийся в результате ускорения и начальной скорости. Таким образом, конечная скорость будет находиться по формуле:

Однако, если камень бросали вверх. То начальная его скорость направлена вверх, а ускорение свободного падения вниз. То есть вектора скоростей направлены в противоположные стороны. В этом случае (а также при торможении) произведение ускорения на время надо вычитать из начальной скорости:

Получим из этих формул формулы ускорения. В случае ускорения:

at = v – v 0
a = (v – v 0)/t

В случае торможения:

at = v 0 – v
a = (v 0 – v)/t

В случае, когда тело равноускоренно останавливается, то в момент остановки его скорость равна 0. Тогда формула сокращается до такого вида:

Зная начальную скорость тела и ускорение торможения, определяется время, через которое тело остановится:

Теперь выведем формулы для пути, которое тело проходит при прямолинейном равноускоренном движении . Графиком зависимость скорости от времени при прямолинейном равномерном движении является отрезок, параллельный оси времени (обычно берется ось x). Путь при этом вычисляется как площадь прямоугольника под отрезком. То есть умножением скорости на время (s = vt). При прямолинейном равноускоренном движении графиком является прямая, но не параллельная оси времени. Эта прямая либо возрастает в случае ускорения, либо убывает в случае торможения. Однако путь также определяется как площадь фигуры под графиком.

При прямолинейном равноускоренном движении эта фигура представляет собой трапецию. Ее основаниями являются отрезок на оси y (скорость) и отрезок, соединяющий точку конца графика с ее проекцией на ось x. Боковыми сторонами являются сам график зависимости скорости от времени и его проекция на ось x (ось времени). Проекция на ось x - это не только боковая сторона, но еще и высота трапеции, т. к. перпендикулярна его основаниям.

Как известно, площадь трапеции равна полусумме оснований на высоту. Длина первого основания равна начальной скорости (v 0), длина второго основания равна конечной скорости (v), высота равна времени. Таким образом получаем:

s = ½ * (v 0 + v) * t

Выше была дана формула зависимости конечной скорости от начальной и ускорения (v = v 0 + at). Поэтому в формуле пути мы можем заменить v:

s = ½ * (v 0 + v 0 + at) * t = ½ * (2v 0 + at) * t = ½ * t * 2v 0 + ½ * t * at = v 0 t + 1/2at 2

Итак, пройденный путь определяется по формуле:

s = v 0 t + at 2 /2

(К данной формуле можно прийти, рассматривая не площадь трапеции, а суммируя площади прямоугольника и прямоугольного треугольника, на которые разбивается трапеция.)

Если тело начало двигаться равноускоренно из состояния покоя (v 0 = 0), то формула пути упрощается до s = at 2 /2.

Если вектор ускорения был противоположен скорости, то произведение at 2 /2 надо вычитать. Понятно, что при этом разность v 0 t и at 2 /2 не должна стать отрицательной. Когда она станет равной нулю, тело остановится. Будет найден путь торможения. Выше была приведена формула времени до полной остановки (t = v 0 /a). Если подставить в формулу пути значение t, то путь торможения приводится к такой формуле.

И зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Ускорение точки при прямолинейном движении

Механическое движение. Основные понятия механики.

Механическое движение – изменение положения тел (или их частей) в пространстве с течением времениотносительно других тел.

Из этого определения следует, что механическое движение – движение относительное.

Тело, по отношению к которому рассматривается данное механическое движение, называется телом отсчёта.

Система отсчёта - это совокупность тела отсчёта, системы координат и системы отсчёта времени, связанных с этим телом, по отношению к которому изучается движение (или равновесие) каких-либо других материальных точек или тел (рис.1).

Рис. 1.

Выбор системы отсчёта зависит от целей исследования. При кинематических исследованиях все системы отсчёта равноправны. В задачах динамики преимущественную роль играют инерциальные системы отсчёта .

Инерциальная система отсчёта (и.с.о. ) система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения.

Всякая система отсчёта, движущаяся по отношению к и. с. о . поступательно, равномерно и прямолинейно, есть также и. с. о. Следовательно, теоретически может существовать сколько угодно равноправных и. с. о ., обладающих тем важным свойством, что во всех таких системах законы физики одинаковы (так называемый, принцип относительности).

Если система отсчёта движется по отношению к и.с.о. неравномерно и прямолинейно, то она является неинерциальной и закон инерции в ней не выполняется. Объясняется это тем, что по отношению к неинерциальной системе отсчёта материальная точка будет иметь ускорение даже при отсутствии действующих сил, вследствие ускоренного поступательного или вращательного движения самой системы отсчёта.

Понятие об и. с. о. является научной абстракцией. Реальная система отсчёта связывается всегда с каким-нибудь конкретным телом (Землёй, корпусом корабля или самолёта и т. п.), по отношению к которому и изучается движение тех или иных объектов. Поскольку в природе нет неподвижных тел (тело, неподвижное относительно Земли, будет двигаться вместе с нею ускоренно по отношению к Солнцу и звёздам и т. д.), то любая реальная система отсчёта является неинерциальной и может рассматриваться как и. с. о . лишь с той или иной степенью приближения.

С очень высокой степенью точности и. с. о. можно считать так называемую гелиоцентрическую (звёздную) систему с началом в центре Солнца (точнее, в центре масс Солнечной системы) и с осями, направленными на три звезды. Для решения большинства технических задач и. с. о. практически может служить система, жестко связанная с Землёй, а в случаях, требующих большей точности (например, в гироскопии), – с началом в центре Земли и осями, направленными на звёзды.

При переходе от одной и. с. о. к другой в классической механике Ньютона для пространственных координат и времени справедливы преобразования Галилея, а в релятивистской механике (т. е. при скоростях движения, близких к скорости света) –преобразования Лоренца.

Материальная точка – тело, размерами, формой и внутренней структурой которого можно пренебречь в условиях данной задачи.

Материальная точка – объект абстрактный.

Абсолютно твёрдое тело (АТТ) – тело, расстояние между двумя любыми точками которого остаётся неизменным (деформацией тела можно пренебречь).

АТТ – объект абстрактный.

Финитное движение – движение в ограниченной области пространства, инфинитное движение – неограниченное в пространстве движение.

Положение точки А в пространстве задается радиус – вектором или тремя его проекциями на оси координат (рис.2).

Рис.2.

Следовательно, закон движения – это зависимость радиус-вектора от времени или зависимость координат во времени, где –радиус-вектор, –координаты точки; – единичные орты:

Кинематика

Кинематика –раздел механики, посвящённый изучению законов движения тел без учёта их масс и действующих сил.

Основные понятия кинематики


Например, по отношению к Земле (если пренебречь её суточным вращением) траектория свободной материальной точки, отпущенной без начальной скорости и движущейся под действием силы тяжести, будет прямая линия (вертикаль), а если точке сообщить начальную скорость 0 не направленную вдоль вертикали, то при отсутствии сопротивления воздуха её траектория будет парабола (рис. 5).

Путь – скалярная физическая величина, равная длине участка траектории , пройдённого материальной точкой за рассматриваемый промежуток времени; в СИ: = м (метр).

В классической физике неявно предполагалось, что линейные размеры тела абсолютны, т.е. одинаковы во всех инерциальных системах отсчёта. Однако, в специальной теории относительности доказывает относительность длин (cокращение линейных размеров тела в направлении его движения ).

Линейные размеры тела наибольшие в той системе отсчета, относительно которой тело покоится: Δl = Δ т.е. > , где – собственная длина тела, т.е. длина тела, измеренная в ИСО , относительно которой тело покоится, где .

Перемещение вектор , соединяющий положение движущейся точки в начале и конце некоторого промежутка времени (рис. 6);в СИ: .

Рис.6.
– перемещение, ABCD – путь. Рис.7.

Из рис.6 видно, что , причём , где – длина пути:

Пример. Движение точки задано уравнениями:

Написать уравнение траектории движения точки и определить её координаты через после начала движения.

Рис.8.

Чтобы исключить время, параметр , найдём из первого уравнения , из второго . Затем возведём в квадрат и сложим. Так как , получим =1. Это уравнение эллипса с полуосями 2 см и 3 см (рис.8).

Начальное положение точки (при ) определяется координатами , см . Через 1 сек . точка будет в положении с координатами:

Время (t ) – одна из категорий (наряду с пространством), обозначающая форму существования материи; форма протекания физических и психических процессов; выражает порядок смены явлений; условие возможности изменения, а также одна из координат пространства времени, вдоль которой протянуты мировые линии физических тел ; в СИ: – секунда.

В классической физике неявно предполагалось, что время величина абсолютная, т.е. одинаково во всех инерциальных системах отсчёта .Однако, в специальной теории относительности была доказана зависимость времени от выбора инерциальной системы отсчёта: ,где –время, измеренное по часам наблюдателя, движущегося вместе с системой отсчёта. Отсюда следовал вывод об относительности одновременности , а именно: в отличие от классической физики, где предполагалось, что события одновременные в одной инерциальной системе отсчёта одновременны и в другой инерциальной системе отсчета, в релятивистском случае пространственно разобщённые события одновременные в одной инерциальной системе отсчёта могут быть неодновременными в другой системе отсчёта .

З.2. Скорость

Скорость (часто обозначается , или от англ. velocity или фр.vitesse )– векторная физическая величина, характеризующая быстроту перемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта.

Мгновенная скорость – векторная величина, равная первой производной радиус вектора движущейся точки по времени (скорость тела в данный момент времени или в данной точке траектории ):

Вектор мгновенной скорости направлен по касательной к траектории в сторону движения точки (рис.9).

Рис. 9.

В прямоугольной декартовой системе координат:

В то же время , поэтому

Таким образом, координаты вектора скорости – это скорости изменения соответствующей координаты материальной точки:

или в обозначениях:

Тогда модуль скорости можно представить: В общем случае, путь отличен от модуля перемещения . Однако, если рассматривать путь , проходимый точкой за малый промежуток времени , то . Поэтому модуль вектора скорости равен первой производной от длины пути по времени: .

Если модуль скорости точки не изменяется с течением времени , то движение называется равномерным .

Для равномерного движения справедливо соотношение: .

Если модуль скорости изменяется со временем , то движение называется неравномерным.

Неравномерное движение характеризуется средней скоростью и ускорением .

Средней путевой скоростью неравномерного движения точки на данном участке ее траектории называется скалярная величина , равная отношению длины этого участка, траектории к продолжительности времени прохождения его точкой (рис.10): , где – путь, пройдённый точкой за время .

Рис. 10. Векторы мгновенной и средней скорости.
Рис. 11.

В общем случае зависимость скорости неравномерного движения от времени изображена на рис.11, где площадь закрашенной фигуры численно равна пройдённому пути .

В классической механике скорость – величина относительная, т.е. преобразуется при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея.

При рассмотрении сложного движения (то есть, когда точка или тело движется в одной системе отсчёта, а сама системе отсчёта движется относительно другой) возникает вопрос о связи скоростей в 2 – х системах отсчёта, который устанавливает классический закон сложения скоростей:

скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно движущейся системы и скорости самой движущейся системы относительно неподвижной :

где –скорость точки относительно неподвижной системы отсчёта, –скорость движущейся системы отсчёта относительно неподвижной системы, –скорость точки относительно движущейся системы отсчёта.

Пример:

1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, которую имеет точка пластинки под мухой относительно земли (то есть с которой её переносит пластинка за счёт своего вращения).

2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50– 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55– 50 = 5 километров в час.

3. Если волны движутся относительно берега со скоростью 30 километров в час, и корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30– 30 = 0 километров в час, то есть относительно корабля они становятся неподвижными.

В релятивистском случае применяется релятивистский закон сложения скоростей: .

Из последней формулы следует, что скорость света – максимальная скорость передачи взаимодействий в природе.

Ускорение

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Ускорение (обычно обозначается ) –производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,81м/с каждую секунду, то есть, его ускорение, называемое ускорением свободного падения .

Производная ускорения по времени, т.е. величина, характеризующая скорость изменения ускорения, называется рывок .

Вектор ускорения материальной точки в любой момент времени находится путём дифференцирования вектора скорости материальной точки по времени:

.

Модуль ускорения величина алгебраическая:

– движение ускоренное (скорость возрастает по величине);

– движение замедленное (скорость уменьшается по величине);

– движение равномерное.

Если движение равнопеременное (равноускоренное или равнозамедленное).

Среднее ускорение

Среднее ускорение – это отношение изменения скорости к промежутку времени, за который это изменении произошло:

где –вектор среднего ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости (здесь – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени тело имеет скорость . В момент времени тело имеет скорость (рис.12).Согласно правилу вычитания векторов найдём вектор изменения скорости . Тогда определить ускорение можно так:


Рис. 12.

.

Мгновенное ускорение.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

.

Направление ускорения также совпадает с направлением изменения скорости при очень малых значениях промежутка времени, за который происходит изменение скорости.

Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта:

т.е. проекция ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул:

,

где – углы, образуемые вектором ускорения с координатными осями.

Ускорение точки при прямолинейном движении

Если вектор , т.е.не меняется со временем, движение называют равноускоренным. При равноускоренном движении справедливы формулы:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости , (т.е. ).


Рис. 13.

Если скорость тела по модулю уменьшается, то есть ,то направление вектора ускорения противоположно направлению вектора скорости . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным . На рис. 13 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Ускорение точки при криволинейном движении

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих.

Действительно, при движении тела по криволинейной траектории его скорость изменяется по модулю и направлению. Изменение вектора скорости за некоторый малый промежуток времени можно задать с помощью вектора (рис. 14).

Вектор изменения скорости за малое время можно разложить на две составляющие: , направленную вдоль вектора (касательная составляющая), и , направленную перпендикулярно вектору (нормальная составляющая).

Тогда мгновенное ускорение равно: .


Направление вектора ускорения в случае криволинейного движения не совпадает с направлением вектора скорости Составляющие вектора ускорения называют касательным (тангенциальным) и нормальным ускорениями (рис.15).
Тангенциальное ускорение

Тангенциальное (касательное) ускорение это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении:


Направление вектора тангенциального ускорения (рис. 16) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное (центростремительное ) ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть, вектор нормального ускорения перпендикулярен линейной скорости движения (рис. 15). Нормальное ускорение характеризует изменение скорости по направлению и обозначается символом . Вектор нормального ускорения направлен по радиусу кривизны траектории. Из рис. 15 видно, что

Рис. 17. Движение по дугам окружностей.

Криволинейное движение можно представить как движение по дугам окружностей (рис. 17).

Нормальное ускорение зависит от модуля скорости и от радиуса окружности, по дуге которой тело движется в данный момент.