Урок гео современное изучение мирового океана. Мировой океан и его ресурсы. Изобретение акваланга Жаком Кусто

Исследователи из разных стран доказали, что живые организмы населяют всю толщу воды Мирового океана (МО). Ученые пришли к этому выводу еще в минувшем столетии, а современная глубоководная техника подтверждает существование рыб, крабов, раков, червей на глубине до 11000 м. Выясним, как дно Мирового океана исследовал французский ученый Жак Пикар, какой вклад внесли английские и российские океанологи.

Вода на Земле — объект неустанного внимания человечества

Лет 400-500 назад многие путешественники не предполагали, каковы истинные размеры и глубина океанов. Умы многих бередили легенды об Атлантиде, погрузившейся в пучину моря, мифы об удивительной стране Эльдорадо, где водные источники даруют вечную молодость. Плавания европейцев к далеким берегам, где в изобилии были золото, драгоценности и пряности, всегда были опасными из-за наличия скалистых рифов и обширных мелей на пути кораблей. Но это не помешало совершить Великие географические открытия, нанести на карту большинство морей и заливов, найти проходы между материками и островами.

Кто исследовал дно Мирового океана в древности и в средние века? Мореплаватели изучали подводный рельеф доступными им способами, наносили на карты и глобусы. Ученые подсчитали, что водная поверхность на нашей планете в три раза превышает площадь суши (361 и 149 млн км 2 соответственно). Мировой океан во все периоды истории оказывал влияние на развитие торговли, рыболовства и путешествий. Велика роль МО в формировании климата и погоды на суше, обеспечении населения продуктами питания.

Зарождение океанологии (океанографии)

Дно Мирового океана исследовал во время своего кругосветного путешествия; уделяли внимание замерам глубин и Но это были не ученые, а торговцы и мореплаватели. В XIX-XX веках возросла роль науки в исследовании океана. Благодаря достижениям исследователей были проложены безопасные водные пути, созданы карты течений, солености и температуры, подводного и подледного рельефа.

Одновременно развитие судоходства оказало значительное влияние на организацию и работу научных экспедиций. Так произошло с плаваниями российских судов, которые отправились в кругосветные путешествия, подошли к берегам Антарктиды. Было организовано изучение побережья и глубины северных и дальневосточных морей.

Кто исследовал дно Мирового океана

Успех морских путешествий способствовал накоплению знаний о МО. Постепенно происходило становление одной из географических наук — океанологии. Среди ее основоположников — голландец Б. Варениус и россиянин Ю. Шокальский. Значительный вклад в этот процесс внесли российские мореплаватели и военные. Дно Мирового океана исследовал одним из первых итальянец Л. Марсильи.

В начале XIX века русские ученые Э. Ленц и Е. Паррот изобрели глубомер. В середине того же столетия американец Дж. М. Брук создал лот с отделяющимся грузом для сбора образцов грунта. Этими достижениями успешно воспользовались участники океанографической экспедиции на британском корабле «Челленджер». Работая под эгидой Английского Королевского общества, ученые в 1872-1876 годах собрали богатые коллекции морских растений и животных, измерили глубины в Атлантическом, Индийском и Тихом океанах. К числу выдающихся исследователей того времени следует отнести русского океанолога С. О. Макарова, изучавшего Черное и Средиземное моря.

Замеры в океане позволили создать на рубеже XX века почти полную карту глубин. Около 100 лет назад на смену веревочным лотам пришли звуковые волны и приборы — эхолоты. Устройство издает который отражается от дна и улавливается. Зная время и скорость звука в воде, получают в результате расчетов расстояние, которое надо поделить пополам. Это и будет глубина в районе проведения измерений.

Открытия на дне МО

Эхолоты открыли перед исследователями Мирового океана широкие возможности. Последние десятилетия XIX века и годы после Второй мировой войны были отмечены ростом интереса к биологии МО. Ученые собрали доказательства существования жизни не только в поверхностном слое воды, но и на глубине. Во второй половине XX века весь мир облетели снимки, на которых люди увидели дно Мирового океана. Фото глубоководных организмов поразили воображение обывателей. Ведь существа, обитающие в кромешной темноте при температуре около 2-3 °С, обладают светящимися и электрическими органами.

Ученые нанесли на карты протяженные срединно-океанические хребты, котловины, отдельные горы. Легче всего было исследовать шельф и материковый склон, но истинных первооткрывателей манили глубины. Еще в конце XIX века участники экспедиции «Челленджера» обнаружили и нанесли на карту самое глубокое место в МО в районе на северо-западе Тихого океана. Подобные желоба возникли в результате столкновения мощных континентальных платформ с тонкими океаническими плитами. На материках глубоким впадинам в океане соответствуют молодые горные массивы.

Объект изучения — дно Мирового океана

Исследовал швейцарский океанолог Жак Пикар вместе с гражданином США Доном Уолшем. Для погружения ученые использовали глубоководный аппарат «Триест». Произошло это важное событие 23 января 1960 года. До этого в экспериментальных погружениях участвовал знаменитый французский режиссер и натуралист Жак Ив Кусто, который впоследствии снимал документальные фильмы о жизни на дне Мирового океана.

Жак Пикар совместно с Доном Уолшем в «Триесте» погрузились в «Бездну Челенджера» на юго-западе Марианской впадины. Глубина здесь достигает 10 911-11 030 м ниже уровня МО. Продолжительность спуска батискафа составила около 5 часов, исследователи самого глубокого желоба в мире пробыли на его дне 20 минут, подкрепили силы шоколадкой и начали подъем, длившийся более 3 часов.

Исследования показали, что разнообразие видов глубоководных животных соперничает с богатством фауны тропических коралловых рифов. Морские донные организмы приспособлены к своей среде обитания, хотя на дне впадин темно и холодно.

Основные направления современных исследований МО

Вторая половина XX века ознаменовала начало международного этапа изучения Мирового океана. Были организованы плавания научно-исследовательских судов, глубоководные бурения для сбора образцов грунта. В конце минувшего столетия ученые больше внимания уделяли взаимодействию МО с материками, влиянию на климат.

С тех пор, как дно Мирового океана исследовал Жак Пикар, прошло немало времени. Океанографические исследования продолжаются, они позволяют выявить в МО одиночные вулканы, зоны разломов и сейсмической активности. В результате столкновения океанических и материковых плит, вулканических извержений происходят стихийные природные явления, гибнут сотни тысяч человек, погружаются в пучину вод острова, возникают огромные волны — цунами. Разрушительной силой обладают тайфуны, которые зарождаются над океанами и обрушиваются на побережья. Изучение и своевременное предупреждение населения об этих опасных явлениях — одна из задач современной океанологии.

Внушительные запасы природных ресурсов МО позволяют человечеству рассчитывать на безбедное существование еще на протяжении сотен лет. Воды океанов давно уже бороздят не только рыболовные, грузовые, пассажирские и военные суда. Геологоразведочные и научно-исследовательские корабли, добывающие платформы стали элементами, без которых уже трудно представить безбрежные морские просторы.

Федеральная Целевая Программа

Современное состояние проблемы изучения и освоения мирового океана в рамках Федеральной целевой программы «Мировой океан»

С античных времен и по настоящее время прогресс в изучении и освоении Мирового океана определяется глубиной научных идей и объемом финансовых затрат. Морская активность является наиболее выпуклой формой демонстрации технических достижений, предопределяющих перспективы экономического развития отдельных стран, регионов и всего мирового сообщества. Океаны и моря формируют климат планеты, выделяют места наиболее комфортного пребывания человека, географию промышленных зон и заповедных территорий. Экономические факторы в сочетании с естественным стремлением человека "к морю" создают условия развития или деградации отдельных стран и целых континентов.

Появление первых примитивных навигационных инструментов, глобусов и карт, научные основы создания которых разрабатывались международным сообществом ученых, образовавших “ Junta Mathematicus ” на пустынной косе Сангреш, позволили разоренной войной средневековой Португалии открыть новые морские пути, освоить огромные территории, способы доставки дорогих товаров (пряностей, драгоценных камней, слоновой кости) в Европу и в исторически короткий срок войти в разряд процветающих стран.

Объединенные взаимным соревнованием королевства Испании, Италии, Португалии создали новые надежно управляемые суда (каравеллы), с помощью которых в орбиту международных экономических отношений был вовлечен ранее изолированный огромный континент. Плодами этих трансконтинентальных связей (томатами, картофелем, подсолнечником и др.) сегодня пользуется каждый житель Земли.

Более чем двухсотлетние, удивительно целеустремленные и настойчивые, усилия ученых и инженеров Англии способствовали созданию нового класса надежных и комфортабельных судов, которые несколько столетий служили скелетом, сухожилиями, мышцами, артериями, кровью и ударным кулаком огромной империи, в которой действительно никогда не заходило Солнце. Понимание важности освоения океанических процессов нашло отражение в известных строках гимна Англии: “ Britain , rules the waves …”

Развитая в США после второй Мировой войны система грантов, фактически реализующая на новом уровне классическую фордовско-тейлоровскую конвейерную систему масспроизводства, инвариантную по отношению к персональным качествам исполнителей, позволила объединить общемировой интеллектуально – технологический потенциал и добиться новых значимых успехов в изучении и освоении Мирового океана. Следует отметить высокую степень централизации и согласованности в проведении дорогостоящих исследований океана как на государственном, так и на межгосударственных уровнях ( IOC , UNESCO ).

Океан стали бороздить десятки океанографических судов, появились глобальные научные проекты ( WOCE – World Ocean Circulation Experiment ), международные конференции стали собирать тысячи участников и проходить в обстановке всеобщего энтузиазма и приподнятости. Прецизионные акустические, гравиметрические и магнитометрические инструменты позволили утроить число подводных гор и открыть единую систему подводных срединно-океанических хребтов протяженностью более 60 000 км , зафиксировать удивительные регулярности в глобальных картинах магнитных и гравитационных аномалий, уточнить картину течений и структур водных масс.

В истории России выделяются несколько периодов выраженной морской активности. В начале XVIII века более чем столетние попытки выхода России к коротким морским коммуникациям были успешно реализованы императором Петром I . В короткое время после открытия в 1701 году “Школы математических и навигацких хитросно искусств учения ”, был построен полноценный флот, позволивший Петру I объединить под своим командованием флоты многих европейских государств, включая Англию и Данию.

Приглашенный преподавать математику в Школу “худородный” Леонтий Федорович, получивший от Петра I фамилию “Магницкий – за ясность ума и доброту, как магнит притягивающую к нему себе людские сердца”, прославился энциклопедической “Арифметикой” ( 1703 г .) и стал основателем знаменитой династии ученых и педагогов.

После смерти императора морская активность стала угасать и даже выдающийся математик Л. Эйлер, не получив звания лейтенанта флота ее императорского величества Елизаветы Петровны, на 25 лет покинул Россию, не порывая впрочем связей с Академией.

Второй расцвет морской активности России наступил в начале XIX века, когда корабли под российским флагом открывали Антарктиду, осваивали Камчатку, Аляску и Калифорнию. Прогресс во второй половине XIX века ассоциируется с именами великого Д.И. Менделеева, по предложению которого в Англии был куплен бассейн У. Фруда, послуживший фундаментом обширной российской школы судостроении, и адмирала С.О. Макарова. Корвет “Витязь” под его руководством настолько прославился в изучении Тихого океана, что был удостоен чести быть указанным на фронтоне Океанографического музея Монако наряду с “Вегой” Норденшельда, “Фрамом” Фритьофа Нансена и другими великими в своих достижениях судами.

Важность освоения Севера неоднократно подчеркивалась М.В. Ломоносовым, крылатая фраза которого "Богатство России будет прирастать Сибирью и Северным ледовитым океаном" часто цитируется только наполовину. Д.И. Менделеев и С.О. Макаров объединили свои усилия в привлечении общественного внимания к изучению Арктики. Выдвинутый ими лозунг – “К Северному полюсу – напролом” стимулировал более чем столетние усилия по строительству судов ледового класса. Постепенно паровые, дизельные, а в последние годы и атомные ледоколы стали настолько надежными и эффективными, что начали использоваться даже для организации туристических рейсов в точку, которая впервые была достигнута менее 100 лет назад. (К слову сказать, открытие Северного полюса Р. Пири не было подтверждено им самим в недавно опубликованных дневниках, да и оспаривалось с самого начала).

Этот регион не перестает удивлять своими возможностями. В последние годы ледовитость Арктики уменьшилась, и очередной рейс 2001 года научно-исследовательского судна в ее центральную часть позволил открыть несколько действующих подводных вулканов, обширные поля гидротермальных источников, населенные ранее неизвестными науке биосообществами, обширные месторождения нефти, газа и газогидратов (ледышек, насыщенных метаном и другими горючими газами, возможно основной будущий энергоноситель). Северные моря, сохраняя свои рыбопромысловые возможности, становятся все более значимым источником минерального сырья и энергоносителей. Для практического освоения технологий жизни и работы на севере Норвегия открыла филиал международного университета на Шпицбергене, в числе студентов которого появляются и россияне.

Развитие подводного атомного флота инициировало очередной взрыв интереса к изучению глубокого океана в 50 и 60- е годы прошлого столетия. Для обеспечения скрытности и безопасности эксплуатации возможно самых дорогостоящих технических объектов современности потребовалось развитие акустики и оптики океана, теории струй, волн и турбулентности.

В 70-е годы наряду с традиционными контактными инструментами, разработанными для достаточно точного определения параметров среды в отдельной "точке" местоположения судна, буя или донной станции, стали появляться дистанционные – акустические, оптические, радиолокационные позволяющие "мгновенно" регистрировать пространственное распределение возмущений. Акустические томографы, загоризонтные и самолетные радиолокаторы, альтиметры, гравиметры, магнитометры, позволяющие карту выбранного поля, существенно изменили представления о геометрии поверхности океана, которая перестала быть “простой частью геоида”, а стала индикатором топографии дна океана, динамики и структуры протекающих процессов.

Постоянно функционирующие системы спутников для определения координат и скоростей движения объектов – GPS (США) и ГЛОНАСС (Россия), гидрометеоусловий ( Topex - Poseidon , “Метеор”), телевидения и связи, обнаружения и разведки активности военных объектов, научных исследований) позволили получить огромное количество данных о движении Земли в целом (ось которой, а следовательно и широты, непрерывно смещается, в наш век к северу), отдельных материков (со скоростями в диапазонах 1-3 и 10- 15 см в год), Солнечной постоянной (которая на самом деле является переменной в силу изменчивости структуры процессов в его толще), динамике атмосферы, о волнах и ветре, приливах, течениях, вихрях, фронтах и многих других параметрах, включая химические и биологические.

Быстро прогрессирующие семейства компьютеров позволили оперативно преобразовывать огромные массивы наблюдательных данных в удобную для восприятия и последующего анализа форму, создавать атласы вихрей, течений, волн и ветров в океане, включать в существующие математические модели оценку состояния и прогнозировать эволюцию природных систем.

Казалось, чуть-чуть и будет решена вечная проблема “прогноза погоды и оценки изменчивости климата”. Однако, как и сто пятьдесят лет назад, когда затонувший Балаклаве англо-французский флот вынудил создать национальные службы прогноза погоды, так и сейчас, ураганы, тайфуны, морозы, шторма и другие погодные аномалии все еще приходят неожиданно и совсем не туда, где ожидаются. Возникла парадоксальная ситуации – появление новых глобальных инструментов, повышение точности отдельных измерений и увеличение их объема не способствовали повышению надежности прогноза эволюции природных систем, выделению антропогенных факторов, снижению экономического ущерба от природных катастроф.

Возникла необходимость формирования нового научного подхода к изучению процессов в окружающей среде и освоению Мирового океана. Ситуация усугублялась очевидной деградацией морских компонент мировой экономики – падением объема морских перевозок, экологическими катастрофами, вызванными чрезмерным осушением прибрежных болот и соленых лагун, авариями нефтяных платформ и крупных танкеров, резким падением объема и качества добываемых в океане рыб и морепродуктов. Переоценка роли ядерного оружия привело к резкому ограничению развития подводного флота.

Необходимость перестройки современного государственного подхода к изучению Мирового океана была впервые отмечена в письме группы выдающихся российских ученых, следствием которого стали поручения Президента России Б.Н. Ельцина (от 7 декабря 1995 г . и 1 марта 1996 г .) и Председательства Правительства России В.С. Черномырдина (от 16 декабря 1995 г . и 6 марта 1996 г .) о подготовке Концепции Федеральной целевой программы “Мировой океан”. В ее подготовке приняли участие 45 федеральных и региональных учреждений, министерств и ведомств. Концепция была одобрена Указом Президента Российской Федерации 17 января 1997 года № 11 (всего через несколько дней после приступа тяжелой болезни) и стала надежным базисом развития морских исследований в России. Постановлением Правительства Российской Федерации от 10 августа 1998 г . № 919, подписанным его Председателем С. В. Кириенко за несколько дней до злополучного дефолта, Программа “Мировой океан” была утверждена и начала финансироваться.

Программа сегодня обеспечивает проведение глубоких исследований океанов и морей. Стоимость годового этапа отдельных исследовательских проектов подпрограммы “Исследования природы Мирового океана” достигает 4 млн. руб. (130 000 у. е.), что сопоставимо с международными стандартами финансирования и позволяет проводить и экспериментальные, и теоретические работы. На втором этапе, который начнется в 2003 году, предусматривается обновление технических средств изучения океана и, следовательно, увеличение объема финансирования.

Вслед за Россией, к ревизии своей морской политики приступили и другие промышленно-развитые страны. Особенно серьезный характер эта работа приняла в США, где одновременно были созданы специальные Рабочие группы в Конгрессе, Национальной академии наук и администрации Президента. Для координации практических работ создан Межотраслевой комитет по морским наукам и технологиям.

В чем же причина такого огромного интереса к Мировому океану? Просто он остается последним доступным резервом интеллектуального и экономического развития человечества.

Вначале рост благополучия обеспечивали географические открытия, обеспечивающие новые товары, расширение рынков труда и сбыта избыточной продукции. Затем стали эксплуатироваться биологические (рыба и морепродукты) и коммуникационные ресурсы (перевозки товаров и людей, передача информации с помощью подводных телеграфных, затем телефонных, а сейчас оптоволоконных кабелей). Далее стали извлекаться полезные ископаемые.

Развитие морской добычи нефти и газа позволило Англии и Норвегии не только решить собственные экономические проблемы, но и в исторически короткий промежуток времени перейти из группы второразрядных в немногочисленный ряд процветающих стран. Необходимость бесконфликтного дележа потенциальных богатств океана стимулировала развитие морского права, привела к созданию исключительных экономических зон, признанию глубокого океана “ всеобщим достоянием человечества” (что существенно дополняет старинный принцип “ свободы мореходства”), созданию “морских охраняемых территорий”.

В настоящее время все большее значение океан приобретает как источник морепродуктов и нового генетического материала, начиная с сохранившихся с древнейших времен видов бактерий и кончая странными биосообществами, населяющими районы глубоководных гидротермальных источников. Индустрия аквакультуры является настолько быстро развивающейся отраслью, источником такого мощного экономического благополучия, что наводит на мысль о смене технической (машинной) цивилизации на менее энергозатратную биологическую.

Граница суши и океана становится все более притягательной для постоянного пребывания и проживания, доля населения прибрежных зон неуклонно растет.

В силу своей обширности и некомфортности для прямого нахождения человека (темнота, низкие температуры, высокие давления), океан продолжает оставаться “ terra incognita ”, удивляющей возможностью совершения новых открытий даже в таких традиционных разделах науки, как география, физика, химия, биология.

Так открытие тонкой структуры океана – долговременного существования протяженных слоев (ламин) и разделяющих их высокоградиентных прослоек, совершенное во время совместной экспедиции двумя членами Академии наук СССР – почетным членом Генри Стоммелом (США) и членом-корреспондентом АН СССР К.Н. Федоровым (ИО РАН им. П.П. Ширшова) стимулировало новый виток интенсивных исследований физических процессов в стратифицированных вращающихся средах, который продолжается и сегодня.

Его следствием стали “точные” модели природных процессов, позволяющие не только надежно рассчитывать параметры отдельных природных процессов, но и влиять на их течение. Для их дальнейшего совершенствования в равной степени необходимы наблюдения в природных условиях и экспериментальные данные, получаемые в контролируемых лабораторных условиях с применением всего арсенала средств оптических, акустических и контактных измерений. Такие установки создаются во многих странах, успешно работают они и в России, в Институте проблем механики РАН, где находится филиал кафедры физики моря и вод суши Физического факультета.

Адекватность перехода от маломасштабных лабораторных установок к реальным природным системам обеспечивается применением нового поколения математических моделей течений и волн. Для их создания используется синтез методов теории непрерывных и дискретных групп преобразований, дифференциальных форм, дифференциальной геометрии, теории погружения, асимптотических вычислений. Некоторые из методов разработаны достаточно давно, но их активное использование сдерживалось невозможностью проведения трудоемких аналитических вычислений, которые сейчас успешно выполняет компьютер. Достоинством является возможность проверки математических выводов на реальных процессах, протекающих в человеческих масштабах времени и пространства. В дальнейшем развитые подходы, как это уже неоднократно было в истории науки, перекочевывают в теорию колебаний, электродинамику, теорию поля и элементарных частиц.

Романтические морские измерения, наряду со спутниками, судами, заякоренными буями, осуществляют более 3000 свободно дрейфующих буев, раз в две недели всплывающих на поверхность с глубин 300 – 2000 м и передающих информацию на спутник связи. Для их эксплуатации необходимо развитие представлений о взаимодействии тел с неоднородной средой, где, как оказалось, важную роль играют удивительные и высокоорганизованные “автокумулятивные струи” видимые в нижней части рис. 1, 2.

Одной их проблем является создание новых высокоразрешающих датчиков физических параметров, позволяющих регистрировать регулярные (волны, вихри, струи) и сингулярные элементы течений, примеры которых видны на рис. 3,4. Интересной задачей является создание автономных подводных обсерваторий с гибридной оперативной связью – по акустическому каналу с надводным буем и далее со спутником. И, наконец, вершина технического творчества – автономные подводные аппараты, экономные и совершенные с большим запасом хода и в чистой воде и подо льдами Арктики. Вопрос стоит острейший – приведет ли изменение климата к таянию арктических льдов, которые по некоторым норвежско-американским сценариям сохранятся только около полюса, или система обратных солнечно-земных и атмосферно-гидросферно-литосферных связей будет поддерживать существующее положение вещей?

Этим вопросом, как неявным призывом к занятиям физической океанографией, хочется закончить повествование. Впрочем, необходимо и предостеречь от излишнего оптимизма. Для этой формы человеческой активности характерен большой временной разрыв между приложением усилий и получением плода их общественного признания. Впрочем, как справедливо заметил К. И. Чуковский – “В России надо жить долго. Многое увидишь”.

Профессор кафедры физики моря и вод суши

Физического факультета МГУ им. М.В. Ломоносова

Ю.Д.Чашечкин

Рис. 1. Теневая фотография сферы, колеблющейся возле уровня нейтральной плавучести (метод щель - нож)

Рис. 2. Теневая фотография свободно колеблющейся сферы

(метод щель - нить)

Рис. 3. Теневая картина течения около горизонтального цилиндра, начинающего горизонтальное движение с равномерной скоростью слева направо. НЕНАДО ЭТОТ РИСУНОК

a) б)

Рис. 4. Картина конвективных течений над точечным источником

тепла в слабо – а), и сильно – б) стратифицированной жидкости.

Океаны

Гидросфера - водная оболочка Земли. Мировой океан-главная часть гидросферы Земли. Термин «Мировой океан» ввёл в науку учёный-географ Ю.М. Шокальский. Мировой океан занимает 71% поверхности Земли. Он делится материками на 4 океана: Тихий океан (50% площади - 178,62 млн. км2), Атлантический (25% -91,56 млн. км2), Индийский (21% - 76,17 млн. км2) и Северный Ледовитый океан (4% - 14,75 млн. км2).

Состав и свойства воды

Вода в океане солёная. Это знают все. Солёный вкус придают содержащиеся в ней 3,5% растворённых минеральных веществ - в оснавном соединений натрия и хлора – основные ингредиенты столовой соли. Из неметаллических компонентов важны кальций и кремний, так как они участвуют в строении скелетов и раковин многих морских животных. Плотность морской воды равна примерно 1030 кг/м3 при температуре = 20 градусов. Плотность воды в океане меняется с глубиной из-за давления вышележащих слоёв, а также в зависимости от температуры и солёности.

Наиболее плотные массы воды в океане могут оставаться на глубине и сохранять пониженную температуру более 1000 лет. Преобладающий синий цвет морской воды связан с рассеянием солнечных лучей в воде мелкими частицами. Зарегистрировано проникновение солнечных лучей до глубины 700 метров. Радиоволны проникают в толщу воды лишь на небольшую глубину, зато звуковые волны могут распространяться под водой на тысячи километров. Высокое содержание солей препятствует её использованию для поливания сельскохозяйственных культур. Для питья морская вода также не пригодна.

Обитатели океана

Жизнь в океане необычайно разнообразна - там обитает более 200000 видов живых организмов. Большая часть морских организмов обитает на мелководье, куда лучше проникает солнечный свет. Широко известно такое явление как «апвеллинг» - поднятие к поверхности глубинных морских вод, обогащенных питательными веществам; с этим связано богатство и разнообразие органической жизни у некоторых побережий. Жизнь в океане представлена различными организмами - от микроскопических одноклеточных водорослей до китов, превышающих в длину 30 метров. Океаническая биота делится на следующие основные группы. Планктон представляет собой массу микроскопических растений и животных, которые образуют плавучие «кормовые угодья». Планктон состоит из фитопланктона и зоопланктона. Также существует нектон- это свободно плавающие в толще воды организмы, преимущественно хищники, включает более 20000 разновидностей рыб, а также кальмаров, тюленей и китов. Бентос включает в себя растения и животных, обитающих на дне на дне океана или вблизи дна, как на больших глубинах, так и на мелководье.

Растения, представленные различными водорослями (например, бурыми), встречаются также на мелководье, куда проникает солнечный свет.

Цунами

Катастрофические волны могут возникать в результате резкого изменения глубины дна (цунами), при сильных штормах и ураганах (штормовые волны) или при обвалах и оползнях береговых обрывов. Цунами могут распространяться в открытом океане со скоростью 700-800 км/ч. При приближении к берегу, волна цунами тормозится, одновременно увеличивается её высота. В результате на берег накатывается огромная волна высотой до 30 метров. Цунами обладает огромной разрушительной силой. Больше всего страдают районы, находящиеся вблизи таких сейсмически активных зон, как Аляска, Япония, Чили. Волны, приходящие от удалённых источников приносят более значительный вред. Подобные волны образуются при взрывных извержениях вулканов, как, например, при извержении вулкана на острове Кракатау в Индонезии в 1883 году. Ещё более разрушительными могут быть штормовые волны, порождённые ураганами (тропическими циклонами). Неоднократно подобные волны обрушивались на побережье Бенгальского залива; одна из них в 1737 году привела к гибели примерно 300000 человек. Сейчас имеется возможность заранее оповещать население прибрежных городов о приближающихся ураганах.

Катастрофические волны, вызванные оползнями и обвалами, относительно редки. Они возникают в результате падения крупных каменных глыб в глубоководные заливы; при этом происходит вытеснение огромной массы воды, коротая, обрушивается на берег. В 1736 году на остров Кюсю в Японии сошёл оползень, имевший трагические последствия: порождённые им три огромные волны унесли жизни около 15000 человек.

Ресурсы океана

Пищевые ресурсы океана

В океанах ежегодно вылавливается десятки миллионов тонн рыбы, моллюсков и ракообразных. В некоторых частях океанов добыча с применением современных плавучих рыбозаводов ведётся очень интенсивно. Почти истреблены некоторые виды китов. Продолжающийся интенсивный вылов может нанести сильный ущерб таким ценным промысловым видам рыбы, как тунец, сельдь, треска, морской окунь и мерлуза.

Минеральные ресурсы океана

Все минералы, которые находят на суше, присутствуют и в морской воде. Наиболее распространены там соли, магний, сера, кальций, калий, бром. Недавно океанологи обнаружили, что во многих местах дно океана буквально покрыто россыпью железомарганцевых концентраций с высоким содержанием марганца, никеля и кобальта. Найденные на мелководье фосфоритные конкреции могут использоваться в качестве сырья для производства удобрений. В морской воде присутствуют также такие ценные металлы, как титан, серебро, золото. В настоящее время в значительных количествах из морской воды добывается лишь соль, магний и бром.

Нефть

На шлейфе уже сейчас разрабатывается ряд крупных месторождений нефти, например у берегов Техаса и Луизианы, в Северном море, Персидском заливе и у берегов Китая. Ведётся разведка месторождений у берегов Западной Африки, у восточного побережья США и Мексики, у берегов арктической Канады и Аляски, Венесуэлы и Бразилии.

Энергии приливов

Уже давно было известно, что приливные течения, проходящие через узкие проливы, можно использовать для получения энергии в такой же степени, как водопады и плотины на реках. Так, например в Сен-Мало во Франции с 1966 года успешно действует приливная гидроэлектростанция.

Другие ресурсы

Почти три четверти солнечной энергии, поступающей на Землю, приходится на океаны, поэтому океан является идеальным накопителем тепла. К другим ресурсам океана можно отнести жемчуг, который образуется в теле некоторых моллюсков; водоросли, которые используются в качестве удобрений, пищевых добавок и пищевых продуктов, а также в медицине как источник йода, натрия и калия; залежи гуано- залежи птичьего помёта, добываемого на некоторых атоллах в Тихом океане и используемого в качестве удобрений.

Ресурсы морей России

Территорию нашей России омывает 13 морей: 12 морей Мирового океана и Каспийское море. Эти моря очень разнообразны по ресурсам.

Моря России имеют важное хозяйственное значение. Прежде всего, это дешевые транспортные пути, соединяющие нашу страну, как с другими государствами, так и с отдельными её районами. Через моря Северного Ледовитого океана проходит Северный морской путь – важная транспортная магистраль России. Это самый короткий путь от Санкт - Петербурга до Владивостока. Суда, следуя по Балтийскому, Северному и Норвежскому морям, идут по Северному морскому пути, проходя до Владивостока 14280 км. Россия располагает высокоразвитым морским транспортом. Особенно велика его роль во внешнеторговых перевозках.

Значительную ценность представляют биологические ресурсы морей, в первую очередь их рыбные богатства. В омывающих Россию морях обитает почти 900 видов рыб. Из более 250 видов промысловых. Всё более возрастает значение минерально-сырьевых ресурсов морей. Энергию морских приливов можно использовать для получения электроэнергии. В России есть пока лишь одна небольшая приливная электростанция - Кислогубская ПЭС на Баренцевом море.

Моря - это и места отдыха. Конечно, большая часть морей нашей страны имеет слишком суровые природные условия, чтобы там могли отдыхать люди. Но южные моря – Азовское, Чёрное, Каспийское и Японское привлекают большое количество отдыхающих.

Современные способы изучения океанов и морей

Большую роль в изучении океана играют экспедиционные суда, оборудованные специальной аппаратурой, в частности для изучения океанического дна. В Северном Ледовитом океане наблюдения за солёностью и температурой воды, направлением и скоростью течений, глубиной океана учёные ведут с дрейфующих станций.

Изучение глубин Мирового океана осуществляется с помощью разнообразных подводных аппаратов: батискафов, подводных лодок т. д. Наблюдения за океаническими течениями, волнами и дрейфующими льдами ведутся также из космоса. Космическая съёмка, что 1/3 всей покрыта масляной нефтяной плёнкой. Наибольшему загрязнению подвергается Тихий океан, в особенности у берегов Японии и США, где расположены крупные города и промышленные районы.

Признаки загрязнения вод и морских организмов даже у берегов Антарктиды. В крови пингвинов найден ядохимикат, вынесенный с полей через и моря в океан. Там он попал в организм рыб, которыми питаются пингвины. Международные соглашения об охране вод океана призывают разумно использовать богатства океана и охранять его неповторимую природу. В первую очередь это необходимо самому человеку.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

СОВРЕМЕННЫЕ СПОСОБЫ ИЗУЧЕНИЯ ДНА МИРОВОГО ОКЕАНА

Мировой океан-это не только вода, это целостное природное образование, своеобразный географический объект планетного масштаба. Как всякая тайна океан манил человека Ещё в древности люди пытались проникнуть в его глубины.

ПРОФИЛЬ ДНА МИРОВОГО ОКЕАНА ПРОФИЛЬ ОКЕАНИЧЕСКОГО ДНА

Первые исследования океана В 1920-е годы появились эхолоты. Это позволило определять океанскую глубину всего за несколько секунд по времени, истекшему между посылом звукового импульса и приемом отраженного дном сигнала. Новейшая система глубоководных промеров «Глория» появилась на судах, начиная с 1987 года. Эта система позволяла сканировать дно океана полосами шириной 60 м. Интенсивное исследование океана началось после Второй мировой войны. Открытия 1950 – 1960 гг., связанные с породами океанической коры, произвели революцию в науках о Земле. Американский лейтенант Дональд Уолш и швейцарский ученый Жак Пикар, в 1960 г. установили мировой рекорд погружения в самом глубоководном районе мира – в Марианском желобе Тихого океана (впадина Челленджера). На батискафе «Триест» они опустились на глубину 10 917 м, а в глубинах океана обнаружили необычных рыб. Но, вероятно, наиболее впечатляющими в более недавнем прошлом были события, связанные с крошечным батискафом США «Элвин», с помощью которого в 1985 – 1986 гг. изучались обломки «Титаника» на глубине около 4 000 метров.

Батискаф «Элвин», США

Океан изучают с помощь самых разнообразных средств – с кораблей, самолетов, из космоса. Применяют также автономные средства. В последнее время исследовательские корабли строятся по специальным проектам. Их архитектура подчинена единой цели – сделать наиболее эффективным использование приборов, опускаемых на глубину, а также применяемых при исследовании приводного слоя атмосферы. На кораблях широко представлена современная вычислительная техника, предназначенная для планирования экспериментов и оперативной обработки полученных результатов. Глубоководные исследования Мирового океана.

В Северо-Ледовитом океане наблюдения за соленостью и температурой воды, направлением и скоростью течений, глубиной океана ученые ведут с дрейфующих станций. Изучение глубин Мирового океана осуществляется с помощью разнообразных подводных аппаратов: батискафов, подводных лодок и т.п.

Современные аппараты: Подводный аппарат SEAL 5000 Глубоководный робот ROV KIEL 6000.

Маленькими шагами, но с большими усилиями ученые приобретают важнейшие знания, но уже стало ясно, что морские глубины сильнее влияют на всю планету, чем когда-либо предполагалось. Огромный мировой океан изучен совсем немного, и его предстоит изучать все более углубленно. Большая загадка в том, какие нас ждут открытия в будущем, которая понемногу приоткрывается перед человечеством благодаря исследованию мирового океана.

СПАСИБО ЗА ВНИМАНИЕ Презентацию подготовила: Ширина Динара Наильевна


В середине XX века началось планомерное изучение дна океана . В экспедиции от-правились специально построенные суда. В России главным кораблем науки стал новый «Витязь», в Америке — судно «Гломар Челленджер», названные так в честь своих славных предшественников. Был изобретен прибор — эхолот , который помо-гал быстро определять морские глубины по всему пути следования судна. На судне «Гломар Челленджер» проводилось бурение океаническою дна, с больших глубин были взяты образцы горных пород .

Перед учеными предстал новый мир. На дне океана были откры-ты огромные хребты, множество гор , крупных равнин , глубоких впадин. Выяснилось, что Срединно-океанические хребты — самые протяженные горы мира. Сплошной полосой длиной более 70000 км они протянулись через все океаны.

Отдельные вершины Срединно-океанических хребтов поднимаются над водой, обра-зуя вулканические острова , например Исландию . Вулка-нов в океанах оказалось го-раздо больше, чем на суше. Особенно много их в Тихом океане. В нем расположены также самые глубокие впади-ны Мирового океана . Одна из них, открытая учеными России, получила имя «Витязь». Оказалось, что на дне даже самых глубоких впа-дин есть жизнь. В 1960 году исследователи Жак Пикар и Дон Уолш в специальном аппарате опустились на дно самой глубокой в мире Марианской впадины , на глубину 11 022 м.

Изучение океана из космоса

Изучение океана велось также с космических кораблей и спут-ников. Были созданы точные карты рельефа дна. На основе по-лученных материалов были раз-работаны гипотезы о развитии Земли. Люди стали добывать со дна моря многие полезные иско-паемые, например нефть и газ.

Путешествие Тур Хейердала на Кон-Тики

Норвежский ученый Тур Хейердал полагал, что люди пе-реплывали через океаны еще в глубокой древности . Чтобы дока-зать это, он вместе с товарищами на легком плоту пересек Тихий океан от берегов Южной Амери-ки до островов Океании. На лодке из тростника — копии древне-египетского корабля из папируса Кон-Тики — Хейердал переплыл Атланти-ческий океан. Среди его спутников был русский врач Юрий Сенкевич. Путешествие должно было доказать, что египтяне задолго до Колумба посещали Америку. Материал с сайта

Среди индейцев Южной и Центральной Америки жили легенды о белокожих бородатых людях — посланцах богов. Когда-то давно покинув земли Америки, они обещали вернуться, приплыть из-за океана. Многие индейцы не оказывали испанским конкистадорам никакого сопротивления, принимая их за вернувшихся богов.

Изобретение акваланга Жаком Кусто

Французский океанолог Жак Кусто в середине XX века изобрел акваланг, с помощью которого человек мог свободно дышать, пла-вая под водой. На своем судне «Калипсо» он побывал в самых раз-ных уголках Мирового океана, изучая подводную жизнь , произ-водя киносъемки и открывая людям совсем незнакомый подвод-ный мир.